Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissecting spinal cord regeneration

Abstract

The inability to recover functions lost after severe spinal cord injury has been recognized for millennia and was first attributed to a failure of spinal cord neural regeneration over 100 years ago. The last forty years have seen intense research into achieving such regeneration, but in spite of conceptual advances and many reports announcing successful interventions, progress has been slow and often controversial. Here, I examine consequential advances and setbacks, and critically consider assumptions underlying certain approaches. I argue that expanding mechanistic knowledge about multiple forms of neural regeneration, why they fail and how they can restore function will resolve conceptual contentions and push the field forward.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The concept of axon regeneration now encompasses multiple forms of axon growth after SCI.
Fig. 2: The mechanisms underlying regeneration failure vary in different SCI lesion compartments.
Fig. 3: Incomplete and complete SCI lesions will benefit from targeting different forms of regeneration.

References

  1. 1.

    Wilkins, R. H. Neurosurgical Classic—XVII. J. Neurosurg. 21, 240–244 (1964).

    CAS  PubMed  Google Scholar 

  2. 2.

    Ramón y Cajal, S., DeFelipe, J. & Jones, E. G. Cajal’s Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  3. 3.

    Tuszynski, M. H. & Steward, O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 74, 777–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Schwab, M. E. & Strittmatter, S. M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27, 53–60 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Geoffroy, C. G. & Zheng, B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr. Opin. Neurobiol. 27, 31–38 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Norenberg, M. D., Smith, J. & Marcillo, A. The pathology of human spinal cord injury: defining the problems. J. Neurotrauma 21, 429–440 (2004).

    PubMed  Google Scholar 

  9. 9.

    Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cregg, J. M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197–207 (2014).

    PubMed  Google Scholar 

  11. 11.

    Haenzi, B. & Moon, L. D. The function of FGFR1 signalling in the spinal cord: therapeutic approaches using FGFR1 ligands after spinal cord injury. Neural Plast. 2017, 2740768 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Weiss, P. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool. 68, 393–448 (1934).

    Google Scholar 

  13. 13.

    Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Sugar, O. & Gerard, R. W. Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19 (1940).

    Google Scholar 

  15. 15.

    Brown, J. O. & McCouch, G. P. Abortive regeneration of the transected spinal cord. J. Comp. Neurol. 87, 131–137 (1947).

    CAS  PubMed  Google Scholar 

  16. 16.

    Clemente, C. D. & Windle, W. F. Regeneration of severed nerve fibers in the spinal cord of the adult cat. J. Comp. Neurol. 101, 691–731 (1954).

    CAS  PubMed  Google Scholar 

  17. 17.

    Arteta, J. L. Research on the regeneration of the spinal cord in the cat submitted to the action of pyrogenous substances (5 or 3895) of bacterial origin. J. Comp. Neurol. 105, 171–184 (1956).

    CAS  PubMed  Google Scholar 

  18. 18.

    Matthews, M. A., St Onge, M. F., Faciane, C. L. & Gelderd, J. B. Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin. Neuropathol. Appl. Neurobiol. 5, 161–180 (1979).

    CAS  PubMed  Google Scholar 

  19. 19.

    Reier, P. J. & Houle, J. D. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv. Neurol. 47, 87–138 (1988).

    CAS  PubMed  Google Scholar 

  20. 20.

    Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    ADS  CAS  PubMed  Google Scholar 

  22. 22.

    Dodd, J. & Jessell, T. M. Axon guidance and the patterning of neuronal projections in vertebrates. Science 242, 692–699 (1988).

    ADS  CAS  PubMed  Google Scholar 

  23. 23.

    Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Schwab, M. E. & Thoenen, H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5, 2415–2423 (1985).

    CAS  PubMed  Google Scholar 

  25. 25.

    Schwab, M. E. Nogo and axon regeneration. Curr. Opin. Neurobiol. 14, 118–124 (2004).

    CAS  PubMed  Google Scholar 

  26. 26.

    Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999).

    CAS  PubMed  Google Scholar 

  28. 28.

    Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lee, J. K. et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 66, 663–670 (2010).This study demonstrates that white matter molecules are not a primary cause for the failure of axon regrowth in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zheng, B. et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl Acad. Sci. USA 102, 1205–1210 (2005).

    ADS  CAS  PubMed  Google Scholar 

  31. 31.

    Steward, O., Zheng, B., Banos, K. & Yee, K. M. Response to: Kim et al., “Axon regeneration in young adult mice lacking Nogo-A/B." Neuron 38, 187–199. Neuron 54, 191–195 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    ADS  CAS  PubMed  Google Scholar 

  33. 33.

    Sun, F. et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480, 372–375 (2011).Ground-breaking study that shows that genetic reactivation of neuron intrinsic growth can stimulate long-distance axon growth through adult neural tissue.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Benowitz, L. I., He, Z. & Goldberg, J. L. Reaching the brain: advances in optic nerve regeneration. Exp. Neurol. 287, 365–373 (2017).

    PubMed  Google Scholar 

  35. 35.

    Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    CAS  PubMed  Google Scholar 

  36. 36.

    Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).Genetic loss-of-function study that challenges the notion that scar-forming astrocytes are a primary cause for the failure of axon regrowth in vivo.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang, D. & Fawcett, J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 349, 147–160 (2012).

    PubMed  Google Scholar 

  38. 38.

    Mironova, Y. A. & Giger, R. J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci. 36, 363–373 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Dyck, S. M. & Karimi-Abdolrezaee, S. Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp. Neurol. 269, 169–187 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Fawcett, J. W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 218, 213–226 (2015).

    PubMed  Google Scholar 

  41. 41.

    Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    ADS  CAS  PubMed  Google Scholar 

  42. 42.

    Hossain-Ibrahim, M. K., Rezajooi, K., Stallcup, W. B., Lieberman, A. R. & Anderson, P. N. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse. BMC Neurosci. 8, 80 (2007).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J. W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).This study demonstrates that neutralizing CSPGs after SCI act by degrading PNN and augmenting synaptic remodelling without altering long-distance axon regrowth.

    PubMed  Google Scholar 

  44. 44.

    Wang, D., Ichiyama, R. M., Zhao, R., Andrews, M. R. & Fawcett, J. W. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 31, 9332–9344 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Alilain, W. J., Horn, K. P., Hu, H., Dick, T. E. & Silver, J. Functional regeneration of respiratory pathways after spinal cord injury. Nature 475, 196–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Tom, V. J., Steinmetz, M. P., Miller, J. H., Doller, C. M. & Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lang, B. T. et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518, 404–408 (2015).

    ADS  CAS  PubMed  Google Scholar 

  48. 48.

    Andrews, E. M., Richards, R. J., Yin, F. Q., Viapiano, M. S. & Jakeman, L. B. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp. Neurol. 235, 174–187 (2012).

    CAS  PubMed  Google Scholar 

  49. 49.

    Lu, P., Jones, L. L. & Tuszynski, M. H. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp. Neurol. 203, 8–21 (2007).

    CAS  PubMed  Google Scholar 

  50. 50.

    Jones, L. L., Sajed, D. & Tuszynski, M. H. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J. Neurosci. 23, 9276–9288 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kawaja, M. D. & Gage, F. H. Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron 7, 1019–1030 (1991).

    CAS  PubMed  Google Scholar 

  53. 53.

    Lee, J. K. et al. Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration. J. Neurosci. 30, 10899–10904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Zukor, K. et al. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J. Neurosci. 33, 15350–15361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Frisén, J. et al. Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes. Neuroscience 65, 293–304 (1995).

    PubMed  Google Scholar 

  56. 56.

    Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 12870–12886 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Mason, C. A., Edmondson, J. C. & Hatten, M. E. The extending astroglial process: development of glial cell shape, the growing tip, and interactions with neurons. J. Neurosci. 8, 3124–3134 (1988).

    CAS  PubMed  Google Scholar 

  58. 58.

    Raper, J. & Mason, C. Cellular strategies of axonal pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001933 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Davies, J. E. et al. Astrocytes derived from glial-restricted precursors promote spinal cord repair. J. Biol. 5, 7 (2006).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Shih, C. H., Lacagnina, M., Leuer-Bisciotti, K. & Pröschel, C. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. J. Neurosci. 34, 2438–2443 (2014).

    CAS  PubMed  Google Scholar 

  61. 61.

    Zhang, S. et al. Thermoresponsive copolypeptide hydrogel vehicles for central nervous system cell delivery. ACS Biomater. Sci. Eng. 1, 705–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Mokalled, M. H. et al. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354, 630–634 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Letourneau, P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44, 92–101 (1975).

    CAS  PubMed  Google Scholar 

  64. 64.

    Campenot, R. B. Local control of neurite development by nerve growth factor. Proc. Natl Acad. Sci. USA 74, 4516–4519 (1977).

    ADS  CAS  PubMed  Google Scholar 

  65. 65.

    Smith, G. V. & Stevenson, J. A. Peripheral nerve grafts lacking viable Schwann cells fail to support central nervous system axonal regeneration. Exp. Brain Res. 69, 299–306 (1988).

    CAS  PubMed  Google Scholar 

  66. 66.

    Hagg, T. et al. Nerve growth factor promotes CNS cholinergic axonal regeneration into acellular peripheral nerve grafts. Exp. Neurol. 112, 79–88 (1991).

    CAS  PubMed  Google Scholar 

  67. 67.

    Alto, L. T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat. Neurosci. 12, 1106–1113 (2009).This study demonstrates that developmental chemoattractive growth factors also attract axon regrowth after SCI.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Deng, L. X. et al. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J. Neurosci. 33, 5655–5667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Goldberg, J. L., Klassen, M. P., Hua, Y. & Barres, B. A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864 (2002).

    ADS  CAS  PubMed  Google Scholar 

  70. 70.

    He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).

    CAS  PubMed  Google Scholar 

  71. 71.

    Richardson, P. M. & Issa, V. M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).This study demonstrates that reactivating intrinsic neuronal growth programs synergistically augments regrowth of injured CNS into a supportive and attractive environment.

    ADS  CAS  PubMed  Google Scholar 

  72. 72.

    Bei, F. et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell 164, 219–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Liu, Y. et al. A sensitized igf1 treatment restores corticospinal axon-dependent functions. Neuron 95, 817–833 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    ADS  CAS  PubMed  Google Scholar 

  76. 76.

    Hollis, E. R. II et al. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Nat. Neurosci. 19, 697–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Raisman, G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14, 25–48 (1969).

    CAS  PubMed  Google Scholar 

  78. 78.

    Weidner, N., Ner, A., Salimi, N. & Tuszynski, M. H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl Acad. Sci. USA 98, 3513–3518 (2001).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).This study shows that injured supraspinal axons form new connections with propriospinal neurons after SCI.

    CAS  PubMed  Google Scholar 

  80. 80.

    Rosenzweig, E. S. et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 13, 1505–1510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Little, J. W. & Halar, E. Temporal course of motor recovery after Brown–Sequard spinal cord injuries. Paraplegia 23, 39–46 (1985).

    CAS  PubMed  Google Scholar 

  82. 82.

    Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).This study shows that new relay circuits formed by propriospinal neurons are required and sufficient to relay functional information after SCI that transects all supraspinal connections to below the injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Takeoka, A., Vollenweider, I., Courtine, G. & Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159, 1626–1639 (2014).

    CAS  PubMed  Google Scholar 

  84. 84.

    Nishimura, Y. et al. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318, 1150–1155 (2007).

    ADS  CAS  PubMed  Google Scholar 

  85. 85.

    Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947 (2011).This study demonstrates that after functionally complete, but anatomically incomplete SCI, spared connections can persist that cannot on their own mediate voluntary function, but that can do so after electrophysiological stimulation combined with appropriate rehabilitation training.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Alstermark, B. & Isa, T. Circuits for skilled reaching and grasping. Annu. Rev. Neurosci. 35, 559–578 (2012).

    CAS  PubMed  Google Scholar 

  89. 89.

    Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Lu, P. et al. Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J. Clin. Invest. 127, 3287–3299 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R. & Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 20, 637–647 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Inglis, F. M., Zuckerman, K. E. & Kalb, R. G. Experience-dependent development of spinal motor neurons. Neuron 26, 299–305 (2000).

    CAS  PubMed  Google Scholar 

  96. 96.

    Martin, J. H., Choy, M., Pullman, S. & Meng, Z. Corticospinal system development depends on motor experience. J. Neurosci. 24, 2122–2132 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Jin, D. et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat. Commun. 6, 8074 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Hilton, B. J. et al. Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J. Neurosci. 36, 4080–4092 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med. 8, 337rv5 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of M.V.S. is supported by the National Institutes of Health (NS084030), the Dr Miriam and Sheldon G. Adelson Medical Foundation, the Craig H. Neilsen Foundation, Paralyzed Veterans of America, and Wings for Life.

Reviewer information

Nature thanks R. Giger, B. Zheng and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael V. Sofroniew.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sofroniew, M.V. Dissecting spinal cord regeneration. Nature 557, 343–350 (2018). https://doi.org/10.1038/s41586-018-0068-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links