Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accelerated increase in plant species richness on mountain summits is linked to warming

Abstract

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century1,2,3,4,5,6,7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch6. While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying8, 9, it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical and temporal distribution of studied summits and surveys.
Fig. 2: Average species richness change on mountain summits over time compared to mean annual temperature over time.
Fig. 3: Rate of species richness change over time.
Fig. 4: Rate of species richness change related to the rate of temperature change and precipitation change across all sampled mountains in Europe.

Similar content being viewed by others

References

  1. Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Chang 5, 333–336 (2015).

    Article  ADS  Google Scholar 

  2. Comiso, J. C., Parkinson, C. L., Gersten, R. & Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett 35, L01703 (2008).

    Article  ADS  Google Scholar 

  3. Kintisch, E. Sea ice retreat said to accelerate Greenland melting. Science 352, 1377 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Chang 5, 574–578 (2015).

    Article  ADS  Google Scholar 

  6. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthropocene Rev 2, 81–98 (2015).

    Article  Google Scholar 

  7. Alstad, A. O. et al. The pace of plant community change is accelerating in remnant prairies. Sci. Adv 2, e1500975 (2016).

    Article  Google Scholar 

  8. Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14, e2001104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gobiet, A. et al. 21st century climate change in the European Alps—a review. Sci. Total Environ 493, 1138–1151 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Mountain Research Initiative EDW Working Group Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

  12. Lenoir, J., Gégout, J.-C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pauli, H. et al. Recent plant diversity changes on Europe’s mountain summits. Science 336, 353–355 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Grytnes, J.-A. et al. Identifying driving factors behind observed species range shifts on European mountains. Glob. Ecol. Biogeogr 23, 876–884 (2014).

    Article  Google Scholar 

  15. Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang 2, 111–115 (2012).

    Article  ADS  Google Scholar 

  16. Wipf, S., Stöckli, V., Herz, K. & Rixen, C. The oldest monitoring site of the Alps revisited: Accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers 6, 447–455 (2013).

    Article  Google Scholar 

  17. Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Stöckli, V., Wipf, S., Nilsson, C. & Rixen, C. Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol. Divers 4, 415–425 (2012).

    Article  Google Scholar 

  19. Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).

    Article  Google Scholar 

  20. Odland, A., Høitomt, T. & Olsen, S. L. Increasing vascular plant richness on 13 high mountain summits in Southern Norway since the early 1970s. Arct. Antarct. Alp. Res 42, 458–470 (2010).

    Article  Google Scholar 

  21. Walther, G.-R., Beißner, S. & Burga, C. A. Trends in the upward shift of alpine plants. J. Veg. Sci 16, 541–548 (2005).

    Article  Google Scholar 

  22. Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci 23, 617–625 (2012).

    Article  Google Scholar 

  23. Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang 2, 619–622 (2012).

    Article  ADS  Google Scholar 

  24. Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol 22, 2608–2619 (2016).

    Article  ADS  Google Scholar 

  25. Vetaas, O. R. Realized and potential climate niches: a comparison of four Rhododendron tree species. J. Biogeogr 29, 545–554 (2002).

    Article  Google Scholar 

  26. Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun 8, 15399 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kulonen, A., Imboden, R. A., Rixen, C., Maier, S. B. & Wipf, S. Enough space in a warmer world? Microhabitat diversity and small-scale distribution of alpine plants on mountain summits. Divers. Distrib 24, 252–261 (2018).

    Article  Google Scholar 

  29. Winkler, M. et al. The rich sides of mountain summits — a pan-European view on aspect preferences of alpine plants. J. Biogeogr 43, 2261–2273 (2016).

    Article  Google Scholar 

  30. Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  Google Scholar 

  31. Zemanek, A. Bogumił Pawłowski (1898–1971) — z˙  ycie i dzieło. Fragm. Florist. Geobot. Polon 19, 205–244 (2012).

    Google Scholar 

  32. Ellenberg, H. J. Braun-Blanquet 3.8.1884–22.9.1980 R. Tüxen 21.5.1899–16.5.1980–Jahre Pflanzensozilogie. Ber. Deutsch. Bot. Ges 95, 387–391 (1982).

    Google Scholar 

  33. Unknown. Tschechoslowakei 1928. Mohelno. Prof. Rübel im Jihlavka-Tale. ETH-Bibliothek Zürich, Bildarchiv (1928).

  34. Braun, J. Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Ein Bild des Pflanzenlebens an seinen äußersten Grenzen. Neue Denkschr. Schweiz. Naturf. Ges 48, 1–347 (1913).

    Google Scholar 

  35. Burg, S., Rixen, C., Stöckli, V. & Wipf, S. Observation bias and its causes in botanical surveys on high-alpine summits. J. Veg. Sci 26, 191–200 (2015).

    Article  Google Scholar 

  36. Anandhi, A. et al. Examination of change factor methodologies or climate impact assessment. Wat. Resour. Res 47, W03501 (2011).

    Article  ADS  Google Scholar 

  37. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol 34, 623–642 (2014).

    Article  Google Scholar 

  38. Casty, C., Raible, C. C., Stocker, T. F., Wanner, H. & Luterbacher, J. European Gridded Monthly Temperature, Precipitation and 500hPa Reconstructions; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2008-023 (NOAA/NCDC Paleoclimatology Program, Boulder, 2008).

  39. Daly, C., Neilson, R. P. & Phillips, D. L. A statistical topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 33, 140–158 (1994).

    Article  ADS  Google Scholar 

  40. Huijnen, V. et al. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev 3, 445–473 (2010).

    Article  ADS  Google Scholar 

  41. R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2016).

  42. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw 67, 1–48 (2015).

    Article  Google Scholar 

  43. Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, New York, 2002).

  45. Burns, D. A. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA—a critical review. Environ. Pollut. 127, 257–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Körner, C. Mountain ecosystems in a changing environment. Ecomont 6, 71–77 (2014).

    Article  Google Scholar 

  47. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Kleyer, M. et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol 96, 1266–1274 (2008).

    Article  Google Scholar 

  49. Landolt, E. et al. Flora Indicativa (Haupt, Bern, 2010).

Download references

Acknowledgements

We thank D. Barolin, J. Birks, A. Björken, C. Björken, S. Dahle, U. Deppe, G. Dussassois, J. V. Ferrández, T. Gassner, S. Giovanettina, F. Giuntoli, Ø. Lunde Heggebø, K. Herz, A. Jost, K. Kallnik, W. Kapfer, T. Kronstad, H. Laukeland, S. Nießner, M. Olson, P. Roux-Fouillet, K. Schofield, M. Suen, D. Watson, J. Wells Abbott, J. Zaremba and numerous additional helpers for fieldwork support; P. Barancˇ ok, J. L. Benito Alonso, M. Camenisch, G. Coldea, J. Dick, M. Gottfried, G. Grabherr, J. I. Holten, J. Kollár, P. Larsson, M. Mallaun, O. Michelsen, U. Molau, M. Pus¸  cas¸ , T. Scheurer, P. Unterluggauer, L. Villar, G.-R. Walther, and numerous helpers for data originating from the GLORIA network13; C. Jenks for linguistic support; and the following institutions for funding. M.J.S.: Danish Carlsbergfondet (CF14-0148), EU Marie Sklodowska-Curie action (grant 707491). C.R., V.S., S.W.: Velux Foundation, Switzerland. C.R., V.S., S.W., J.-P.T., P.V.: Swiss Federal Office for the Environment (FOEN). A.K.: Swiss National Science Foundation (31003A_144011 to C.R.), Basler Stiftung für biologische Forschung, Switzerland. J.K.: Fram Centre, Norway (362202). J.K., J.-A.G., P.C., B.J.: Polish-Norwegian Research Programme of the Norwegian National Centre for Research and Development (Pol-Nor/196829/87/2013). O.F.-A., M.J.H., S.P.: Instituto de Estudios Altoaragoneses (Huesca, Spain). S.D.: Austrian Climate Research Programme (ACRP, project 368575: DISEQU-ALP). F.J.: Botanical Society of Britain & Ireland; Alpine Garden Society, UK. M.J.H.: Felix de Azara research grant (IBERSUMIT project, DPH, Spain). R.K.: Slovak Research and Development Agency (APVV 0866-12). S.N., D.G.: VILLUM Foundation’s Young Investigator Programme (VKR023456; Denmark). S.P.: Ramón y Cajal fellowship (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain). J.-C.S.: European Research Council (ERC-2012-StG-310886-HISTFUNC); VILLUM Investigator project (VILLUM FONDEN grant 16549; Denmark). S.W.: WSL internal grant (201307N0678, Switzerland); EU FP7 Interact Transnational Access (AlpFlor Europe). S.W., S.B., F.J., M.J.H.: Swiss Botanical Society Alpine Flower Fund. Time and effort was supported by sDiv, the Synthesis Centre of iDiv, Germany (DFG FZT 118, sUMMITDiv working group).

Reviewer information

Nature thanks J. Alexander, A. Hester and K. Verheyen for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.W., M.J.S., J.-A.G., G.J., A.K., C.R., A.D.B., S.H., J.K., K.K., I.K., J.L., S.N., H.P., P.V. and M.W. elaborated the concept; A.K., S.W., M.B.-D., H.P., C.R., P.V. and M.W. organized and harmonized data; M.J.S. implemented the data analyses with support from other authors, particularly S.W., J.-A.G., J.L., J.-C.S., S.D. and D.G.; E.B., S.B., F.T.B., P.C., M.A.D., A.D., B.E., V.A.F., O.F.-A., K.F.F., D.G.-G., E.T.G., J.-A.G., S.V.H., H.H., M.J.H., B.J., F.J., R.K., K.K., J.K., A.L., M.M., U.M.d.C., A.O., S.L.O., S.P., H.P., M.P., V.P., B.S., K.S., V.S., C.R., G.T., J.-P.T., P.V., S.J.W., S.W and N.E.Z. contributed data. M.J.S. led the manuscript writing, with contributions from all authors.

Corresponding authors

Correspondence to Manuel J. Steinbauer or Sonja Wipf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Visualizing richness change.

This conceptual figure shows the approach implemented in the main text to visualize richness change over time based on the raw data (Figs. 2, 3). a, The mean richness change per year (ΔSR/∆t = (SRt2 − SRt1)/(t2t1)) across all summits was calculated (Fig. 3). b, The mean richness change per year accumulates with time to yield absolute changes in species richness (black line in Fig. 2). c, d, Variability in the absolute change in species richness was visualized by randomly sampling ΔSR from all mountains available each year, but adding the s.d. within a region and year. The displayed range in Fig. 2 illustrates the 5th and 95th percentiles of the resulting richness change values from 1,000 runs (orange shading in Fig. 2). This approach reveals changes in variability among mountains over time while also showing overall variability for time steps where only a few summits were sampled (particularly in early time periods).

Extended Data Fig. 2 Relationship between rates of changes in species richness across Europe and rates of increase in temperature (left column), rates of change in precipitation (middle column) and accumulated nitrogen deposition (right column).

Trend lines are interpolated from a simple linear model and are in many cases not significant. Species richness was quantified as the difference between vegetation surveys from the same summit at different times (Extended Data Fig. 1). No nitrogen data were available for Svalbard. The number of observations (comparison of survey and resurveys) are: Svalbard, 7; Northern Scandes, 54; Southern Scandes, 27; Scotland, 7; NW Carpathians, 16; Eastern Alps, 122; Western Alps, 48; SE Carpathians, 9; Pyrenees, 12 (see Fig. 1 for more details).

Extended Data Fig. 3 Historical and recent species richness versus sampling area.

Historical species richness was exceeded within a small sampling area during recent resurveys. Species richness of the historical survey (yellow) contrasted with a species richness accumulation curve of the recent surveys on summits where the highest occurrence of each recent species was estimated to the nearest 1-m elevation. The number of species found historically within the uppermost 10 m of a summit was exceeded within the uppermost 5 m in the most recent resurveys. This analysis includes all 157 European summits for which such data are available, regardless of whether the historical species number was reached in recent times. The blue circle visualizes average species richness of the recent surveys within the uppermost 10 m.

Extended Data Table 1 Increase in species richness with time
Extended Data Table 2 Acceleration of the increase in species richness over time
Extended Data Table 3 Explanatory variables for velocity in species richness changes
Extended Data Table 4 Explanatory variables for species richness changes
Extended Data Table 5 Model evaluation for different explanatory variables and time periods
Extended Data Table 6 Model evaluation for different time lags
Extended Data Table 7 Trait differences between colonizing and old-established species

Supplementary information

Supplementary Information

This file contains Data Table 1: Mountain summits used in the analyses with resurvey dates and references. Details on the references are listed in the table.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbauer, M.J., Grytnes, JA., Jurasinski, G. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018). https://doi.org/10.1038/s41586-018-0005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0005-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing