Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overcoming the rate–distance limit of quantum key distribution without quantum repeaters


Quantum key distribution (QKD)1,2 allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre3 and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration4. Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters5,6,7, is overcoming the fundamental rate–distance limit of QKD8. This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel9 that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are ‘twins’ and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate–distance limit of QKD and greatly extending the range of secure quantum communications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme to overcome the rate–distance limit of QKD.
Fig. 2: Schematics of the quantum distribution of encryption keys.
Fig. 3: Experimental characterization of phase drift and visibility.


  1. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    Article  MathSciNet  Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Comandar, L. C. et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett. 104, 021101 (2014).

    Article  ADS  Google Scholar 

  4. Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    Article  ADS  Google Scholar 

  5. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  8. Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

    Article  ADS  CAS  Google Scholar 

  9. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article  ADS  Google Scholar 

  10. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009).

    Article  ADS  Google Scholar 

  11. Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777–781 (2012).

    Article  ADS  CAS  Google Scholar 

  12. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Azuma, K., Tamaki, K. & Munro, W. J. All-photonic intercity quantum key distribution. Nat. Commun. 6, 10171 (2015).

    Article  ADS  CAS  Google Scholar 

  14. Qiu, J. Quantum communications leap out of the lab. Nature 508, 441–442 (2014).

    Article  ADS  CAS  Google Scholar 

  15. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article  CAS  Google Scholar 

  16. Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at (2016).

  17. Pfleegor, R. L. & Mandel, L. Interference of independent photon beams. Phys. Rev. 159, 1084–1088 (1967).

    Article  ADS  CAS  Google Scholar 

  18. Tamaki, K., Lo, H.-K., Fung, C.-H. F. & Qi, B. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012).

    Article  ADS  Google Scholar 

  19. Bovino, F. A. & Messina, A. Increasing operational command and control security by the implementation of device independent quantum key distribution. Proc. SPIE 9996, 999606 (2016).

    Article  Google Scholar 

  20. Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

    Article  ADS  Google Scholar 

  21. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  22. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  23. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  24. Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012).

    Article  ADS  Google Scholar 

  25. Gottesman, D., Lo, H.-K., Lütkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004).

    MathSciNet  MATH  Google Scholar 

  26. Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article  MathSciNet  Google Scholar 

  27. Santarelli, G., Clairon, A., Lea, S. & Tino, G. Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz. Opt. Commun. 104, 339–344 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Appel, J., MacRae, A. & Lvovsky, A. I. A versatile digital GHz phase lock for external cavity diode lasers. Meas. Sci. Technol. 20, 055302 (2009).

    Article  ADS  Google Scholar 

  29. Lipka, M., Parniak, M. & Wasilewski, W. Optical frequency locked loop for long-term stabilization of broad-line DFB lasers frequency difference. Appl. Phys. B 123, 238–245 (2017).

    Article  ADS  Google Scholar 

  30. Minář, J., de Riedmatten, H., Simon, C., Zbinden, H. & Gisin, N. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 052325 (2008).

    Article  ADS  Google Scholar 

Download references


We acknowledge K. Tamaki for constructive criticism on the security argument. We acknowledge discussions with X. Ma, N. Lütkenhaus, B. Fröhlich, R. M. Stevenson, D. G. Marangon and A. J. Bennett.

Reviewer Information

Nature thanks X. Ma and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations



M.L. and Z.L.Y. developed the TF-QKD scheme. Z.L.Y. and J.F.D. set up and performed the experiments, and all authors analysed the results. A.J.S. guided the work. M.L. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to M. Lucamarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains the following sections: Fibre-based experiments; Protocol; Active feedback; Numerical simulations; Security argument; Notation; Reduction to a BB84-like scheme; Single-photon source; Actual schemes; Entanglement distillation and virtual schemes; Weak-coherent-pulse source; Dropping the assumption on random phase announcement; Collective beam-splitting attack; Considerations on the key rates in Fig. S3; Final considerations; and References.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucamarini, M., Yuan, Z.L., Dynes, J.F. et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing