Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An optical-frequency synthesizer using integrated photonics

Abstract

Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission1, highly optimized physical sensors2 and harnessing quantum states3, to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III–V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 × 10−15 or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, low-power and compact integrated-photonics devices to be widely used.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accurate optical synthesis with an integrated laser and DKS dual-comb system.
Fig. 2: Optical spectra of the integrated devices.
Fig. 3: Stable optical synthesis with out-of-loop verification.
Fig. 4: Arbitrary control of the optical-frequency synthesizer.

Similar content being viewed by others

References

  1. Rumley, S. et al. Silicon photonics for exascale systems. J. Lightwave Technol. 33, 547–562 (2015).

    Article  ADS  CAS  Google Scholar 

  2. Purdy, T. P., Grutter, K. E., Srinivasan, K. & Taylor, J. M. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  4. Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  5. Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  6. Jost, J. D., Hall, J. L. & Ye, J. Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515–520 (2002).

    Article  ADS  Google Scholar 

  7. Giorgetta, F. R., Coddington, I., Baumann, E., Swann, W. C. & Newbury, N. R. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nat. Photonics 4, 853–857 (2010).

    Article  ADS  CAS  Google Scholar 

  8. Sinclair, L. C. et al. Operation of an optically coherent frequency comb outside the metrology lab. Opt. Express 22, 6996–7006 (2014).

    Article  ADS  CAS  Google Scholar 

  9. Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  11. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  12. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  CAS  Google Scholar 

  13. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7, 597–607 (2013).

    Article  ADS  CAS  Google Scholar 

  14. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  CAS  Google Scholar 

  15. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics 5, 770–776 (2011).

    Article  ADS  CAS  Google Scholar 

  16. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011).

    Article  ADS  Google Scholar 

  17. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article  ADS  Google Scholar 

  18. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photonics 11, 671–676 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39, 3535–3538 (2014).

    Article  ADS  CAS  Google Scholar 

  20. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).

    Article  ADS  CAS  Google Scholar 

  21. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  22. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  ADS  Google Scholar 

  27. Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics 10, 516–520 (2016).

    Article  ADS  Google Scholar 

  28. Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6, e16202 (2017).

    Article  ADS  CAS  Google Scholar 

  29. Arafin, S. et al. Power-efficient Kerr frequency comb based tunable optical source. IEEE Photonics J. 9, 6600814 (2017).

    Article  Google Scholar 

  30. Arafin, S. et al. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop. Opt. Express 25, 681–695 (2017).

    Article  ADS  CAS  Google Scholar 

  31. Del’Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903–053904 (2008).

    Article  ADS  Google Scholar 

  32. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  ADS  CAS  Google Scholar 

  33. Komljenovic, T. et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).

    Article  ADS  Google Scholar 

  34. Briles, T. C. et al. Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization. Preprint at https://arxiv.org/abs/1711.06251 (2017).

  35. Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photonics (2018).

  36. Stone, J. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr microresonator frequency combs. Preprint at https://arxiv.org/abs/1708.08405 (2017).

  37. Bluestone, A. et al. Heterodyne-based hybrid controller for wide dynamic range optoelectronic frequency synthesis. Opt. Express 25, 29086–29097 (2017).

    Article  ADS  CAS  Google Scholar 

  38. Ycas, G., Osterman, S. & Diddams, S. A. Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser. Opt. Lett. 37, 2199–2201 (2012).

    Article  ADS  CAS  Google Scholar 

  39. Greenhall, C. A. & Riley, W. J. in Proc. PTTI 2003, 267–280 (2003).

  40. Volet, N. et al. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon. Laser Photonics Rev. 11, 1600165 (2017).

    Article  ADS  Google Scholar 

  41. Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

    Article  ADS  CAS  Google Scholar 

  42. Srinivasan, S. et al. Coupled-ring-resonator-mirror-based heterogeneous III–V silicon tunable laser. IEEE Photonics J. 7, 2700908 (2015).

    Article  Google Scholar 

  43. Del’Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Srico, Inc. for use of the waveguide PPLN device, Aurrion Inc. for use of the III–V/Si tunable laser, and D. Hickstein, T. Dunker, A. Wallin, D. Carlson and Z. Newman for comments on the experiment. N.V. acknowledges support from the Swiss National Science Foundation (SNSF). This research is supported by the Defense Advanced Research Projects Agency DODOS program and NIST. We thank R. Lutwak and the DODOS program management team for discussions throughout the experiment.

Reviewer Information

Nature thanks M. Lipson, D. Moss and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.T.S., T.D., T.C.B. and J.S. contributed equally to performing the system measurements and analysing the experimental results. D.T.S., S.A.D. and S.B.P. prepared the manuscript. The integrated devices were fabricated and tested by Q.L., D.W., B.R.I. and K.S. (Si3N4); A.B., N.V., T.K., L.C. and E. N. (III–V/Si); and S.H.L., D.Y.O., M.S., K.Y.Y. and K.V. (SiO2). N.V., L.C.S., C.F., M.H.P.F. and A.B. provided measurement support. T.J.K, E.N., K.V., K.S., N.R.N., L.T., J.E.B., S.A.D. and S.B.P. supervised and led the scientific collaboration. This work is an official contribution of the NIST; not subject to copyright in the United States. The use of trade names is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Corresponding authors

Correspondence to Daryl T. Spencer or Scott B. Papp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Tuning details for III–V/Si laser.

a, Typical tuning map of the III–V/Si tunable laser’s peak wavelength in nanometres versus current applied to each heater above the ring resonators. b, Normalized optical spectra showing >40 dB of side-mode suppression ratio across the tuning range. c, Typical unlocked RF beat notes between the tunable laser and the auxiliary comb for two different biases of the phase section. Careful control of the heater is required to reach all wavelengths in the tuning range, and reduction of the laser linewidth (blue to red) through longitudinal mode alignment and the optical feedback effect42 is required to achieve the best phase-locking performance to the microcombs. RBW, resolution bandwidth, VBW, video bandwidth.

Extended Data Fig. 2 Demonstration of pumping the Si3N4 THz microcomb with the III–V/Si laser.

a, Output optical spectrum of the THz microcomb showing dual-dispersive waves, as measured on two optical spectrum analysers. b, Comparison of electro-optic repetition rate detection43 when using the same III–V/Si laser (black) and external cavity diode laser (ECDL, red) from the main experiment to pump the THz microcomb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, D.T., Drake, T., Briles, T.C. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018). https://doi.org/10.1038/s41586-018-0065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0065-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing