Analysis | Published:

Emerging trends in global freshwater availability

Naturevolume 557pages651659 (2018) | Download Citation


Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002–2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world’s water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Changnon, S.A. Detecting Drought Conditions in Illinois. Circular 169 (Illinois State Water Survey, 1987).

  2. 2.

    Rodell, M. & Famiglietti, J. S. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Wat. Resour. Res. 37, 1327–1339 (2001).

  3. 3.

    Getirana, A., Kumar, S., Girotto, M. & Rodell, M. Rivers and floodplains as key components of global terrestrial water storage variability. Geophys. Res. Lett. 44, 10359–10368 (2017).

  4. 4.

    Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

  5. 5.

    Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

  6. 6.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Wat. Resour. Res. 48, W00L06 (2012).

  7. 7.

    Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).

  8. 8.

    van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y. & Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18, 2955–2973 (2014).

  9. 9.

    Zektser, I. S. & Everett, L. G. (eds) Groundwater Resources of the World and Their Use (UNESCO, Paris, 2004);

  10. 10.

    Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

  11. 11.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

  12. 12.

    Syed, T. H., Famiglietti, J. S., Chambers, D. P., Willis, J. K. & Hilburn, K. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl Acad. Sci. USA 107, 17916–17921 (2010).

  13. 13.

    Rodell, M. et al. The observed state of the water cycle in the early 21st century. J. Clim. 28, 8289–8318 (2015).

  14. 14.

    Famiglietti, J. S. et al. Satellites provide the big picture. Science 349, 684–685 (2015).

  15. 15.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

  16. 16.

    Wahr, J., Molenaar, M. & Bryan, F. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 103, 30205–30229 (1998).

  17. 17.

    Rodell, M. & Famiglietti, J. S. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Wat. Resour. Res. 35, 2705–2723 (1999).

  18. 18.

    Swenson, S., Yeh, P. J. F., Wahr, J. & Famiglietti, J. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett. 33, L16401 (2006).

  19. 19.

    Cazenave, A. & Chen, J. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet. Sci. Lett. 298, 263–274 (2010).

  20. 20.

    Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005).

  21. 21.

    Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

  22. 22.

    Adler, R. et al. The New Version 2.3 of the Global Precipitation Climatology Project (GPCP) Monthly Analysis Product (2016).

  23. 23.

    Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D. & Douglas, E. M. Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 38, 321–334 (2015).

  24. 24.

    Birkett, C., Reynolds, C., Beckley, B. & Doorn, B. in Coastal altimetry (eds Vignudelli, S. et al.) 19–50 (Springer, Berlin, 2011).

  25. 25.

    Oldenborgh, G. J. et al. (eds) in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1311–1393 (Cambridge Univ. Press, Cambridge, 2013);

  26. 26.

    Tamisiea, M. E., Leuliette, E. W., Davis, J. L. & Mitrovica, J. X. Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys. Res. Lett. 32, L20501 (2005).

  27. 27.

    Gardner, A. S. et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357–360 (2011).

  28. 28.

    Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

  29. 29.

    Schlegel, N.-J. et al. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012). Cryosphere 10, 1965–1989 (2016).

  30. 30.

    MacGregor, J. A. et al. Holocene deceleration of the Greenland Ice Sheet. Science 351, 590–593 (2016).

  31. 31.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

  32. 32.

    Landerer, F. W., Dickey, J. O. & Güntner, A. Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J. Geophys. Res. Atmos. 115, D23115 (2010).

  33. 33.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Chang. 4, 945–948 (2014).

  34. 34.

    Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

  35. 35.

    Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Wat. Resour. Res. 51, 5198–5216 (2015).

  36. 36.

    Döll, P., Schmied, H. M., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).

  37. 37.

    Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).

  38. 38.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

  39. 39.

    Phillips, T., Nerem, R., Fox-Kemper, B., Famiglietti, J. & Rajagopalan, B. The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett. 39, L16705 (2012).

  40. 40.

    Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).

  41. 41.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

  42. 42.

    Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009).

  43. 43.

    Panda, D. K. & Wahr, J. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Wat. Resour. Res. 52, 135–149 (2016).

  44. 44.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

  45. 45.

    Wang, X., de Linage, C., Famiglietti, J. & Zender, C. S. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Wat. Resour. Res. 47, W12502 (2011).

  46. 46.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

  47. 47.

    Zhang, G., Xie, H., Kang, S., Yi, D. & Ackley, S. F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 115, 1733–1742 (2011).

  48. 48.

    Zhang, T. Y. & Jin, S. G. Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models. J. Geodyn. 72, 59–66 (2013).

  49. 49.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

  50. 50.

    Guo, M., Wu, W., Zhou, X., Chen, Y. & Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor. Appl. Climatol. 119, 341–351 (2015).

  51. 51.

    Stone, R. For China and Kazakhstan, no meeting of the minds on water. Science 337, 405–407 (2012).

  52. 52.

    Hao, Y. et al. The role of climate and human influences in the dry-up of the Jinci Springs, China. J. Am. Water Resour. Assoc. 45, 1228–1237 (2009).

  53. 53.

    Shamsudduha, M., Taylor, R. G. & Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Wat. Resour. Res. 48, W02508 (2012).

  54. 54.

    Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Wat. Resour. Res. 49, 904–914 (2013).

  55. 55.

    Sultan, M., Ahmed, M., Wahr, J., Yan, E. & Emil, M. in Remote Sensing of the Terrestrial Water Cycle (eds Lakshmi, V. et al.) 349–366 (John Wiley & Sons, Hoboken, 2014).

  56. 56.

    Joodaki, G., Wahr, J. & Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Wat. Resour. Res. 50, 2679–2692 (2014).

  57. 57.

    USDA Foreign Agricultural Service. Saudi Arabia Grain and Feed Annual, Global Agricultural Information Network. Report number SA1602 (US Department of Agriculture, 2016);

  58. 58.

    Becker, R. H. The stalled recovery of the Iraqi marshes. Remote Sens. 6, 1260–1274 (2014).

  59. 59.

    Chao, N., Luo, Z., Wang, Z. & Jin, T. Retrieving groundwater depletion and drought in the Tigris–Euphrates basin between 2003 and 2015. Ground Water (2017).

  60. 60.

    Zmijewski, K. & Becker, R. Estimating the effects of anthropogenic modification on water balance in the Aral Sea watershed using GRACE: 2003–12. Earth Interact. 18, 1–16 (2014).

  61. 61.

    Chen, J. L. et al. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001 (2017).

  62. 62.

    Han, S.-C., Sauber, J., Luthcke, S. B., Ji, C. & Pollitz, S. S. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res. Solid Earth 113, B11413 (2008).

  63. 63.

    Han, S. C., Sauber, J. & Riva, R. Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L24312 (2011).

  64. 64.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

  65. 65.

    Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model by Purcell et al. J. Geophys. Res. Solid Earth 122, 2019–2028 (2017).

  66. 66.

    Forman, B. A., Reichle, R. H. & Rodell, M. Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Wat. Resour. Res. 48, W01507 (2012).

  67. 67.

    Bouchard, F. et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys. Res. Lett. 40, 6112–6117 (2013).

  68. 68.

    Reager, J. T. et al. Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens. 7, 14663–14679 (2015).

  69. 69.

    Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

  70. 70.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

  71. 71.

    Faunt, C. C., Sneed, M., Traum, J. & Brandt, J. T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 24, 675–684 (2016); erratum 25, 2215–2216 (2017).

  72. 72.

    Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Chang. 6, 2–3 (2016).

  73. 73.

    Fernando, D. N. et al. What caused the spring intensification and winter demise of the 2011 drought over Texas? Clim. Dyn. 47, 3077–3090 (2016).

  74. 74.

    Haacker, E. M., Kendall, A. D. & Hyndman, D. W. Water level declines in the high plains aquifer: predevelopment to resource senescence. Ground Water 54, 231–242 (2016).

  75. 75.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Ramage, J. M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 117, 184–198 (2012).

  76. 76.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D. & Ivins, E. R. Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys. Res. Lett. 34, L22501 (2007).

  77. 77.

    Han, S. C., Sauber, J. & Luthcke, S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys. Res. Lett. 37, L23307 (2010).

  78. 78.

    Chen, J. L., Wilson, C. R. & Tapley, B. D. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Wat. Resour. Res. 46, W12526 (2010).

  79. 79.

    Thomas, A. C., Reager, J. T., Famiglietti, J. S. & Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 41, 1537–1545 (2014).

  80. 80.

    Getirana, A. C. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2016).

  81. 81.

    Gaughan, A. E. & Waylen, P. R. Spatial and temporal precipitation variability in the Okavango–Kwando–Zambezi catchment, southern Africa. J. Arid Environ. 82, 19–30 (2012).

  82. 82.

    Andersen, O. B. et al. in Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia Vol. 135 (ed. Mertikas, S.) 521–526 (Springer, Berlin, 2010).

  83. 83.

    Swenson, S. & Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol. 370, 163–176 (2009).

  84. 84.

    Ahmed, M., Sultan, M., Wahr, J. & Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci. Rev. 136, 289–300 (2014).

  85. 85.

    Ndehedehe, C. E., Awange, J. L., Kuhn, M., Agutu, N. O. & Fukuda, Y. Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrol. Processes 31, 3206–3224 (2017).

  86. 86.

    Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E. & Davis, J. L. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 33, L19402 (2006).

  87. 87.

    Ramillien, G., Frappart, F. & Seoane, L. Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens. 6, 7379–7405 (2014).

  88. 88.

    van Dijk, A. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Wat. Resour. Res. 49, 1040–1057 (2013).

  89. 89.

    Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602, (2012).

  90. 90.

    Munier, S., Becker, M., Maisongrande, P. & Cazenave, A. Using GRACE to detect groundwater storage variations: the cases of Canning Basin and Guarani aquifer system. Int. Water Tech. J. 2, 2–13 (2012).

  91. 91.

    Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

  92. 92.

    Fietelson, E. in Water policy in Israel: Context, Issues and Options (ed. Becker, N.) 15–32 (Springer Science & Business media, Dordrecht, 2013).

  93. 93.

    Bhanja, S. N. et al. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Sci. Rep. 7, 7453 (2017).

  94. 94.

    Eicker, A., Forootan, E., Springer, A., Longuevergne, L. & Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos. 121, 733–745 (2016).

  95. 95.

    Kusche, J., Eicker, A., Forootan, E., Springer, A. & Longuevergne, L. Mapping probabilities of extreme continental water storage changes from space gravimetry. Geophys. Res. Lett. 43, 8026–8034 (2016).

  96. 96.

    Green, T. R. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

  97. 97.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Chang. 3, 322–329 (2013).

  98. 98.

    Swenson, S. C. & Milly, P. C. D. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Wat. Resour. Res. 42, W03201 (2006).

  99. 99.

    McCabe, M. F. et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 21, 3879–3914 (2017).

  100. 100.

    Flechtner, F. et al. What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surv. Geophys. 37, 453–470 (2016).

  101. 101.

    Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Wat. Resour. Res. 48, W04531 (2012).

  102. 102.

    Dahle, C. et al. in Observation of the System Earth from Space-CHAMP, GRACE, GOCE and Future Missions (eds Flechtner, F. et al.) 29–39 (Springer, Berlin, 2014).

  103. 103.

    Mayer-Gürr, T. et al. ITSG-Grace2016 - Monthly and Daily Gravity Field Solutions from GRACE (2016).

  104. 104.

    Bruinsma, S., Lemoine, J.-M., Biancale, R. & Vales, N. CNES/GRGS 10-day gravity field models (release 02) and their evaluation. Adv. Space Res. 45, 587–601 (2010).

  105. 105.

    Kurtenbach, E. et al. Improved daily GRACE gravity field solutions using a Kalman smoother. J. Geodyn. 59-60, 39–48 (2012).

  106. 106.

    Liu, X. et al. DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys. J. Int. 181, 769–788 (2010).

  107. 107.

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

  108. 108.

    Andrews, S. B., Moore, P. & King, M. A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int. 200, 503–518 (2014).

  109. 109.

    Save, H., Bettadpur, S. & Tapley, B. D. High resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

  110. 110.

    Landerer, F. W., Wiese, D. N., Bentel, K., Boening, C. & Watkins, M. M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 42, 8114–8121 (2015).

  111. 111.

    Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W. & Watkins, M. M. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05M.1 CRI Filtered Version 2 PO.DAAC, CA, USA (2016).

  112. 112.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Wat. Resour. Res. 52, 7490–7502 (2016).

  113. 113.

    Cheng, M. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004).

  114. 114.

    Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008).

  115. 115.

    Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. 118, 3126–3141 (2013).

  116. 116.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

  117. 117.

    Wahr, J., Nerem, R. S. & Bettadpur, S. V. The pole tide and its effect on GRACE time variable gravity measurements: Implications for estimates of surface mass variations. J. Geophys. Res. Solid Earth 120, 4597–4615 (2015).

  118. 118.

    Fagiolini, E., Flechtner, F., Horwath, M. & Dobslaw, H. Correction of inconsistencies in ECMWF’s operational analysis data during de- aliasing of GRACE gravity models. Geophys. J. Int. 202, 2150–2158 (2015).

  119. 119.

    Scanlon, B. R. et al. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resourc. Res. 52, 9412–9429 (2016).

  120. 120.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H. & Cretaux, J.-F. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. J. Geophys. Res. Solid Earth 122, 2274–2290 (2017).

  121. 121.

    A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

  122. 122.

    Paulson, A., Zhong, S. & Wahr, J. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int. 171, 497–508 (2007).

  123. 123.

    Purcell, A., Tregoning, P. & Dehecq, A. An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model. J. Geophys. Res. Solid Earth 121, 3939–3950 (2016).

  124. 124.

    Purcell, A., Tregoning, P. & Dehecq, A. Reply to comment by W. R. Peltier, D. F. Argus, and R. Drummond on “An assessment of the ICE6G_C (VM5a) glacial isostatic adjustment model”. J. Geophys. Res. Solid Earth 123, 2029–2032 (2017).

  125. 125.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

  126. 126.

    Crétaux, J.-F. et al. SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 47, 1497–1507 (2011).

  127. 127.

    Avakyan, A. B. Volga-Kama cascade reservoirs and their optimal use. Lakes Reservoirs: Res. Manage. 3, 113–121 (1998).

  128. 128.

    OECD. Crop Production (Indicator) (2017).

  129. 129.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

  130. 130.

    Farinotti, D. et al. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 8, 716–722 (2015).

  131. 131.

    Gardner, A. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

  132. 132.

    Mou, D. & Li, Z. A spatial analysis of China’s coal flow. Energy Policy 48, 358–368 (2012).

  133. 133.

    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Wat. Resour. Res. 49, 2110–2118 (2013).

  134. 134.

    Moiwo, J. P., Tao, F. & Lu, W. Analysis of satellite-based and in situ hydro-climatic data depicts water storage depletion in North China Region. Hydrol. Processes 27, 1011–1020 (2013).

  135. 135.

    Tang, Q., Zhang, X. & Tang, Y. Anthropogenic impacts on mass change in North China. Geophys. Res. Lett. 40, 3924–3928 (2013).

  136. 136.

    Ebead, B., Ahmed, M., Niu, Z. & Huang, N. Quantifying the anthropogenic impact on groundwater resources of North China using Gravity Recovery and Climate Experiment data and land surface models. J. Appl. Remote Sens. 11, 026029 (2017).

Download references


We thank the German Space Operations Center of the German Aerospace Center (DLR) for providing nearly 100% of the raw telemetry data of the twin GRACE satellites. Landsat is an interagency programme managed by NASA and the US Geological Survey. Lake products are courtesy of the USDA/NASA G-REALM programme (available at V. Khan of the Hydrometeorological Research Center of the Russian Federation assisted with the Volga River discharge analysis. Graphics were produced by A. K. Moran, Global Science & Technology, Inc. This research was funded by NASA’s GRACE Science Team and NASA’s Energy and Water Cycle Study (NEWS) Team; the University of California Office of the President, Multicampus Research Programs and Initiatives; the NASA Earth and Space Science Fellowship programme; the Jet Propulsion Laboratory; and the Ministry of Science and Technology, Taiwan. Portions of this research were conducted at the Jet Propulsion Laboratory, which is operated for NASA under contract with the California Institute of Technology.

Author information

Author notes

    • J. S. Famiglietti

    Present address: Global Institute for Water Security, School of Environment and Sustainability, and Department of Geography and Planning, University of Saskatchewan, Saskatoon, Canada


  1. Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • M. Rodell
    •  & H. K. Beaudoing
  2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • J. S. Famiglietti
    • , D. N. Wiese
    • , J. T. Reager
    •  & F. W. Landerer
  3. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

    • H. K. Beaudoing
  4. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

    • M.-H. Lo


  1. Search for M. Rodell in:

  2. Search for J. S. Famiglietti in:

  3. Search for D. N. Wiese in:

  4. Search for J. T. Reager in:

  5. Search for H. K. Beaudoing in:

  6. Search for F. W. Landerer in:

  7. Search for M.-H. Lo in:


M.R. and J.S.F. performed background research and designed the study with input from J.T.R. and M.-H.L. D.N.W. and J.T.R. led the GRACE data and error analysis with assistance from F.W.L. M.R. and F.W.L. designed the figures with additional data prepared by H.K.B. M.R. and J.S.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. Rodell.

Extended data figures and tables

  1. Extended Data Fig. 1 Non-seasonal TWS anomalies—global regions.

    af, Time series of monthly TWS anomalies (departures from the period mean) from GRACE, after removing the mean seasonal cycle, averaged over each of study regions 1–6, expressed as equivalent heights of liquid water (in centimetres). We note that the y axes vary among panels. Source Data

  2. Extended Data Fig. 2 Non-seasonal TWS anomalies—Eurasia.

    al, As in Extended Data Fig. 1, for regions 7–18.Source Data.

  3. Extended Data Fig. 3 Non-seasonal TWS anomalies—North and South America.

    ah, As in Extended Data Fig. 1, for regions 19–26.Source Data.

  4. Extended Data Fig. 4 Non-seasonal TWS anomalies—Africa and Australia.

    ah, As in Extended Data Fig. 1, for regions 27–34.Source Data.

  5. Extended Data Fig. 5 Annual precipitation totals—global regions.

    af, Time series of annual precipitation totals (in millimetres) averaged over each of study regions 1–6, based on GPCP v.2.3. We note that the y axes vary among panels.Source Data.

  6. Extended Data Fig. 6 Annual precipitation totals—Eurasia.

    an, As in Extended Data Fig. 5, for regions 7–18 and the full drainage basins of the Aral and Caspian seas.Source Data.

  7. Extended Data Fig. 7 Annual precipitation totals—North and South America.

    ah, As in Extended Data Fig. 5, for regions 19–26.Source Data.

  8. Extended Data Fig. 8 Annual precipitation totals—Africa and Australia.

    ah, As in Extended Data Fig. 5, for regions 27–34.Source Data.

  9. Extended Data Fig. 9 Comparison of TWS trends (in centimetres per year) over India (January 2003 – March 2016) from three GRACE mascon solutions.

    ad, JPL-M 3° (a), CSR-M 1° (b), GSFC-M 1° (c) and JPL-M smoothed with a 200-km-radius Gaussian filter and plotted at 1° (d). We note the similarity between bd, whose regional trend amplitudes have all been dampened by smoothing.Source Data.

  10. Extended Data Fig. 10 Comparison of normalized anomalies of Caspian Sea level changes and three primary drivers.

    Normalized anomalies of changes in annual mean Caspian Sea level (black), Volga River discharge (blue), Russian total crop weight (yellow) and Caspian Sea evaporation (red). Precipitation (Extended Data Fig. 6) is the other primary driver. Sea-level change is positively correlated with Volga River discharge and negatively correlated with Russian crop weight and evaporation.Source Data.

Source Data

About this article

Publication history






By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.