Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diverse mechanisms for endogenous regeneration and repair in mammalian organs

Subjects

Abstract

Mammalian organs comprise an extraordinary diversity of cell and tissue types. Regenerative organs, such as the skin and gastrointestinal tract, use resident stem cells to maintain tissue function. Organs with a lower cellular turnover, such as the liver and lungs, mostly rely on proliferation of committed progenitor cells. In many organs, injury reveals the plasticity of both resident stem cells and differentiated cells. The ability of resident cells to maintain and repair organs diminishes with age, whereas, paradoxically, the risk of cancer increases. New therapeutic approaches aim to harness cell plasticity for tissue repair and regeneration while avoiding the risk of malignant transformation of cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epidermal plasticity.
Fig. 2: General mechanisms of plasticity.
Fig. 3: General mechanisms of ageing.

Similar content being viewed by others

References

  1. Cossu, G. et al. Lancet commission: stem cells and regenerative medicine. Lancet 391, 883–910 (2017).

    PubMed  Google Scholar 

  2. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    CAS  PubMed  Google Scholar 

  3. Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551, 327–332 (2017). A combination of gene and cell therapy is used to repair most of the epidermis of a child with a skin blistering disorder.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lane, S. W., Williams, D. A. & Watt, F. M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 32, 795–803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajagopal, J. & Stanger, B. Z. Plasticity in the adult: how should the Waddington diagram be applied to regenerating tissues? Dev. Cell 36, 133–137 (2016).

    CAS  PubMed  Google Scholar 

  7. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    ADS  CAS  PubMed  Google Scholar 

  8. Rognoni, E. et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522–2535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Merrell, A. J. & Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17, 413–425 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Donati, G. et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19, 603–613 (2017). Demonstration that terminally differentiated cells of the sebaceous duct can dedifferentiate and contribute to long-term repopulation of the interfollicular epidermis during wound repair.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, N., Nakauka-Ddamba, A., Tobias, J., Jensen, S. T. & Lengner, C. J. Mouse label-retaining cells are molecularly and functionally distinct from reserve intestinal stem cells. Gastroenterology 151, 298–310 (2016).

    CAS  PubMed  Google Scholar 

  12. Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393–396 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J. H. et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149–1163 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Leushacke, M. et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat. Cell Biol. 19, 774–786 (2017).

    CAS  PubMed  Google Scholar 

  17. Cao, W. et al. Dynamics of proliferative and quiescent stem cells in liver homeostasis and injury. Gastroenterology 153, 1133–1147 (2017).

    PubMed  Google Scholar 

  18. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. He, L. et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488–1498 (2017). A lineage tracing strategy that depends on the co-expression of two different recombinases can target more specific populations of stem and progenitor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017). When hepatocyte proliferation is impaired, biliary cells can contribute to regeneration of both bile ducts and hepatocytes.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017). The authors use a Cre– loxP approach to genetically barcode thousands of individual haematopoietic stem cells and follow their descendants in vivo.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons, B. D. Deep sequencing as a probe of normal stem cell fate and preneoplasia in human epidermis. Proc. Natl Acad. Sci. USA 113, 128–133 (2016).

    ADS  CAS  PubMed  Google Scholar 

  26. Lynch, M. D. et al. Spatial constraints govern competition of mutant clones in human epidermis. Nat. Commun. 8, 1119 (2017). The size of some clones in cancer-prone epidermis is too large to be accounted for by neutral drift.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Tata, P. R. & Rajagopal, J. Plasticity in the lung: making and breaking cell identity. Development 144, 755–766 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kretzschmar, K., Weber, C., Driskell, R. R., Calonje, E. & Watt, F. M. Compartmentalized epidermal activation of β-catenin differentially affects lineage reprogramming and underlies tumor heterogeneity. Cell Rep. 14, 269–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lichtenberger, B. M., Mastrogiannaki, M. & Watt, F. M. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat. Commun. 7, 10537 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Telerman, S. B. et al. Dermal Blimp1 acts downstream of epidermal TGFβ and Wnt/β-catenin to regulate hair follicle formation and growth. J. Invest. Dermatol. 137, 2270–2281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Demcollari, T. I., Cujba, A. M. & Sancho, R. Phenotypic plasticity in the pancreas: new triggers, new players. Curr. Opin. Cell Biol. 49, 38–46 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, Q. et al. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 13, 103–114 (2007).

    CAS  PubMed  Google Scholar 

  34. Sancho, R., Gruber, R., Gu, G. & Behrens, A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell 15, 139–153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tetteh, P. W. et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213 (2016).

    CAS  PubMed  Google Scholar 

  38. Stange, D. E. et al. Differentiated Troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan, K. S. et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21, 78–90 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mills, J. C. & Sansom, O. J. Reserve stem cells: differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci. Signal. 8, re8 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017). The ability of myofibroblasts to convert to adipocytes is unexpected, because the two cell types were thought to represent distinct lineages.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mastrogiannaki, M. et al. β-Catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis. J. Invest. Dermatol. 136, 1130–1142 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Michael, S., Achilleos, C., Panayiotou, T. & Strati, K. Inflammation shapes stem cells and stemness during infection and beyond. Front. Cell Dev. Biol. 4, 118 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aurora, A. B. & Olson, E. N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Invest. Dermatol. 136, 1885–1891 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel, A. S. et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Mol. Med. 5, 858–869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cosin-Roger, J. et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun. 8, 98 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  50. Jia, J. et al. LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget 7, 27280–27294 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). Inflammation can trigger the epigenetic memory of injury by maintaining chromosomal accessibility to key stress-response genes.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meng, S., Chanda, P., Thandavarayan, R. A. & Cooke, J. P. Transflammation: innate immune signaling in nuclear reprogramming. Adv. Drug Deliv. Rev. 120, 133–141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ori, D., Murase, M. & Kawai, T. Cytosolic nucleic acid sensors and innate immune regulation. Int. Rev. Immunol. 36, 74–88 (2017).

    CAS  PubMed  Google Scholar 

  55. Yang, H., Adam, R. C., Ge, Y., Hua, Z. L. & Fuchs, E. Epithelial–mesenchymal micro-niches govern stem cell lineage choices. Cell 169, 483–496 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Viswanathan, P. et al. Mimicking the topography of the epidermal-dermal interface with elastomer substrates. Integr. Biol. (Camb.) 8, 21–29 (2016).

    CAS  Google Scholar 

  57. Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    CAS  PubMed  Google Scholar 

  58. Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Walko, G. et al. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat. Commun. 8, 14744 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Totaro, A. et al. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat. Commun. 8, 15206 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, X. et al. Cloning and variation of ground state intestinal stem cells. Nature 522, 173–178 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Owens, D. M., Romero, M. R., Gardner, C. & Watt, F. M. Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. J. Cell Sci. 116, 3783–3791 (2003).

    CAS  PubMed  Google Scholar 

  67. Schultz, M. B. & Sinclair, D. A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3–14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Avgustinova, A. & Benitah, S. A. Epigenetic control of adult stem cell function. Nat. Rev. Mol. Cell Biol. 17, 643–658 (2016).

    CAS  PubMed  Google Scholar 

  69. Tilly, J. L. & Sinclair, D. A. Germline energetics, aging, and female infertility. Cell Metab. 17, 838–850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, T. B. et al. Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nat. Commun. 8, 14766 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    ADS  CAS  PubMed  Google Scholar 

  73. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neves, J., Sousa-Victor, P. & Jasper, H. Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell 20, 161–175 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Development and stem cells of the esophagus. Semin. Cell Dev. Biol. 66, 25–35 (2017).

    CAS  PubMed  Google Scholar 

  76. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    PubMed  Google Scholar 

  77. Watanabe, M. et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife 6, e26635 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Nalapareddy, K. et al. Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep. 18, 2608–2621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Scudellari, M. To stay young, kill zombie cells. Nature 550, 448–450 (2017).

    ADS  CAS  PubMed  Google Scholar 

  80. Latil, M. et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 20, 191–204 (2017).

    CAS  PubMed  Google Scholar 

  81. Brown, S. et al. Correction of aberrant growth preserves tissue homeostasis. Nature 548, 334–337 (2017). Demonstration that wild-type cells are involved in actively eliminating cells with an activating β-catenin mutation from the epidermis.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Radyk, M. D., Burclaff, J., Willet, S. G. & Mills, J. C. Metaplastic cells in the stomach arise, independently of stem cells, via dedifferentiation or transdifferentiation of chief cells. Gastroenterology 154, 839–843 (2018).

    PubMed  Google Scholar 

  83. Jiang, M. et al. Transitional basal cells at the squamous–columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duarte, D. et al. Inhibition of endosteal vascular niche remodelling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77 (2017). Pharmacologic manipulation of the haematopoietic stem cell niche to preserve normal function is a new paradigm for treating acute myeloid leukemia.

    PubMed  Google Scholar 

  85. Mishra, A. et al. A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis. eLife 6, e27356 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rubino, F. & Amiel, S. A. Is the gut the “sweet spot” for the treatment of diabetes? Diabetes 63, 2225–2228 (2014).

    PubMed  Google Scholar 

  88. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Google Scholar 

  89. Sigal, M. et al. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451–455 (2017).

    ADS  CAS  PubMed  Google Scholar 

  90. Arnold, K. et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Choi, E. et al. Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach. Gut https://doi.org/10.1136/gutjnl-2017-313874 (2017).

    PubMed  Google Scholar 

  92. Hayakawa, Y. et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28, 800–814 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015). This study showed that a subpopulation of Wnt-responsive hepatocytes broadly contributes to normal liver maintenance.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stanger, B. Z. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 77, 179–200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Simmini, S. et al. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nat. Commun. 5, 5728 (2014). This study demonstrated that one gene, Cdx2 , functionally distinguishes between intestinal stem cells and gastric stem cells.

    ADS  CAS  PubMed  Google Scholar 

  97. Wells, J. M. Developmental biology: regional identity of gut stem cells—one gene to rule them all. Nat. Rev. Gastroenterol. Hepatol. 12, 125–126 (2015).

    CAS  PubMed  Google Scholar 

  98. Takahashi, K. &Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). 

Download references

Acknowledgements

F.M.W. acknowledges funding from the Wellcome Trust (206439/Z/17/Z), Medical Research Council (MR/PO18823/1), Cancer Research UK (C219/A23522) and the Biotechnology and Biological Sciences Research Council (BB/M007219/1). J.M.W. is supported by grants from the National Institutes of Health R01DK092456, U19AI116491, P01HD093363 and U01DK103117. We thank C. Mooney for help with the Figures.

Reviewer information

Nature thanks C. Lengner and J. Rajagopal for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.M.W. and F.M.W. conceived and wrote the manuscript and drafted the Figures together.

Corresponding authors

Correspondence to James M. Wells or Fiona M. Watt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, J.M., Watt, F.M. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557, 322–328 (2018). https://doi.org/10.1038/s41586-018-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0073-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing