Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stabilized entanglement of massive mechanical oscillators

This article has been updated

Abstract

Quantum entanglement is a phenomenon whereby systems cannot be described independently of each other, even though they may be separated by an arbitrarily large distance1. Entanglement has a solid theoretical and experimental foundation and is the key resource behind many emerging quantum technologies, including quantum computation, cryptography and metrology. Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons2,3,4,5, ions6 and electron spins7, and more recently in microwave and electromechanical devices8,9,10. For macroscopic-scale objects8,9,10,11,12,13,14, however, it is very vulnerable to environmental disturbances, and the creation and verification of entanglement of the centre-of-mass motion of macroscopic-scale objects remains an outstanding goal. Here we report such an experimental demonstration, with the moving bodies being two massive micromechanical oscillators, each composed of about 1012 atoms, coupled to a microwave-frequency electromagnetic cavity that is used to create and stabilize the entanglement of their centre-of-mass motion15,16,17. We infer the existence of entanglement in the steady state by combining measurements of correlated mechanical fluctuations with an analysis of the microwaves emitted from the cavity. Our work qualitatively extends the range of entangled physical systems and has implications for quantum information processing, precision measurements and tests of the limits of quantum mechanics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Creating and detecting motional entanglement.
Fig. 2: Pump spectra under two-tone driving.
Fig. 3: Two-mode BAE readout.
Fig. 4: Fluctuations of collective quadratures.

Change history

  • 05 November 2018

    Coding errors in some of the equations in the online version of this article were fixed on Monday 5 November 2018.

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  CAS  Article  Google Scholar 

  2. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  3. Heidmann, A. et al. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987).

    ADS  CAS  Article  Google Scholar 

  4. Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).

    ADS  CAS  Article  Google Scholar 

  5. Bowen, W. P., Treps, N., Schnabel, R. & Lam, P. K. Experimental demonstration of continuous variable polarization entanglement. Phys. Rev. Lett. 89, 253601 (2002).

    ADS  Article  Google Scholar 

  6. Jost, J. D. et al. Entangled mechanical oscillators. Nature 459, 683–685 (2009).

    ADS  CAS  Article  Google Scholar 

  7. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  CAS  Article  Google Scholar 

  8. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  9. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    ADS  CAS  Article  Google Scholar 

  10. Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).

    ADS  CAS  Article  Google Scholar 

  11. Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  12. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS  CAS  Article  Google Scholar 

  13. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS  CAS  Article  Google Scholar 

  14. Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

    ADS  Article  Google Scholar 

  15. Woolley, M. J. & Clerk, A. A. Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A 89, 063805 (2014).

    ADS  Article  Google Scholar 

  16. Woolley, M. J. & Clerk, A. A. Two-mode back-action-evading measurements in cavity optomechanics. Phys. Rev. A 87, 063846 (2013).

    ADS  Article  Google Scholar 

  17. Ockeloen-Korppi, C. F. et al. Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016).

    ADS  CAS  Article  Google Scholar 

  18. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002).

    ADS  Article  Google Scholar 

  19. Pinard, M. et al. Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747–753 (2005).

    ADS  CAS  Article  Google Scholar 

  20. Tan, H., Li, G. & Meystre, P. Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Phys. Rev. A 87, 033829 (2013).

    ADS  Article  Google Scholar 

  21. Wang, Y.-D. & Clerk, A. A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013).

    ADS  Article  Google Scholar 

  22. Li, J., Haghighi, I. M., Malossi, N., Zippilli, S. & Vitali, D. Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys. 17, 103037 (2015).

    ADS  Article  Google Scholar 

  23. Mahboob, I., Okamoto, H., Onomitsu, K. & Yamaguchi, H. Two-mode thermal-noise squeezing in an electromechanical resonator. Phys. Rev. Lett. 113, 167203 (2014).

    ADS  CAS  Article  Google Scholar 

  24. Pontin, A. et al. Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system. Phys. Rev. Lett. 116, 103601 (2016).

    ADS  CAS  Article  Google Scholar 

  25. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  26. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    ADS  Article  Google Scholar 

  27. Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).

    ADS  CAS  Article  Google Scholar 

  29. Banaszek, K. & Wódkiewicz, K. Nonlocality of the Einstein–Podolsky–Rosen state in the Wigner representation. Phys. Rev. A 58, 4345–4347 (1998).

    ADS  CAS  Article  Google Scholar 

  30. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    ADS  Article  Google Scholar 

  31. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Paraoanu and I. Petersen for discussions. This work was supported by the Academy of Finland (contracts 250280, 308290 and 307757) and by the European Research Council (615755-CAVITYQPD). We acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 732894 (FETPRO HOT). For this work, we used the facilities of the Micronova Nanofabrication Center and the Low Temperature Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

M.A.S. initiated the project and was involved in all subsequent stages. C.F.O.-K. carried out the measurements. C.F.O.-K. and E.D. analysed the data. E.D. and J.-M.P. designed and fabricated the devices. M.J.W., A.A.C., F.M. and M.A. developed the theory. All authors participated in the writing of the paper.

Corresponding author

Correspondence to M. A. Sillanpää.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Figures 1-10, Supplementary Tables 1-3, and additional references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, JM. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018). https://doi.org/10.1038/s41586-018-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0038-x

Keywords

  • Mechanical Oscillations
  • Emerging Quantum Technologies
  • Electromagnetic Cavity
  • Probe Tone
  • Quadrant Collection

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing