Letter | Published:

Deep mitochondrial origin outside the sampled alphaproteobacteria

Naturevolume 557pages101105 (2018) | Download Citation

Abstract

Mitochondria are ATP-generating organelles, the endosymbiotic origin of which was a key event in the evolution of eukaryotic cells1. Despite strong phylogenetic evidence that mitochondria had an alphaproteobacterial ancestry2, efforts to pinpoint their closest relatives among sampled alphaproteobacteria have generated conflicting results, complicating detailed inferences about the identity and nature of the mitochondrial ancestor. While most studies support the idea that mitochondria evolved from an ancestor related to Rickettsiales3,4,5,6,7,8,9, an order that includes several host-associated pathogenic and endosymbiotic lineages10,11, others have suggested that mitochondria evolved from a free-living group12,13,14. Here we re-evaluate the phylogenetic placement of mitochondria. We used genome-resolved binning of oceanic metagenome datasets and increased the genomic sampling of Alphaproteobacteria with twelve divergent clades, and one clade representing a sister group to all Alphaproteobacteria. Subsequent phylogenomic analyses that specifically address long branch attraction and compositional bias artefacts suggest that mitochondria did not evolve from Rickettsiales or any other currently recognized alphaproteobacterial lineage. Rather, our analyses indicate that mitochondria evolved from a proteobacterial lineage that branched off before the divergence of all sampled alphaproteobacteria. In light of this new result, previous hypotheses on the nature of the mitochondrial ancestor6,15,16 should be re-evaluated.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

  2. 2.

    Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

  3. 3.

    Wang, Z. & Wu, M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci. Rep. 5, 7949 (2015).

  4. 4.

    Williams, K. P., Sobral, B. W. & Dickerman, A. W. A robust species tree for the alphaproteobacteria. J. Bacteriol. 189, 4578–4586 (2007).

  5. 5.

    Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies indicate a meaningful α-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol. Biol. Evol. 23, 74–85 (2006).

  6. 6.

    Sassera, D. et al. Phylogenomic evidence for the presence of a flagellum and cbb 3 oxidase in the free-living mitochondrial ancestor. Mol. Biol. Evol. 28, 3285–3296 (2011).

  7. 7.

    Andersson, S. G. E. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

  8. 8.

    Rodríguez-Ezpeleta, N. & Embley, T. M. The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS ONE 7, e30520 (2012).

  9. 9.

    Ferla, M. P., Thrash, J. C., Giovannoni, S. J. & Patrick, W. M. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE 8, e83383 (2013).

  10. 10.

    Darby, A. C., Cho, N.-H., Fuxelius, H.-H., Westberg, J. & Andersson, S. G. E. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 23, 511–520 (2007).

  11. 11.

    Renvoisé, A., Merhej, V., Georgiades, K. & Raoult, D. Intracellular Rickettsiales: insights into manipulators of eukaryotic cells. Trends Mol. Med. 17, 573–583 (2011).

  12. 12.

    Thrash, J. C. et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 1, 13 (2011).

  13. 13.

    Brindefalk, B., Ettema, T. J. G., Viklund, J., Thollesson, M. & Andersson, S. G. E. A phylometagenomic exploration of oceanic alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade. PLoS ONE 6, e24457 (2011).

  14. 14.

    Viklund, J., Martijn, J., Ettema, T. J. G. & Andersson, S. G. E. Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS ONE 8, e78858 (2013).

  15. 15.

    Ball, S. G., Bhattacharya, D. & Weber, A. P. M. Pathogen to powerhouse. Science 351, 659–660 (2016).

  16. 16.

    Wang, Z. & Wu, M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS ONE 9, e110685 (2014).

  17. 17.

    Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

  18. 18.

    Rodríguez-Ezpeleta, N. et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56, 389–399 (2007).

  19. 19.

    Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).

  20. 20.

    Viklund, J., Ettema, T. J. G. & Andersson, S. G. E. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol. 29, 599–615 (2012).

  21. 21.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

  22. 22.

    Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413–17 (2017).

  23. 23.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. metaSPAdes: a new versatile assembler. Genome Res. 27, 824–834 (2017).

  24. 24.

    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

  25. 25.

    Nomura, M. & Morgan, E. A. Genetics of bacterial ribosomes. Annu. Rev. Genet. 11, 297–347 (1977).

  26. 26.

