Extended Data Fig. 6: Modelling minimum fleet size scaling with the number of trips. | Nature

Extended Data Fig. 6: Modelling minimum fleet size scaling with the number of trips.

From: Addressing the minimum fleet problem in on-demand urban mobility

Extended Data Fig. 6

a, Scatter plot showing the average operation time of vehicles with optimal dispatching for different days versus the average number of trips per vehicle for each day. The former quantity scales linearly with the average number of trips per vehicle. This holds despite the fact that the fleet size manifests a saturation pattern as the number of trips grow. b, The coefficient of proportionality between the two quantities in a is different and separates out the weekends. The coefficient is slightly lower for Saturdays (blue) and much lower on Sundays (green) compared to that of weekdays. c, Plot showing the interplay between the minimum fleet size and the number of trips for each simulated day to manifest how the fleet size changes as the number of trips greatly increases. The supersampling is done by combining the demand for similar days in two and three successive weeks. The number of vehicles shows linear growth with a ripple-like pattern of saturation and increase. d, Plot showing the interplay between the fleet size and the number of trips, as simulated using a simple bin-packing model. The oversimplified model described in Methods can still capture the ripple-like saturation/increase pattern.

Source data

Back to article page