Letter | Published:

Structural basis for gating pore current in periodic paralysis

Naturevolume 557pages590594 (2018) | Download Citation


Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness1,2. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Nav1.4 or the calcium channel Cav1.11,2. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis1,2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state3,4. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis5 owing to cation leak in both activated and inactivated states6. Here we present high-resolution structures of the model bacterial sodium channel NavAb with the analogous gating-charge mutations7,8, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of NavAb(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na+ permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Venance, S. L. et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 129, 8–17 (2006).

  2. 2.

    Cannon, S. C. Handbook of Experimental Pharmacology (Springer, Berlin, 2017).

  3. 3.

    Sokolov, S., Scheuer, T. & Catterall, W. A. Gating pore current in an inherited ion channelopathy. Nature 446, 76–78 (2007).

  4. 4.

    Struyk, A. F. & Cannon, S. C. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J. Gen. Physiol. 130, 11–20 (2007).

  5. 5.

    Vicart, S. et al. New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis. Neurology 63, 2120–2127 (2004).

  6. 6.

    Sokolov, S., Scheuer, T. & Catterall, W. A. Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis. Proc. Natl Acad. Sci. USA 105, 19980–19985 (2008).

  7. 7.

    Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

  8. 8.

    Catterall, W. A. & Zheng, N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40, 526–534 (2015).

  9. 9.

    Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005).

  10. 10.

    Yan, Z. et al. Structure of the Nav1.4-β1 complex from electric eel. Cell 170, 470–482 (2017).

  11. 11.

    Shen, H. et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355, eaal4326 (2017).

  12. 12.

    Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

  13. 13.

    Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004).

  14. 14.

    Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47, 183–189 (2005).

  15. 15.

    Gamal El-Din, T. M., Scheuer, T. & Catterall, W. A. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. J. Gen. Physiol. 144, 147–157 (2014).

  16. 16.

    Jurkat-Rott, K., Groome, J. & Lehmann-Horn, F. Pathophysiological role of omega pore current in channelopathies. Front. Pharmacol. 3, 112 (2012).

  17. 17.

    Moreau, A., Gosselin-Badaroudine, P. & Chahine, M. Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front. Pharmacol. 5, 53 (2014).

  18. 18.

    Wu, F. et al. A sodium channel knockin mutant (Nav1.4-R669H) mouse model of hypokalemic periodic paralysis. J. Clin. Invest. 121, 4082–4094 (2011).

  19. 19.

    Wu, F. et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J. Clin. Invest. 122, 4580–4591 (2012).

  20. 20.

    Gosselin-Badaroudine, P., Delemotte, L., Moreau, A., Klein, M. L. & Chahine, M. Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc. Natl Acad. Sci. USA 109, 19250–19255 (2012).

  21. 21.

    Moreau, A., Gosselin-Badaroudine, P., Boutjdir, M. & Chahine, M. Mutations in the voltage sensors of domains I and II of Nav1.5 that are associated with arrhythmias and dilated cardiomyopathy generate gating pore currents. Front. Pharmacol. 6, 301 (2015).

  22. 22.

    Monteleone, S. et al. Mechanisms responsible for ω-pore currents in Cav calcium channel voltage-sensing domains. Biophys. J. 113, 1485–1495 (2017).

  23. 23.

    Chakrabarti, N. et al. Catalysis of Na+ permeation in the bacterial sodium channel NavAb. Proc. Natl Acad. Sci. USA 110, 11331–11336 (2013).

  24. 24.

    Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation and block of the gating pore in the voltage sensor of Nav1.4 channels with hypokalemic periodic paralysis mutations. J. Gen. Physiol. 136, 225–236 (2010).

  25. 25.

    Payandeh, J., Gamal El-Din, T. M., Scheuer, T., Zheng, N. & Catterall, W. A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135–139 (2012).

  26. 26.

    Yarov-Yarovoy, V. et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc. Natl Acad. Sci. USA 109, E93–E102 (2012).

  27. 27.

    Vargas, E. et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol. 140, 587–594 (2012).

  28. 28.

    Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455–463 (2017).

  29. 29.

    Cooper, K. E., Gates, P. Y. & Eisenberg, R. S. Diffusion theory and discrete rate constants in ion permeation. J. Membr. Biol. 106, 95–105 (1988).

  30. 30.

    Gamal El-Din, T. M., Martinez, G. Q., Payandeh, J., Scheuer, T. & Catterall, W. A. A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. J. Gen. Physiol. 142, 181–190 (2013).

  31. 31.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

  32. 32.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

  33. 33.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

  34. 34.

    Petřek, M., Kosinová, P., Koca, J. & Otyepka, M. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15, 1357–1363 (2007).

  35. 35.

    Jefferys, E., Sands, Z. A., Shi, J., Sansom, M. S. P. & Fowler, P. W. Alchembed: a computational method for incorporating multiple proteins into complex lipid geometries. J. Chem. Theory Comput. 11, 2743–2754 (2015).

  36. 36.

    MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

  37. 37.

    Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

  38. 38.

    Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

  39. 39.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

  40. 40.

    Noskov, S. Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008).

  41. 41.

    Venable, R. M., Luo, Y., Gawrisch, K., Roux, B. & Pastor, R. W. Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. J. Phys. Chem. B 117, 10183–10192 (2013).

  42. 42.

    Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–2, 19–25 (2015).

  43. 43.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

  44. 44.

    Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

  45. 45.

    Verlet, L. Computer ‘experiments’ on classical fluids. I. thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967).

  46. 46.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

  47. 47.

    Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

  48. 48.

    Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

  49. 49.

    Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

  50. 50.

    Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

  51. 51.

    Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

  52. 52.

    Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91, 275–282 (1995).

  53. 53.

    Hub, J. S., de Groot, B. L. & van der Spoel, D. g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 6, 3713–3720 (2010).

  54. 54.

    McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

  55. 55.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27–28.

Download references


We thank the beamline staff at the Advanced Light Source (BL8.2.1 and BL8.2.2) for assistance during data collection and J. Li for technical and administrative assistance. This research was supported by National Institutes of Health research grants R01 NS015751 (W.A.C.) and R01 HL112808 (W.A.C. and N.Z.), by the Howard Hughes Medical Institute (N.Z.), and by Canadian Institutes of Health Research grant MOP 130461 (R.P.).

Author information

Author notes

  1. These authors contributed equally: Daohua Jiang, Tamer M. Gamal El-Din.


  1. Department of Pharmacology, University of Washington, Seattle, WA, USA

    • Daohua Jiang
    • , Tamer M. Gamal El-Din
    • , Peilong Lu
    • , Ning Zheng
    •  & William A. Catterall
  2. Molecular Medicine, Hospital for Sick Children Toronto, Toronto, Ontario, Canada

    • Christopher Ing
    •  & Régis Pomès
  3. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

    • Christopher Ing
    •  & Régis Pomès
  4. Institute for Protein Design, University of Washington, Seattle, WA, USA

    • Peilong Lu
  5. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA

    • Ning Zheng


  1. Search for Daohua Jiang in:

  2. Search for Tamer M. Gamal El-Din in:

  3. Search for Christopher Ing in:

  4. Search for Peilong Lu in:

  5. Search for Régis Pomès in:

  6. Search for Ning Zheng in:

  7. Search for William A. Catterall in:


D.J., T.M.G.E.-D., C.I., P.L., R.P., N.Z. and W.A.C. designed experiments. D.J., T.M.G.E.-D., C.I. and P.L. conducted experiments. D.J., T.M.G.E.-D., C.I., R.P., N.Z. and W.A.C. analysed the results. T.M.G.E.-D., C.I. and W.A.C. wrote the paper with input from all co-authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Ning Zheng or William A. Catterall.

Extended data figures and tables

  1. Extended Data Fig. 1 Sequence alignment of the voltage sensor of NavAb with those of human Nav1.4 homologous domain (D)II, Nav1.4 DIV, Cav1.1 DII and Cav1.1 DIV.

    Coloured rectangles represent transmembrane helices. Black arrows indicate residues that form the guanidinium binding site, blue arrows indicate the hydrophobic constriction site and red arrows indicate the conserved intracellular negative cluster.

  2. Extended Data Fig. 2 Superposition of the NavAb(WT) voltage sensor and the Electrophorus electricus (electric eel) Nav1.4 DIV voltage sensor.

    ab, Comparison of the conformations of NavAb(WT) voltage sensor (orange) and EeNav1.4 voltage sensor DIV (PDB code: 5XSY) (grey) in side view and top view, respectively. Arginine sensors and hydrophobic residues in the HCS are labelled and shown with side chains in sticks.

  3. Extended Data Fig. 3 Superposition of the voltage sensors of NavAb(WT) and mutant channels.

    ab, Voltage sensor structure alignment between NavAb(WT) (grey) and NavAb(R3G) (green) in side view and top view, respectively. cd, Voltage sensor structure alignment between NavAb(WT) (grey) and NavAb(R2G) (cyan) in side view and top view, respectively. Arginine sensors and hydrophobic residues in the HCS are labelled and shown with side chains in sticks.

  4. Extended Data Fig. 4 R4 side chain conformational changes.

    a, Different conformations of the R4 rotamer in NavAb(R3G) chain A (green) and chain B (orange). b, Different conformations of the R4 rotamer in the four subunits of NavAb in the slow-inactivated state (PDB code: 4EKW).

  5. Extended Data Fig. 5 Electron density maps for bound guanidinium and methylguanidinium ions.

    a, 2mFo−DFc electron density map (blue mesh) of residues around the methylguanidinium binding site at 1σ. b, Overlay of guanidinium binding site (green) and methylguanidinium binding site (orange). cd, Simulated annealing map (FoFc) contoured at 3σ for methylguanidinium and guanidinium, respectively.

  6. Extended Data Fig. 6 Purification of NavAb(R3G).

    a, Representative gel-filtration chromatography of NavAb(R3G); highlighted peak fractions were concentrated for crystallization. b, Concentrated sample was visualized on SDS–PAGE by Coomassie blue staining.

  7. Extended Data Table 1 Data collection and refinement statistics
  8. Extended Data Table 2 Statistical analysis of voltage sensor water occupancy from molecular simulations

Supplementary information

  1. Supplementary Discussion

    This file contains Supplementary Discussion of Nomenclature for Periodic Paralyses; Functional Properties of NavAb/R2G, NavAb/R2S, and NavAb/R3G; Amplitude of Gating Pore Current; and associated references.

  2. Reporting Summary

About this article

Publication history




Issue Date




By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.