    Hugenholtz, P., Skarshewski, A. & Parks, D. H. Genome-based microbial taxonomy coming of age. Cold Spring Harbor Persp. Biol. 8, A018085 (2016).

  27. 27.

    Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).

  28. 28.

    Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

  29. 29.

    Lang, B. F. & Burger, G. Chapter one—mitochondrial and eukaryotic origins: a critical review. Adv. Bot. Res. 63, 1–20 (2012).

  30. 30.

    Gray, M. W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).

  31. 31.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

  32. 32.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

  33. 33.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  34. 34.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

  35. 35.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  36. 36.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

  37. 37.

    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

  38. 38.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  39. 39.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ v.0.11.4 (2010).

  40. 40.

    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

  41. 41.

    Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).

  42. 42.

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

  43. 43.

    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at https://www.biorxiv.org/content/early/2016/06/15/059121 (2016).

  44. 44.

    Bork, P. et al. Tara Oceans studies plankton at planetary scale. Science 348, 873 (2015).

  45. 45.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

  46. 46.

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

  47. 47.

    Martijn, J. et al. Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME J. 9, 2373–2385 (2015).

  48. 48.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

  49. 49.

    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

  50. 50.

    Williams, K. P. et al. Phylogeny of gammaproteobacteria. J. Bacteriol. 192, 2305–2314 (2010).

  51. 51.

    Kannan, S., Rogozin, I. B. & Koonin, E. V. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evol. Biol. 14, 237 (2014).

  52. 52.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

  53. 53.

    Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 42, 412–416 (1955).

  54. 54.

    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).

  55. 55.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

  56. 56.

    Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

  57. 57.

    Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).

  58. 58.

    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

  59. 59.

    Shi, X., Gu, H., Susko, E. & Field, C. The comparison of the confidence regions in phylogeny. Mol. Biol. Evol. 22, 2285–2296 (2005).

  60. 60.

    Rambaut, A. & Grassly, N. C. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238 (1997).

Download references

Acknowledgements

We thank the Tara Oceans consortium for generating metagenomic datasets and for making these publically available. We thank G. Herndl and C. Schleper for sharing metagenomic datasets before publication, and to M. Wu for sharing the genome of ‘Candidatus Magnetococcus yuandaducum’ before publication; K. Zaremba-Niedzwiedzka, C. Stairs, L. Eme, T. Williams, N. Lartillot, J. Alneberg, B. Quang Minh and H. C. Wang for useful advice, discussions and technical support; the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) at Uppsala University and the Swedish National Infrastructure for Computing (SNIC) at the PDC Center for High-Performance Computing for providing computational resources. This work is supported by grants of the European Research Council (ERC Starting grant 310039-PUZZLE_CELL), the Swedish Foundation for Strategic Research (SSF-FFL5) and the Swedish Research Council (VR grant 2015-04959) awarded to T.J.G.E.

Reviewer information

Nature thanks T. Gabaldón, M. Gray and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

    • Julian Vosseberg

    Present address: Department of Biology, Utrecht University, Utrecht, The Netherlands

Affiliations

  1. Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

    • Joran Martijn
    • , Julian Vosseberg
    •  & Thijs J. G. Ettema
  2. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

    • Lionel Guy
  3. Max Planck Institute for Marine Microbiology, Bremen, Germany

    • Pierre Offre
  4. Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, The Netherlands

    • Pierre Offre

Authors

  1. Search for Joran Martijn in:

  2. Search for Julian Vosseberg in:

  3. Search for Lionel Guy in:

  4. Search for Pierre Offre in:

  5. Search for Thijs J. G. Ettema in:

Contributions

T.J.G.E. conceived the study. J.M., J.V. and P.O. screened metagenomic sequence datasets. J.M. and J.V. performed metagenome assemblies and metagenomic binning analyses. J.M. performed comparative genomics and phylogenetics analyses. J.M., L.G. and T.J.G.E. analysed and interpreted results. J.M. and T.J.G.E. wrote, and all authors edited and approved, the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Thijs J. G. Ettema.

Supplementary information

  1. Supplementary Information

    This file contains Supplementary Discussions, Supplementary Figures 1-27, Supplementary Tables 1-8 and Supplementary References.

  2. Reporting Summary

  3. Supplementary Data

    This source data is a Newick file that contains the result of a test described in Supplementary Discussion 1.1 (Randomization of mitochondrial sequences to assess LBA-related tree artefacts). The Newick file can be opened using general tree-viewing software such as Figtree.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0059-5

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.