Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for gating pore current in periodic paralysis

Abstract

Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness1,2. They are caused by single mutations in positively charged residues (‘gating charges’) in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Nav1.4 or the calcium channel Cav1.11,2. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis1,2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state3,4. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis5 owing to cation leak in both activated and inactivated states6. Here we present high-resolution structures of the model bacterial sodium channel NavAb with the analogous gating-charge mutations7,8, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of NavAb(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na+ permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional properties of NavAb(WT), NavAb(R2S) and NavAb(R3G).
Fig. 2: Structures of the voltage sensor of NavAb(WT) and NavAb(R3G).
Fig. 3: Structure of voltage sensor and guanidinium binding site of NavAb(R2G).
Fig. 4: R3G mutation lowers the free-energy barrier for Na+ conductance.

Similar content being viewed by others

References

  1. Venance, S. L. et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 129, 8–17 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Cannon, S. C. Handbook of Experimental Pharmacology (Springer, Berlin, 2017).

    Google Scholar 

  3. Sokolov, S., Scheuer, T. & Catterall, W. A. Gating pore current in an inherited ion channelopathy. Nature 446, 76–78 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Struyk, A. F. & Cannon, S. C. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J. Gen. Physiol. 130, 11–20 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Vicart, S. et al. New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis. Neurology 63, 2120–2127 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Sokolov, S., Scheuer, T. & Catterall, W. A. Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis. Proc. Natl Acad. Sci. USA 105, 19980–19985 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Catterall, W. A. & Zheng, N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40, 526–534 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Catterall, W. A., Goldin, A. L. & Waxman, S. G. International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Yan, Z. et al. Structure of the Nav1.4-β1 complex from electric eel. Cell 170, 470–482 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Shen, H. et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355, eaal4326 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47, 183–189 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. Gamal El-Din, T. M., Scheuer, T. & Catterall, W. A. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. J. Gen. Physiol. 144, 147–157 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jurkat-Rott, K., Groome, J. & Lehmann-Horn, F. Pathophysiological role of omega pore current in channelopathies. Front. Pharmacol. 3, 112 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Moreau, A., Gosselin-Badaroudine, P. & Chahine, M. Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front. Pharmacol. 5, 53 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu, F. et al. A sodium channel knockin mutant (Nav1.4-R669H) mouse model of hypokalemic periodic paralysis. J. Clin. Invest. 121, 4082–4094 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu, F. et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J. Clin. Invest. 122, 4580–4591 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gosselin-Badaroudine, P., Delemotte, L., Moreau, A., Klein, M. L. & Chahine, M. Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc. Natl Acad. Sci. USA 109, 19250–19255 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Moreau, A., Gosselin-Badaroudine, P., Boutjdir, M. & Chahine, M. Mutations in the voltage sensors of domains I and II of Nav1.5 that are associated with arrhythmias and dilated cardiomyopathy generate gating pore currents. Front. Pharmacol. 6, 301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Monteleone, S. et al. Mechanisms responsible for ω-pore currents in Cav calcium channel voltage-sensing domains. Biophys. J. 113, 1485–1495 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chakrabarti, N. et al. Catalysis of Na+ permeation in the bacterial sodium channel NavAb. Proc. Natl Acad. Sci. USA 110, 11331–11336 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation and block of the gating pore in the voltage sensor of Nav1.4 channels with hypokalemic periodic paralysis mutations. J. Gen. Physiol. 136, 225–236 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Payandeh, J., Gamal El-Din, T. M., Scheuer, T., Zheng, N. & Catterall, W. A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135–139 (2012).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yarov-Yarovoy, V. et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc. Natl Acad. Sci. USA 109, E93–E102 (2012).

    Article  PubMed  Google Scholar 

  27. Vargas, E. et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol. 140, 587–594 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455–463 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cooper, K. E., Gates, P. Y. & Eisenberg, R. S. Diffusion theory and discrete rate constants in ion permeation. J. Membr. Biol. 106, 95–105 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. Gamal El-Din, T. M., Martinez, G. Q., Payandeh, J., Scheuer, T. & Catterall, W. A. A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. J. Gen. Physiol. 142, 181–190 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Petřek, M., Kosinová, P., Koca, J. & Otyepka, M. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15, 1357–1363 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. Jefferys, E., Sands, Z. A., Shi, J., Sansom, M. S. P. & Fowler, P. W. Alchembed: a computational method for incorporating multiple proteins into complex lipid geometries. J. Chem. Theory Comput. 11, 2743–2754 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  40. Noskov, S. Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Venable, R. M., Luo, Y., Gawrisch, K., Roux, B. & Pastor, R. W. Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. J. Phys. Chem. B 117, 10183–10192 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–2, 19–25 (2015).

    ADS  Google Scholar 

  43. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  44. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  ADS  CAS  Google Scholar 

  45. Verlet, L. Computer ‘experiments’ on classical fluids. I. thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article  ADS  CAS  Google Scholar 

  46. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  47. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  ADS  Google Scholar 

  48. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Article  ADS  CAS  Google Scholar 

  49. Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

    Article  ADS  Google Scholar 

  50. Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

    Article  PubMed  CAS  Google Scholar 

  51. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Article  ADS  Google Scholar 

  52. Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91, 275–282 (1995).

    Article  ADS  CAS  Google Scholar 

  53. Hub, J. S., de Groot, B. L. & van der Spoel, D. g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 6, 3713–3720 (2010).

    Article  CAS  Google Scholar 

  54. McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  55. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at the Advanced Light Source (BL8.2.1 and BL8.2.2) for assistance during data collection and J. Li for technical and administrative assistance. This research was supported by National Institutes of Health research grants R01 NS015751 (W.A.C.) and R01 HL112808 (W.A.C. and N.Z.), by the Howard Hughes Medical Institute (N.Z.), and by Canadian Institutes of Health Research grant MOP 130461 (R.P.).

Author information

Authors and Affiliations

Authors

Contributions

D.J., T.M.G.E.-D., C.I., P.L., R.P., N.Z. and W.A.C. designed experiments. D.J., T.M.G.E.-D., C.I. and P.L. conducted experiments. D.J., T.M.G.E.-D., C.I., R.P., N.Z. and W.A.C. analysed the results. T.M.G.E.-D., C.I. and W.A.C. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Ning Zheng or William A. Catterall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sequence alignment of the voltage sensor of NavAb with those of human Nav1.4 homologous domain (D)II, Nav1.4 DIV, Cav1.1 DII and Cav1.1 DIV.

Coloured rectangles represent transmembrane helices. Black arrows indicate residues that form the guanidinium binding site, blue arrows indicate the hydrophobic constriction site and red arrows indicate the conserved intracellular negative cluster.

Extended Data Fig. 2 Superposition of the NavAb(WT) voltage sensor and the Electrophorus electricus (electric eel) Nav1.4 DIV voltage sensor.

ab, Comparison of the conformations of NavAb(WT) voltage sensor (orange) and EeNav1.4 voltage sensor DIV (PDB code: 5XSY) (grey) in side view and top view, respectively. Arginine sensors and hydrophobic residues in the HCS are labelled and shown with side chains in sticks.

Extended Data Fig. 3 Superposition of the voltage sensors of NavAb(WT) and mutant channels.

ab, Voltage sensor structure alignment between NavAb(WT) (grey) and NavAb(R3G) (green) in side view and top view, respectively. cd, Voltage sensor structure alignment between NavAb(WT) (grey) and NavAb(R2G) (cyan) in side view and top view, respectively. Arginine sensors and hydrophobic residues in the HCS are labelled and shown with side chains in sticks.

Extended Data Fig. 4 R4 side chain conformational changes.

a, Different conformations of the R4 rotamer in NavAb(R3G) chain A (green) and chain B (orange). b, Different conformations of the R4 rotamer in the four subunits of NavAb in the slow-inactivated state (PDB code: 4EKW).

Extended Data Fig. 5 Electron density maps for bound guanidinium and methylguanidinium ions.

a, 2mFo−DFc electron density map (blue mesh) of residues around the methylguanidinium binding site at 1σ. b, Overlay of guanidinium binding site (green) and methylguanidinium binding site (orange). cd, Simulated annealing map (FoFc) contoured at 3σ for methylguanidinium and guanidinium, respectively.

Extended Data Fig. 6 Purification of NavAb(R3G).

a, Representative gel-filtration chromatography of NavAb(R3G); highlighted peak fractions were concentrated for crystallization. b, Concentrated sample was visualized on SDS–PAGE by Coomassie blue staining.

Extended Data Table 1 Data collection and refinement statistics
Extended Data Table 2 Statistical analysis of voltage sensor water occupancy from molecular simulations

Supplementary information

Supplementary Discussion

This file contains Supplementary Discussion of Nomenclature for Periodic Paralyses; Functional Properties of NavAb/R2G, NavAb/R2S, and NavAb/R3G; Amplitude of Gating Pore Current; and associated references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Gamal El-Din, T.M., Ing, C. et al. Structural basis for gating pore current in periodic paralysis. Nature 557, 590–594 (2018). https://doi.org/10.1038/s41586-018-0120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0120-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing