Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioengineering strategies to accelerate stem cell therapeutics

Abstract

Although only a few stem cell-based therapies are currently available to patients, stem cells hold tremendous regenerative potential, and several exciting clinical applications are on the horizon. Biomaterials with tuneable mechanical and biochemical properties can preserve stem cell function in culture, enhance survival of transplanted cells and guide tissue regeneration. Rapid progress with three-dimensional hydrogel culture platforms provides the opportunity to grow patient-specific organoids, and has led to the discovery of drugs that stimulate endogenous tissue-specific stem cells and enabled screens for drugs to treat disease. Therefore, bioengineering technologies are poised to overcome current bottlenecks and revolutionize the field of regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in translating stem cell therapies with potential bioengineered solutions.
Fig. 2: Recapitulating niche interactions to direct stem cell fate.
Fig. 3: Impact of bioengineering on stem cell advances currently in the clinic or on the horizon.

Similar content being viewed by others

References

  1. Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551, 327–332 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwartz, S. D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379, 713–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).

    Article  PubMed  Google Scholar 

  4. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Trounson, A. & McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17, 11–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. FDA warns about stem cell therapies. US Food & Drug Administration https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm286155.htm (FDA, 2017).

  7. Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports 8, 249–263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marsh, S. E. et al. HuCNS-SC Human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Reports 8, 235–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28, 611–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28, 606–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Klim, J. R., Li, L., Wrighton, P. J., Piekarczyk, M. S. & Kiessling, L. L. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7, 989–994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villa-Diaz, L. G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28, 581–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8, 949–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Gefen, A. & Margulies, S. S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004).

    Article  PubMed  Google Scholar 

  15. Rho, J. Y., Ashman, R. B. & Turner, C. H. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26, 111–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).This study demonstrated that muscle stem cells best maintained their stem cell phenotype and regenerative potential when cultured on substrates with stiffness approximating that of healthy muscle.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).This study used hydrogel substrates that were dynamically softened by light to demonstrate that mesenchymal stem cells can ‘remember’ the stiffness of the substrates on which they were cultured.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Holst, J. et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol. 28, 1123–1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Choi, J. S. & Harley, B. A. C. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci. Adv. 3, e1600455 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chowdhury, F. et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).These studies 23,24,42 identified mechanisms by which matrix degradation can modulate stem cell fate.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 10, 637–644 (2011).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  26. Chen, W. et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6, 4094–4103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. USA 110, E5039–E5048 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zweigerdt, R., Andree, B., Kropp, C. & Kempf, H. in Bioreactors: Design, Operation and Novel Applications (ed. Mandenius, C.-F.) (Wiley-VCH, Weinheim, 2016).

  29. Li, Y. et al. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication 9, 032001 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Nie, Y., Bergendahl, V., Hei, D. J., Jones, J. M. & Palecek, S. P. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol. Prog. 25, 20–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kehoe, D. E., Jing, D., Lock, L. T. & Tzanakakis, E. S. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A 16, 405–421 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Tabata, Y., Horiguchi, I., Lutolf, M. P. & Sakai, Y. Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomater. Sci. 2, 176–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).This study identified substrate stiffness as a potent regulator of stem cell differentiation in 2D culture systems.

    Article  CAS  PubMed  Google Scholar 

  36. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Przybyla, L., Lakins, J. N. & Weaver, V. M. tissue mechanics orchestrate Wnt-dependent human embryonic stem cell differentiation. Cell Stem Cell 19, 462–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).These studies 39,40,41 demonstrated that the viscoelastic properties of engineered extracellular matrices can modulate stem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15, 318–325 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cosgrove, B. D. et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freeman, R. et al. Instructing cells with programmable peptide DNA hybrids. Nat. Commun. 8, 15982 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lam, J., Carmichael, S. T., Lowry, W. E. & Segura, T. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4, 534–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15, 344–352 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806–815 (2012).This study identified shear-thinning hydrogels as material carriers to protect cells from mechanical damage during injection.

    Article  CAS  PubMed  Google Scholar 

  50. Cai, L., Dewi, R. E. & Heilshorn, S. C. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan, C. et al. Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. Langmuir 28, 6076–6087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaffey, A. C. et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J. Thorac. Cardiovasc. Surg. 150, 1268–1277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Führmann, T. et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83, 23–36 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lam, J., Lowry, W. E., Carmichael, S. T. & Segura, T. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv. Funct. Mater. 24, 7053–7062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).This study demonstrated that hydrogel stiffness can modulate stem cell behaviour in vivo.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Darnell, M. et al. Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv. Healthc. Mater. 6, 1601185 (2017).

    Article  CAS  Google Scholar 

  58. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Sleep, E. et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc. Natl Acad. Sci. USA 114, E7919–E7928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Article  CAS  Google Scholar 

  65. Suuronen, E. J. et al. Functional innervation in tissue engineered models for in vitro study and testing purposes. Toxicol. Sci. 82, 525–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Shvartsman, D. et al. Sustained delivery of VEGF maintains innervation and promotes reperfusion in ischemic skeletal muscles via NGF/GDNF signaling. Mol. Ther. 22, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DiMarco, R. L., Dewi, R. E., Bernal, G., Kuo, C. & Heilshorn, S. C. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3, 1376–1385 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Cruz-Acuña, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–425 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, Z. et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35, 1367–1377 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Burridge, P. W. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Ribeiro, A. J. S. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nguyen, E. H. et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat. Biomed. Eng. 1, 0096 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. McLean, W. J. et al. Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep. 18, 1917–1929 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saini, A. Cystic fibrosis patients benefit from mini guts. Cell Stem Cell 19, 425–427 (2016).

    Article  CAS  Google Scholar 

  81. Lyon, J. Hearing restoration: a step closer? J. Am. Med. Assoc. 318, 319–320 (2017).

    Article  Google Scholar 

  82. Ho, A. T. V. et al. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc. Natl Acad. Sci. USA 114, 6675–6684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A. & Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. Int. Ed. 56, 12132–12136 (2017).

    Article  CAS  Google Scholar 

  84. DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015). This study demonstrated the feasibility of using light as a stimulus to dynamically modify biomaterial properties in vivo.

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Cambria, E. et al. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules 16, 2316–2326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  88. Turner, M. et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13, 382–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Rice, J. J. et al. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2, 57–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Vishwakarma, A. et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 34, 470–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8ra19 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hori, Y., Stern, P. J., Hynes, R. O. & Irvine, D. J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30, 6757–6767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoon, Y. M. et al. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci. Rep. 5, 13155 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pompano, R. R. et al. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv. Healthc. Mater. 3, 1898–1908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spiller, K. L. et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37, 194–207 (2015).This study demonstrated that regulation of the host immune response can enhance regeneration in response to engineered constructs.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.M.M. is supported by the Stanford ChEM-H Interdisciplinary Postdoctoral Training Program in Quantitative Mechanobiology. S.C.H. acknowledges support from the National Institutes of Health (NIH) (U19 AI116484 and R21 HL13804201), the National Science Foundation (DMR 1508006) and the California Institute for Regenerative Medicine (CIRM) (RT3-07948). H.M.B. acknowledges support from the NIH (R01 AG020961, R01 AR063963, R01 NS089533, and R01 HG00967401), CIRM (DISC1-10036), the American Heart Association (17CSA33590101), the Baxter Foundation, and the Li Ka Shing Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.M.M., S.C.H. and H.M.B. all participated in the planning, writing and editing of the article.

Corresponding author

Correspondence to Helen M. Blau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madl, C.M., Heilshorn, S.C. & Blau, H.M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557, 335–342 (2018). https://doi.org/10.1038/s41586-018-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0089-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research