Letter | Published:

Overcoming the rate–distance limit of quantum key distribution without quantum repeaters

Naturevolume 557pages400403 (2018) | Download Citation

Abstract

Quantum key distribution (QKD)1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration4. Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters5,6,7, is overcoming the fundamental rate–distance limit of QKD8. This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are ‘twins’ and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate–distance limit of QKD and greatly extending the range of secure quantum communications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

  2. 2.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

  3. 3.

    Comandar, L. C. et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 104, 021101 (2014).

  4. 4.

    Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

  5. 5.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  6. 6.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  7. 7.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

  8. 8.

    Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

  9. 9.

    Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

  10. 10.

    Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009).

  11. 11.

    Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777–781 (2012).

  12. 12.

    Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

  13. 13.

    Azuma, K., Tamaki, K. & Munro, W. J. All-photonic intercity quantum key distribution. Nat. Commun. 6, 10171 (2015).

  14. 14.

    Qiu, J. Quantum communications leap out of the lab. Nature 508, 441–442 (2014).

  15. 15.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

  16. 16.

    Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).

  17. 17.

    Pfleegor, R. L. & Mandel, L. Interference of independent photon beams. Phys. Rev. 159, 1084–1088 (1967).

  18. 18.

    Tamaki, K., Lo, H.-K., Fung, C.-H. F. & Qi, B. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012).

  19. 19.

    Bovino, F. A. & Messina, A. Increasing operational command and control security by the implementation of device independent quantum key distribution. Proc. SPIE 9996, 999606 (2016).

  20. 20.

    Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

  21. 21.

    Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

  22. 22.

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

  23. 23.

    Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

  24. 24.

    Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012).

  25. 25.

    Gottesman, D., Lo, H.-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004).

  26. 26.

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

  27. 27.

    Santarelli, G., Clairon, A., Lea, S. & Tino, G. Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz. Opt. Commun. 104, 339–344 (1994).

  28. 28.

    Appel, J., MacRae, A. & Lvovsky, A. I. A versatile digital GHz phase lock for external cavity diode lasers. Meas. Sci. Technol. 20, 055302 (2009).

  29. 29.

    Lipka, M., Parniak, M. & Wasilewski, W. Optical frequency locked loop for long-term stabilization of broad-line DFB lasers frequency difference. Appl. Phys. B 123, 238–245 (2017).

  30. 30.

    Minář, J., de Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

Download references

Acknowledgements

We acknowledge K. Tamaki for constructive criticism on the security argument. We acknowledge discussions with X. Ma, N. Lütkenhaus, B. Fröhlich, R. M. Stevenson, D. G. Marangon and A. J. Bennett.

Reviewer Information

Nature thanks X. Ma and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Toshiba Research Europe, Cambridge, UK

    • M. Lucamarini
    • , Z. L. Yuan
    • , J. F. Dynes
    •  & A. J. Shields

Authors

  1. Search for M. Lucamarini in:

  2. Search for Z. L. Yuan in:

  3. Search for J. F. Dynes in:

  4. Search for A. J. Shields in:

Contributions

M.L. and Z.L.Y. developed the TF-QKD scheme. Z.L.Y. and J.F.D. set up and performed the experiments, and all authors analysed the results. A.J.S. guided the work. M.L. wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. Lucamarini.

Supplementary information

  1. Supplementary Information

    This file contains the following sections: Fibre-based experiments; Protocol; Active feedback; Numerical simulations; Security argument; Notation; Reduction to a BB84-like scheme; Single-photon source; Actual schemes; Entanglement distillation and virtual schemes; Weak-coherent-pulse source; Dropping the assumption on random phase announcement; Collective beam-splitting attack; Considerations on the key rates in Fig. S3; Final considerations; and References.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41586-018-0066-6

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.