Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging trends in global freshwater availability

An Author Correction to this article was published on 03 January 2019

This article has been updated

Abstract

Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002–2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world’s water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Annotated map of TWS trends.
Fig. 2: Trends in TWS and supporting data maps.

Change history

  • 03 January 2019

    In Fig. 2 of this Analysis, the tick-mark labels on the colour bars in the second and third images from the top were inadvertently swapped. In addition, the citation at the end of the sentence, “On a monthly basis GRACE can resolve TWS changes with sufficient accuracy over scales that range from approximately 200,000 km2 at low latitudes to about 90,000 km2 near the poles” should be to ref. 4 not ref. 1. These errors have been corrected online.

References

  1. 1.

    Changnon, S.A. Detecting Drought Conditions in Illinois. Circular 169 (Illinois State Water Survey, 1987).

  2. 2.

    Rodell, M. & Famiglietti, J. S. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Wat. Resour. Res. 37, 1327–1339 (2001).

    ADS  Google Scholar 

  3. 3.

    Getirana, A., Kumar, S., Girotto, M. & Rodell, M. Rivers and floodplains as key components of global terrestrial water storage variability. Geophys. Res. Lett. 44, 10359–10368 (2017).

    ADS  Google Scholar 

  4. 4.

    Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

    ADS  Google Scholar 

  5. 5.

    Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

    ADS  Google Scholar 

  6. 6.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Wat. Resour. Res. 48, W00L06 (2012).

    Google Scholar 

  7. 7.

    Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).

    ADS  Google Scholar 

  8. 8.

    van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y. & Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18, 2955–2973 (2014).

    ADS  Google Scholar 

  9. 9.

    Zektser, I. S. & Everett, L. G. (eds) Groundwater Resources of the World and Their Use (UNESCO, Paris, 2004); http://unesdoc.unesco.org/images/0013/001344/134433e.pdf.

  10. 10.

    Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    ADS  Google Scholar 

  11. 11.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    ADS  PubMed  Google Scholar 

  12. 12.

    Syed, T. H., Famiglietti, J. S., Chambers, D. P., Willis, J. K. & Hilburn, K. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl Acad. Sci. USA 107, 17916–17921 (2010).

    ADS  CAS  PubMed  Google Scholar 

  13. 13.

    Rodell, M. et al. The observed state of the water cycle in the early 21st century. J. Clim. 28, 8289–8318 (2015).

    ADS  Google Scholar 

  14. 14.

    Famiglietti, J. S. et al. Satellites provide the big picture. Science 349, 684–685 (2015).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Wahr, J., Molenaar, M. & Bryan, F. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 103, 30205–30229 (1998).

    Google Scholar 

  17. 17.

    Rodell, M. & Famiglietti, J. S. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Wat. Resour. Res. 35, 2705–2723 (1999).

    ADS  Google Scholar 

  18. 18.

    Swenson, S., Yeh, P. J. F., Wahr, J. & Famiglietti, J. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett. 33, L16401 (2006).

    ADS  Google Scholar 

  19. 19.

    Cazenave, A. & Chen, J. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet. Sci. Lett. 298, 263–274 (2010).

    ADS  CAS  Google Scholar 

  20. 20.

    Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005).

    ADS  Google Scholar 

  21. 21.

    Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    ADS  Google Scholar 

  22. 22.

    Adler, R. et al. The New Version 2.3 of the Global Precipitation Climatology Project (GPCP) Monthly Analysis Product http://eagle1.umd.edu/GPCP_ICDR/GPCP_Monthly.html (2016).

  23. 23.

    Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D. & Douglas, E. M. Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 38, 321–334 (2015).

    ADS  Google Scholar 

  24. 24.

    Birkett, C., Reynolds, C., Beckley, B. & Doorn, B. in Coastal altimetry (eds Vignudelli, S. et al.) 19–50 (Springer, Berlin, 2011).

  25. 25.

    Oldenborgh, G. J. et al. (eds) in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1311–1393 (Cambridge Univ. Press, Cambridge, 2013); http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_AnnexI_FINAL.pdf.

  26. 26.

    Tamisiea, M. E., Leuliette, E. W., Davis, J. L. & Mitrovica, J. X. Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys. Res. Lett. 32, L20501 (2005).

    ADS  Google Scholar 

  27. 27.

    Gardner, A. S. et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357–360 (2011).

    ADS  CAS  PubMed  Google Scholar 

  28. 28.

    Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

    ADS  Google Scholar 

  29. 29.

    Schlegel, N.-J. et al. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012). Cryosphere 10, 1965–1989 (2016).

    ADS  Google Scholar 

  30. 30.

    MacGregor, J. A. et al. Holocene deceleration of the Greenland Ice Sheet. Science 351, 590–593 (2016).

    ADS  CAS  PubMed  Google Scholar 

  31. 31.

    Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology. Science 351, 699–703 (2016).

    ADS  CAS  PubMed  Google Scholar 

  32. 32.

    Landerer, F. W., Dickey, J. O. & Güntner, A. Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J. Geophys. Res. Atmos. 115, D23115 (2010).

    ADS  Google Scholar 

  33. 33.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Chang. 4, 945–948 (2014).

    ADS  Google Scholar 

  34. 34.

    Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    ADS  CAS  PubMed  Google Scholar 

  35. 35.

    Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Wat. Resour. Res. 51, 5198–5216 (2015).

    ADS  Google Scholar 

  36. 36.

    Döll, P., Schmied, H. M., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).

    ADS  Google Scholar 

  37. 37.

    Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).

    ADS  Google Scholar 

  38. 38.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  Google Scholar 

  39. 39.

    Phillips, T., Nerem, R., Fox-Kemper, B., Famiglietti, J. & Rajagopalan, B. The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett. 39, L16705 (2012).

    ADS  Google Scholar 

  40. 40.

    Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    ADS  CAS  PubMed  Google Scholar 

  42. 42.

    Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009).

    ADS  Google Scholar 

  43. 43.

    Panda, D. K. & Wahr, J. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Wat. Resour. Res. 52, 135–149 (2016).

    ADS  Google Scholar 

  44. 44.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  45. 45.

    Wang, X., de Linage, C., Famiglietti, J. & Zender, C. S. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Wat. Resour. Res. 47, W12502 (2011).

    ADS  Google Scholar 

  46. 46.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    ADS  CAS  PubMed  Google Scholar 

  47. 47.

    Zhang, G., Xie, H., Kang, S., Yi, D. & Ackley, S. F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 115, 1733–1742 (2011).

    ADS  Google Scholar 

  48. 48.

    Zhang, T. Y. & Jin, S. G. Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models. J. Geodyn. 72, 59–66 (2013).

    Google Scholar 

  49. 49.

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Guo, M., Wu, W., Zhou, X., Chen, Y. & Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor. Appl. Climatol. 119, 341–351 (2015).

    ADS  Google Scholar 

  51. 51.

    Stone, R. For China and Kazakhstan, no meeting of the minds on water. Science 337, 405–407 (2012).

    ADS  PubMed  Google Scholar 

  52. 52.

    Hao, Y. et al. The role of climate and human influences in the dry-up of the Jinci Springs, China. J. Am. Water Resour. Assoc. 45, 1228–1237 (2009).

    ADS  Google Scholar 

  53. 53.

    Shamsudduha, M., Taylor, R. G. & Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Wat. Resour. Res. 48, W02508 (2012).

    ADS  Google Scholar 

  54. 54.

    Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Wat. Resour. Res. 49, 904–914 (2013).

    ADS  Google Scholar 

  55. 55.

    Sultan, M., Ahmed, M., Wahr, J., Yan, E. & Emil, M. in Remote Sensing of the Terrestrial Water Cycle (eds Lakshmi, V. et al.) 349–366 (John Wiley & Sons, Hoboken, 2014).

  56. 56.

    Joodaki, G., Wahr, J. & Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Wat. Resour. Res. 50, 2679–2692 (2014).

    ADS  Google Scholar 

  57. 57.

    USDA Foreign Agricultural Service. Saudi Arabia Grain and Feed Annual, Global Agricultural Information Network. Report number SA1602 (US Department of Agriculture, 2016); http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Riyadh_Saudi%20Arabia_3-14-2016.pdf.

  58. 58.

    Becker, R. H. The stalled recovery of the Iraqi marshes. Remote Sens. 6, 1260–1274 (2014).

    ADS  Google Scholar 

  59. 59.

    Chao, N., Luo, Z., Wang, Z. & Jin, T. Retrieving groundwater depletion and drought in the Tigris–Euphrates basin between 2003 and 2015. Ground Water (2017).

  60. 60.

    Zmijewski, K. & Becker, R. Estimating the effects of anthropogenic modification on water balance in the Aral Sea watershed using GRACE: 2003–12. Earth Interact. 18, 1–16 (2014).

    Google Scholar 

  61. 61.

    Chen, J. L. et al. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001 (2017).

    ADS  Google Scholar 

  62. 62.

    Han, S.-C., Sauber, J., Luthcke, S. B., Ji, C. & Pollitz, S. S. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res. Solid Earth 113, B11413 (2008).

    ADS  Google Scholar 

  63. 63.

    Han, S. C., Sauber, J. & Riva, R. Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L24312 (2011).

    ADS  Google Scholar 

  64. 64.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    ADS  Google Scholar 

  65. 65.

    Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model by Purcell et al. J. Geophys. Res. Solid Earth 122, 2019–2028 (2017).

    Google Scholar 

  66. 66.

    Forman, B. A., Reichle, R. H. & Rodell, M. Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Wat. Resour. Res. 48, W01507 (2012).

    ADS  Google Scholar 

  67. 67.

    Bouchard, F. et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys. Res. Lett. 40, 6112–6117 (2013).

    ADS  Google Scholar 

  68. 68.

    Reager, J. T. et al. Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens. 7, 14663–14679 (2015).

    ADS  Google Scholar 

  69. 69.

    Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    ADS  Google Scholar 

  70. 70.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  Google Scholar 

  71. 71.

    Faunt, C. C., Sneed, M., Traum, J. & Brandt, J. T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 24, 675–684 (2016); erratum 25, 2215–2216 (2017).

  72. 72.

    Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Chang. 6, 2–3 (2016).

    ADS  Google Scholar 

  73. 73.

    Fernando, D. N. et al. What caused the spring intensification and winter demise of the 2011 drought over Texas? Clim. Dyn. 47, 3077–3090 (2016).

    Google Scholar 

  74. 74.

    Haacker, E. M., Kendall, A. D. & Hyndman, D. W. Water level declines in the high plains aquifer: predevelopment to resource senescence. Ground Water 54, 231–242 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Ramage, J. M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 117, 184–198 (2012).

    ADS  Google Scholar 

  76. 76.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D. & Ivins, E. R. Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys. Res. Lett. 34, L22501 (2007).

    ADS  Google Scholar 

  77. 77.

    Han, S. C., Sauber, J. & Luthcke, S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys. Res. Lett. 37, L23307 (2010).

    ADS  Google Scholar 

  78. 78.

    Chen, J. L., Wilson, C. R. & Tapley, B. D. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Wat. Resour. Res. 46, W12526 (2010).

    ADS  Google Scholar 

  79. 79.

    Thomas, A. C., Reager, J. T., Famiglietti, J. S. & Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 41, 1537–1545 (2014).

    ADS  Google Scholar 

  80. 80.

    Getirana, A. C. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2016).

    ADS  Google Scholar 

  81. 81.

    Gaughan, A. E. & Waylen, P. R. Spatial and temporal precipitation variability in the Okavango–Kwando–Zambezi catchment, southern Africa. J. Arid Environ. 82, 19–30 (2012).

    ADS  Google Scholar 

  82. 82.

    Andersen, O. B. et al. in Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia Vol. 135 (ed. Mertikas, S.) 521–526 (Springer, Berlin, 2010).

  83. 83.

    Swenson, S. & Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol. 370, 163–176 (2009).

    ADS  Google Scholar 

  84. 84.

    Ahmed, M., Sultan, M., Wahr, J. & Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci. Rev. 136, 289–300 (2014).

    Google Scholar 

  85. 85.

    Ndehedehe, C. E., Awange, J. L., Kuhn, M., Agutu, N. O. & Fukuda, Y. Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrol. Processes 31, 3206–3224 (2017).

    ADS  Google Scholar 

  86. 86.

    Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E. & Davis, J. L. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 33, L19402 (2006).

    ADS  Google Scholar 

  87. 87.

    Ramillien, G., Frappart, F. & Seoane, L. Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens. 6, 7379–7405 (2014).

    ADS  Google Scholar 

  88. 88.

    van Dijk, A. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Wat. Resour. Res. 49, 1040–1057 (2013).

    ADS  Google Scholar 

  89. 89.

    Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602, (2012).

    ADS  Article  Google Scholar 

  90. 90.

    Munier, S., Becker, M., Maisongrande, P. & Cazenave, A. Using GRACE to detect groundwater storage variations: the cases of Canning Basin and Guarani aquifer system. Int. Water Tech. J. 2, 2–13 (2012).

    Google Scholar 

  91. 91.

    Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

    ADS  CAS  PubMed  Google Scholar 

  92. 92.

    Fietelson, E. in Water policy in Israel: Context, Issues and Options (ed. Becker, N.) 15–32 (Springer Science & Business media, Dordrecht, 2013).

  93. 93.

    Bhanja, S. N. et al. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Sci. Rep. 7, 7453 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Eicker, A., Forootan, E., Springer, A., Longuevergne, L. & Kusche, J. Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos. 121, 733–745 (2016).

    ADS  Google Scholar 

  95. 95.

    Kusche, J., Eicker, A., Forootan, E., Springer, A. & Longuevergne, L. Mapping probabilities of extreme continental water storage changes from space gravimetry. Geophys. Res. Lett. 43, 8026–8034 (2016).

    ADS  Google Scholar 

  96. 96.

    Green, T. R. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    ADS  Google Scholar 

  97. 97.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Chang. 3, 322–329 (2013).

    ADS  Google Scholar 

  98. 98.

    Swenson, S. C. & Milly, P. C. D. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Wat. Resour. Res. 42, W03201 (2006).

    ADS  Google Scholar 

  99. 99.

    McCabe, M. F. et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 21, 3879–3914 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Flechtner, F. et al. What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surv. Geophys. 37, 453–470 (2016).

    ADS  Google Scholar 

  101. 101.

    Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Wat. Resour. Res. 48, W04531 (2012).

    ADS  Google Scholar 

  102. 102.

    Dahle, C. et al. in Observation of the System Earth from Space-CHAMP, GRACE, GOCE and Future Missions (eds Flechtner, F. et al.) 29–39 (Springer, Berlin, 2014).

  103. 103.

    Mayer-Gürr, T. et al. ITSG-Grace2016 - Monthly and Daily Gravity Field Solutions from GRACE https://doi.org/10.5880/icgem.2016.007 (2016).

  104. 104.

    Bruinsma, S., Lemoine, J.-M., Biancale, R. & Vales, N. CNES/GRGS 10-day gravity field models (release 02) and their evaluation. Adv. Space Res. 45, 587–601 (2010).

    ADS  CAS  Google Scholar 

  105. 105.

    Kurtenbach, E. et al. Improved daily GRACE gravity field solutions using a Kalman smoother. J. Geodyn. 59-60, 39–48 (2012).

    Google Scholar 

  106. 106.

    Liu, X. et al. DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys. J. Int. 181, 769–788 (2010).

    ADS  Google Scholar 

  107. 107.

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

    ADS  Google Scholar 

  108. 108.

    Andrews, S. B., Moore, P. & King, M. A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int. 200, 503–518 (2014).

    ADS  Google Scholar 

  109. 109.

    Save, H., Bettadpur, S. & Tapley, B. D. High resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

    ADS  Google Scholar 

  110. 110.

    Landerer, F. W., Wiese, D. N., Bentel, K., Boening, C. & Watkins, M. M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 42, 8114–8121 (2015).

    ADS  Google Scholar 

  111. 111.

    Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W. & Watkins, M. M. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05M.1 CRI Filtered Version 2 PO.DAAC, CA, USA https://doi.org/10.5067/TEMSC-2LCR5 (2016).

  112. 112.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Wat. Resour. Res. 52, 7490–7502 (2016).

    ADS  Google Scholar 

  113. 113.

    Cheng, M. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004).

    ADS  Google Scholar 

  114. 114.

    Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008).

    ADS  Google Scholar 

  115. 115.

    Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. 118, 3126–3141 (2013).

    ADS  Google Scholar 

  116. 116.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    ADS  CAS  PubMed  Google Scholar 

  117. 117.

    Wahr, J., Nerem, R. S. & Bettadpur, S. V. The pole tide and its effect on GRACE time variable gravity measurements: Implications for estimates of surface mass variations. J. Geophys. Res. Solid Earth 120, 4597–4615 (2015).

    ADS  Google Scholar 

  118. 118.

    Fagiolini, E., Flechtner, F., Horwath, M. & Dobslaw, H. Correction of inconsistencies in ECMWF’s operational analysis data during de- aliasing of GRACE gravity models. Geophys. J. Int. 202, 2150–2158 (2015).

    Google Scholar 

  119. 119.

    Scanlon, B. R. et al. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resourc. Res. 52, 9412–9429 (2016).

    ADS  Google Scholar 

  120. 120.

    Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H. & Cretaux, J.-F. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. J. Geophys. Res. Solid Earth 122, 2274–2290 (2017).

    ADS  Google Scholar 

  121. 121.

    A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    ADS  Google Scholar 

  122. 122.

    Paulson, A., Zhong, S. & Wahr, J. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int. 171, 497–508 (2007).

    ADS  Google Scholar 

  123. 123.

    Purcell, A., Tregoning, P. & Dehecq, A. An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model. J. Geophys. Res. Solid Earth 121, 3939–3950 (2016).

    ADS  Google Scholar 

  124. 124.

    Purcell, A., Tregoning, P. & Dehecq, A. Reply to comment by W. R. Peltier, D. F. Argus, and R. Drummond on “An assessment of the ICE6G_C (VM5a) glacial isostatic adjustment model”. J. Geophys. Res. Solid Earth 123, 2029–2032 (2017).

    ADS  Google Scholar 

  125. 125.

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    ADS  Google Scholar 

  126. 126.

    Crétaux, J.-F. et al. SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 47, 1497–1507 (2011).

    ADS  Google Scholar 

  127. 127.

    Avakyan, A. B. Volga-Kama cascade reservoirs and their optimal use. Lakes Reservoirs: Res. Manage. 3, 113–121 (1998).

    Google Scholar 

  128. 128.

    OECD. Crop Production (Indicator) https://data.oecd.org/agroutput/crop-production.htm (2017).

  129. 129.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    ADS  Google Scholar 

  130. 130.

    Farinotti, D. et al. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 8, 716–722 (2015).

    ADS  CAS  Google Scholar 

  131. 131.

    Gardner, A. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    ADS  CAS  PubMed  Google Scholar 

  132. 132.

    Mou, D. & Li, Z. A spatial analysis of China’s coal flow. Energy Policy 48, 358–368 (2012).

    Google Scholar 

  133. 133.

    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Wat. Resour. Res. 49, 2110–2118 (2013).

    ADS  Google Scholar 

  134. 134.

    Moiwo, J. P., Tao, F. & Lu, W. Analysis of satellite-based and in situ hydro-climatic data depicts water storage depletion in North China Region. Hydrol. Processes 27, 1011–1020 (2013).

    ADS  Google Scholar 

  135. 135.

    Tang, Q., Zhang, X. & Tang, Y. Anthropogenic impacts on mass change in North China. Geophys. Res. Lett. 40, 3924–3928 (2013).

    ADS  Google Scholar 

  136. 136.

    Ebead, B., Ahmed, M., Niu, Z. & Huang, N. Quantifying the anthropogenic impact on groundwater resources of North China using Gravity Recovery and Climate Experiment data and land surface models. J. Appl. Remote Sens. 11, 026029 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the German Space Operations Center of the German Aerospace Center (DLR) for providing nearly 100% of the raw telemetry data of the twin GRACE satellites. Landsat is an interagency programme managed by NASA and the US Geological Survey. Lake products are courtesy of the USDA/NASA G-REALM programme (available at http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/). V. Khan of the Hydrometeorological Research Center of the Russian Federation assisted with the Volga River discharge analysis. Graphics were produced by A. K. Moran, Global Science & Technology, Inc. This research was funded by NASA’s GRACE Science Team and NASA’s Energy and Water Cycle Study (NEWS) Team; the University of California Office of the President, Multicampus Research Programs and Initiatives; the NASA Earth and Space Science Fellowship programme; the Jet Propulsion Laboratory; and the Ministry of Science and Technology, Taiwan. Portions of this research were conducted at the Jet Propulsion Laboratory, which is operated for NASA under contract with the California Institute of Technology.

Author information

Affiliations

Authors

Contributions

M.R. and J.S.F. performed background research and designed the study with input from J.T.R. and M.-H.L. D.N.W. and J.T.R. led the GRACE data and error analysis with assistance from F.W.L. M.R. and F.W.L. designed the figures with additional data prepared by H.K.B. M.R. and J.S.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. Rodell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Non-seasonal TWS anomalies—global regions.

af, Time series of monthly TWS anomalies (departures from the period mean) from GRACE, after removing the mean seasonal cycle, averaged over each of study regions 1–6, expressed as equivalent heights of liquid water (in centimetres). We note that the y axes vary among panels.

Source Data

Extended Data Fig. 2 Non-seasonal TWS anomalies—Eurasia.

al, As in Extended Data Fig. 1, for regions 7–18.

Source Data.

Extended Data Fig. 3 Non-seasonal TWS anomalies—North and South America.

ah, As in Extended Data Fig. 1, for regions 19–26.

Source Data.

Extended Data Fig. 4 Non-seasonal TWS anomalies—Africa and Australia.

ah, As in Extended Data Fig. 1, for regions 27–34.

Source Data.

Extended Data Fig. 5 Annual precipitation totals—global regions.

af, Time series of annual precipitation totals (in millimetres) averaged over each of study regions 1–6, based on GPCP v.2.3. We note that the y axes vary among panels.

Source Data.

Extended Data Fig. 6 Annual precipitation totals—Eurasia.

an, As in Extended Data Fig. 5, for regions 7–18 and the full drainage basins of the Aral and Caspian seas.

Source Data.

Extended Data Fig. 7 Annual precipitation totals—North and South America.

ah, As in Extended Data Fig. 5, for regions 19–26.

Source Data.

Extended Data Fig. 8 Annual precipitation totals—Africa and Australia.

ah, As in Extended Data Fig. 5, for regions 27–34.

Source Data.

Extended Data Fig. 9 Comparison of TWS trends (in centimetres per year) over India (January 2003 – March 2016) from three GRACE mascon solutions.

ad, JPL-M 3° (a), CSR-M 1° (b), GSFC-M 1° (c) and JPL-M smoothed with a 200-km-radius Gaussian filter and plotted at 1° (d). We note the similarity between bd, whose regional trend amplitudes have all been dampened by smoothing.

Source Data.

Extended Data Fig. 10 Comparison of normalized anomalies of Caspian Sea level changes and three primary drivers.

Normalized anomalies of changes in annual mean Caspian Sea level (black), Volga River discharge (blue), Russian total crop weight (yellow) and Caspian Sea evaporation (red). Precipitation (Extended Data Fig. 6) is the other primary driver. Sea-level change is positively correlated with Volga River discharge and negatively correlated with Russian crop weight and evaporation.

Source Data.

Source Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodell, M., Famiglietti, J.S., Wiese, D.N. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018). https://doi.org/10.1038/s41586-018-0123-1

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing