Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Non-coding transcriptome profiles in clear-cell renal cell carcinoma

Abstract

Clear-cell renal cell carcinoma (ccRCC) is a common urological malignancy with an increasing incidence. The development of molecular biomarkers that can predict the response to treatment and guide personalized therapy selection would substantially improve patient outcomes. Dysregulation of non-coding RNA (ncRNA) has been shown to have a role in the pathogenesis of ccRCC. Thus, an increasing number of studies are being carried out with a focus on the identification of ncRNA biomarkers in ccRCC tissue samples and the connection of these markers with patients’ prognosis, pathological stage and grade (including metastatic potential), and therapy outcome. RNA sequencing analysis led to the identification of several ncRNA biomarkers that are dysregulated in ccRCC and might have a role in ccRCC development. These ncRNAs have the potential to be prognostic and predictive biomarkers for ccRCC, with prospective applications in personalized treatment selection. Research on ncRNA biomarkers in ccRCC is advancing, but clinical implementation remains preliminary owing to challenges in validation, standardization and reproducibility. Comprehensive studies and integration of ncRNAs into clinical trials are essential to accelerate the clinical use of these biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed lncRNA targets for ccRCC therapy.
Fig. 2: Proposed miRNA targets for ccRCC therapy.
Fig. 3: ncRNA-mediated regulation of the AKT signalling pathway in ccRCC.

Similar content being viewed by others

References

  1. Lipworth, L., Tarone, R. E. & McLaughlin, J. K. The epidemiology of renal cell carcinoma. J. Urol. 176, 2353–2358 (2006).

    Article  PubMed  Google Scholar 

  2. Moch, H. et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur. Urol. 82, 458–468 (2022).

    Article  PubMed  Google Scholar 

  3. Hora, M. et al. European Association of Urology guidelines panel on renal cell carcinoma update on the new World Health Organization classification of kidney tumours 2022: the urologist’s point of view. Eur. Urol. 83, 97–100 (2023).

    Article  PubMed  Google Scholar 

  4. Ma, Y., Huang, Z., Jian, Z. & Wei, X. The association between hepatitis C virus infection and renal cell cancer, prostate cancer, and bladder cancer: a systematic review and meta-analysis. Sci. Rep. 11, 10833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macleod, L. C. et al. Risk factors for renal cell carcinoma in the VITAL study. J. Urol. 190, 1657–1661 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ljungberg, B. et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621 (2011).

    Article  PubMed  Google Scholar 

  7. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Stolle, C. et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Rathmell, W. K. & Chen, S. VHL inactivation in renal cell carcinoma: implications for diagnosis, prognosis, and treatment. Expert. Rev. Anticancer. Ther. 8, 63–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seizinger, B. R. et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332, 268–269 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Zbar, B., Brauch, H., Talmadge, C. & Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721–724 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs, G. et al. Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc. Natl Acad. Sci. USA 85, 1571–1575 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Hout, A. H. et al. Direct molecular analysis of a deletion of 3p in tumors from patients with sporadic renal cell carcinoma. Cancer Genet. Cytogenet. 32, 281–285 (1988).

    Article  PubMed  Google Scholar 

  14. Maher, E. R. et al. Clinical features and natural history of von Hippel-Lindau disease. Q. J. Med. 77, 1151–1163 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Sheng, I. Y. & Ornstein, M. C. Ipilimumab and nivolumab as first-line treatment of patients with renal cell carcinoma: the evidence to date. Cancer Manag. Res. 12, 4871–4881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022).

    Article  Google Scholar 

  17. NCCN. NCCN guidelines version 2.2024 kidney cancer. NCCN https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (2024).

  18. Katz, M. D. et al. The role of lymphovascular space invasion in renal cell carcinoma as a prognostic marker of survival after curative resection. Urol. Oncol. 29, 738–744 (2011).

    Article  PubMed  Google Scholar 

  19. Kim, S. H. et al. Prognostic significance of pathologic nodal positivity in non-metastatic patients with renal cell carcinoma who underwent radical or partial nephrectomy. Sci. Rep. 11, 3079 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hahn, A. W. et al. The significance of sarcomatoid and rhabdoid dedifferentiation in renal cell carcinoma. Cancer Treat. Res. Commun. 33, 100640 (2022).

    Article  PubMed  Google Scholar 

  21. Delahunt, B. et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am. J. Surg. Pathol. 37, 1490–1504 (2013).

    Article  PubMed  Google Scholar 

  22. Joseph, R. W. et al. PD-1 and PD-L1 expression in renal cell carcinoma with sarcomatoid differentiation. Cancer Immunol. Res. 3, 1303–1307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H. et al. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol. Ther. 234, 108123 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Li, Z.-X. et al. MALAT1: a potential biomarker in cancer. Cancer Manag. Res. 10, 6757–6768 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hajjari, M. & Salavaty, A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol. Med. 12, 1–9 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xin, X., Li, Q., Fang, J., Zhao, T. & LncRNA HOTAIR: a potential prognostic factor and therapeutic target in human cancers. Front. Oncol. 11, 679244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tiansheng, G. et al. lncRNA metastasis-associated lung adenocarcinoma transcript 1 promotes proliferation and invasion of non-small cell lung cancer cells via down-regulating miR-202 expression. Cell J. 22, 375–385 (2020).

    PubMed  Google Scholar 

  28. Chen, W. et al. MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget 8, 94317–94329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, P. et al. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther. 16, 739–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Elsayed, E. T., Salem, P. E., Darwish, A. M. & Fayed, H. M. Plasma long non-coding RNA HOTAIR as a potential biomarker for gastric cancer. Int. J. Biol. Markers https://doi.org/10.1177/1724600818760244 (2018).

  31. Entezari, M. et al. LncRNA-miRNA axis in tumor progression and therapy response: an emphasis on molecular interactions and therapeutic interventions. Biomed. Pharmacother. 154, 113609 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. European Association of Urology. EAU Guidelines on RCC. Uroweb https://uroweb.org/guidelines/renal-cell-carcinoma (2024).

  34. FDA. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (2022).

  35. Feng, Y. et al. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7, 6124–6136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gulati, S. & Vogelzang, N. J. Biomarkers in renal cell carcinoma: are we there yet? Asian J. Urol. 8, 362–375 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parker, W. P. et al. Application of the stage, size, grade, and necrosis (SSIGN) score for clear cell renal cell carcinoma in contemporary patients. Eur. Urol. 71, 665–673 (2017).

    Article  PubMed  Google Scholar 

  38. Patard, J.-J. et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J. Clin. Oncol. 22, 3316–3322 (2004).

    Article  PubMed  Google Scholar 

  39. Fiala, O. et al. Outcomes according to MSKCC risk score with focus on the intermediate-risk group in metastatic renal cell carcinoma patients treated with first-line sunitinib: a retrospective analysis of 2390 patients. Cancers 12, 808 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Vazquez-Anderson, J. & Contreras, L. M. Regulatory RNAs. RNA Biol. 10, 1778–1797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Q. et al. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int. 23, 16 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Popławski, P., Bogusławska, J., Hanusek, K. & Piekiełko-Witkowska, A. Nucleolar proteins and non-coding RNAs: roles in renal cancer. Int. J. Mol. Sci. 22, 13126 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen, J. et al. LncRNAs act as prognostic and diagnostic biomarkers in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 7, 74325–74336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, M. et al. Long non-coding RNAs in renal cell carcinoma: a systematic review and clinical implications. Oncotarget 8, 48424–48435 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rysz, J., Konecki, T., Franczyk, B., Lawinski, J. & Gluba-Brzozka, A. The role of long noncoding RNA (lncRNAs) biomarkers in renal cell carcinoma. Int. J. Mol. Sci. 24, 643 (2023).

    Article  CAS  Google Scholar 

  47. Aliperti, V., Skonieczna, J. & Cerase, A. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders. Noncoding RNA 7, 36 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, L. et al. A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome p450s in hepaRG cells. Mol. Pharmacol. 94, 749–759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, N. et al. The role of long non-coding RNA FGD5-AS1 in cancer. Bioengineered 13, 11026–11041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, W. et al. Identification and validation of the clinical roles of the VHL-related LncRNAs in clear cell renal cell carcinoma. J. Cancer 12, 2702–2714 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang, Y., Dong, M.-H., Hu, H.-M., Min, Q.-H. & Xiao, L. LncRNA FGD5-AS1/miR-5590-3p axis facilitates the proliferation and metastasis of renal cell carcinoma through ERK/AKT signalling. Eur. Rev. Med. Pharmacol. Sci. 24, 8756–8766 (2020).

    CAS  PubMed  Google Scholar 

  52. Xiang, M. et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454, 210–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Duan, Z.-Y. et al. U6 can be used as a housekeeping gene for urinary sediment miRNA studies of IgA nephropathy. Sci. Rep. 8, 10875 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lou, G. et al. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int. J. Mol. Med. 36, 1400–1408 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, C. et al. LINC00460 facilitates cell proliferation and inhibits ferroptosis in breast cancer through the miR-320a/MAL2 axis. Technol. Cancer Res. Treat. 22, 15330338231164360 (2023).

    Article  Google Scholar 

  56. Wang, X. et al. Upregulated expression of long non-coding RNA, LINC00460, suppresses proliferation of colorectal cancer. J. Cancer 9, 2834–2843 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, X., Gan, X., Liu, C. & Zhang, W. LINC00460 accelerates progression of ovarian cancer by activating transcriptional factor ZNF703. Oncol. Lett. 19, 4189–4194 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dong, Y. & Quan, H.-Y. Downregulated LINC00460 inhibits cell proliferation and promotes cell apoptosis in prostate cancer. Eur. Rev. Med. Pharmacol. Sci. 23, 6070–6078 (2019).

    CAS  PubMed  Google Scholar 

  59. Su, M. et al. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int. 22, 240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, X. et al. LncRNA LINC00460: function and mechanism in human cancer. Thorac. Cancer 13, 3–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, F.-J. et al. LncRNA LINC00460 facilitates the proliferation and metastasis of renal cell carcinoma via PI3K/AKT signaling pathway. J. Cancer 13, 2844–2854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat. Rev. Drug. Discov. 8, 627–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Sirico, M. et al. Current state and future challenges for PI3K inhibitors in cancer therapy. Cancers 15, 703 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Y., Yan, K., Wang, L. & Bi, J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer 21, 727 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, S., Zhang, F., Niu, Y. & Yu, S. Aberration of lncRNA LINC00460 is a promising prognosis factor and associated with progression of clear cell renal cell carcinoma. Cancer Manag. Res. 13, 6489–6497 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang, D., Zeng, S. & Hu, X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int. 20, 319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao, W., Zhang, H.-F., Ding, X.-L., Zhu, S.-Z. & Zhou, G.-X. The progression of pancreatic cancer cells is promoted by a long non-coding RNA LUCAT1 by activating AKT phosphorylation. Eur. Rev. Med. Pharmacol. Sci. 25, 738–748 (2021).

    CAS  PubMed  Google Scholar 

  70. Zhang, L., Liu, S.-K., Song, L. & Yao, H.-R. SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation, migration and invasion of cervical cancer by sponging miR-181a. Artif. Cell. Nanomed. Biotechnol. 47, 556–564 (2019).

    CAS  Google Scholar 

  71. Jiao, Y., Li, Y., Ji, B., Cai, H. & Liu, Y. Clinical value of lncRNA LUCAT1 expression in liver cancer and its potential pathways. J. Gastrointest. Liver Dis. 28, 439 (2019).

    Article  Google Scholar 

  72. Xiao, H. et al. Long non-coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget 8, 113622–113634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zheng, Z. et al. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway. Cell. Physiol. Biochem. 48, 891–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. et al. Long non-coding RNA LUCAT1 promotes the progression of clear cell renal cell carcinoma via the microRNA-375/YAP1 axis. Exp. Ther. Med. 22, 754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glatzel-Plucińska, N., Piotrowska, A., Dzięgiel, P. & Podhorska-Okołów, M. The role of SATB1 in tumour progression and metastasis. Int. J. Mol. Sci. 20, 4156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Szulzewsky, F., Holland, E. C. & Vasioukhin, V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev. Biol. 475, 205–221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, L.-N., Zhu, X.-Q., Song, X.-S. & Xu, Y. Long noncoding RNA lung cancer associated transcript 1 promotes proliferation and invasion of clear cell renal cell carcinoma cells by negatively regulating miR-495-3p. J. Cell. Biochem. 119, 7599–7609 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, B. et al. LncRNA SNHG3, a potential oncogene in human cancers. Cancer Cell Int. 20, 536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, W. et al. Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging 12, 4424–4444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, C. et al. LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res. 384, 111595 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Xu, Z. et al. Long non-coding RNA SNHG3 promotes the progression of clear cell renal cell carcinoma via regulating BIRC5 expression. Transl. Cancer Res. 10, 4502–4513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, C. et al. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers. Bioengineered 11, 1112–1123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tamang, S. et al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front. Oncol. 9, 901 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, Z.-R. et al. Prognostic value of long noncoding RNA SNHG12 in various carcinomas: a meta-analysis. Biomed. Res. Int. 2020, 8847401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu, Z., Chen, D., Wang, K., Cao, C. & Xu, X. Long non-coding RNA SNHG12 functions as a competing endogenous RNA to Regulate MDM4 expression by sponging miR-129-5p in clear cell renal cell carcinoma. Front. Oncol. 9, 1260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yu, H. et al. SNHG12 promotes carcinogenesis of human renal cell cancer via functioning as a competing endogenous RNA and sponging miR-30a-3p. J. Cell. Mol. Med. 25, 4696–4708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, C. et al. lncRNA small nucleolar RNA host gene 12 promotes renal cell carcinoma progression by modulating the miR-200c-5p/collagen type XI α1 chain pathway. Mol. Med. Rep. 22, 3677–3686 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, Q. et al. Overexpression of SNHG12 regulates the viability and invasion of renal cell carcinoma cells through modulation of HIF1α. Cancer Cell Int. 19, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu, Y. et al. Long noncoding RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis. 11, 1–17 (2020).

    CAS  Google Scholar 

  90. Zhao, W. et al. SNHG20: a vital lncRNA in multiple human cancers. J. Cell. Physiol. 234, 14519–14525 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, S., Zhou, H., Wang, G. & Lian, X. Comprehensive transcriptomic analysis of critical RNA regulation associated with metabolism and prognosis in clear cell renal carcinoma. Front. Cell Dev. Biol. 9, 709490 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Karp, X. & Ambros, V. Encountering microRNAs in cell fate signaling. Science 310, 1288–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Cheng, A. M., Byrom, M. W., Shelton, J. & Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, C.-Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Linxweiler, J. & Junker, K. Extracellular vesicles in urological malignancies: an update. Nat. Rev. Urol. 17, 11–27 (2020).

    Article  PubMed  Google Scholar 

  99. Shao, Y. et al. MicroRNA-1251-5p promotes carcinogenesis and autophagy via targeting the tumor suppressor TBCC in ovarian cancer cells. Mol. Ther. 27, 1653–1664 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ping, M., Wang, S., Chen, Y. & Jia, J. The short non-coding RNA 1251-5p regulates sternness transformation and inhibits aggression of lung malignant tumor cells. J. Biomater. Tissue Eng. 11, 982–989 (2021).

    Article  Google Scholar 

  101. Yue, L. et al. miR-1251-5p overexpression inhibits proliferation, migration, and immune escape in clear cell renal cell carcinoma by targeting NPTX2. J. Oncol. 2022, 3058588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xiao, M.-F. et al. NPTX2 and cognitive dysfunction in Alzheimer’s Disease. eLife 6, e23798 (2017).

    Article  Google Scholar 

  103. Li, N., Cui, T., Guo, W., Wang, D. & Mao, L. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. OncoTargets Ther. 12, 3181–3196 (2019).

    Article  Google Scholar 

  104. Chen, H. et al. Mir-155-5p promote tumor immunity by regulating Pd-L1 expression in lung cancer cells. Acta Med. Mediterr. 36, 2385–2390 (2020).

    Google Scholar 

  105. Shen, Y., Zhang, M., Da, L., Huang, W. & Zhang, C. Circular RNA circ_SETD2 represses breast cancer progression via modulating the miR-155-5p/SCUBE2 axis. Open. Med. 15, 940–953 (2020).

    Article  CAS  Google Scholar 

  106. Wu, J. et al. A novel miRNA-based model can predict the prognosis of clear cell renal cell carcinoma. Technol. Cancer Res. Treat. 20, 15330338211027924 (2021).

    Article  Google Scholar 

  107. Landolt, L. et al. Clear cell renal cell carcinoma is linked to epithelial-to-mesenchymal transition and to fibrosis. Physiol. Rep. 5, e13305 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhou, X. et al. Comprehensive analysis of PTEN-related ceRNA network revealing the key pathways WDFY3-AS2–miR-21-5p/miR-221-3p/miR-222-3p–TIMP3 as potential biomarker in tumorigenesis and prognosis of kidney renal clear cell carcinoma. Mol. Carcinog. 61, 508–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Zhou, Q., Zhang, Z.-Y., Ang, X.-J., Hu, C. & Ouyang, J. Construction of five microRNAs prognostic markers and a prognostic model for clear cell renal cell carcinoma. Transl. Cancer Res. 10, 2337–2353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Osanto, S. et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS ONE 7, e38298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu, H. et al. miR-155-5p promotes cell proliferation and migration of clear cell renal cell carcinoma by targeting PEG3. Urol. Int. 105, 906–915 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Zhao, Y., Tao, Z. & Chen, X. Identification of the miRNA-mRNA regulatory pathways and a miR-21-5p based nomogram model in clear cell renal cell carcinoma. PeerJ 8, e10292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lei, Q.-Q., Huang, Y., Li, B., Han, L. & Lv, C. MiR-155-5p promotes metastasis and epithelial-mesenchymal transition of renal cell carcinoma by targeting apoptosis-inducing factor. Int. J. Biol. Markers 36, 20–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Relaix, F. et al. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 97, 2105–2110 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kalantzakos, T. et al. MicroRNA-155-5p targets JADE-1, promoting proliferation, migration, and invasion in clear cell renal cell carcinoma cells. Int. J. Mol. Sci. 24, 7825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Strauss, P. et al. Expanding the utilization of formalin-fixed, paraffin-embedded archives: feasibility of mir-seq for disease exploration and biomarker development from biopsies with clear cell renal cell carcinoma. Int. J. Mol. Sci. 19, 803 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sequeira, J. P. et al. LiKidMiRs: a ddPCR-based panel of 4 circulating miRNAs for detection of renal cell carcinoma. Cancers 14, 858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, S. et al. miR-21-5p suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting FASLG. DNA Cell Biol. 38, 865–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Jin, X.-H., Lu, S. & Wang, A.-F. Expression and clinical significance of miR-4516 and miR-21-5p in serum of patients with colorectal cancer. BMC Cancer 20, 241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou, X., Liu, H., Pang, Y., Wang, M. & Liu, S. UTMD-mediated delivery of miR-21-5p inhibitor suppresses the development of lung cancer. Tissue Cell 74, 101719 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Fang, S. et al. Curcumol inhibits the growth of xenograft-tumors in mice and the biological activities of pancreatic cancer cells by regulating the miR-21-5p/SMAD7 axis. Cell Cycle 21, 1249–1266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kowalczyk, A. E. et al. SATB1 is down-regulated in clear cell renal cell carcinoma and correlates with miR-21-5p overexpression and poor prognosis. Cancer Genomics Proteom. 13, 209–217 (2016).

    CAS  Google Scholar 

  123. Meng, B. et al. miR-21-5p serves as a promoter in renal cell carcinoma progression through ARHGAP24 downregulation. Environ. Sci. Pollut. Res. 29, 39985–39993 (2022).

    Article  CAS  Google Scholar 

  124. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Z. et al. The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt signaling in renal cell carcinoma. Int. J. Mol. Sci. 23, 3005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, S. et al. Macrophages in immunoregulation and therapeutics. Signal. Transduct. Target. Ther. 8, 207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Xie, M. et al. Cuproptosis-related MiR-21-5p/FDX1 axis in clear cell renal cell carcinoma and its potential impact on tumor microenvironment. Cells 12, 173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gowrishankar, B. et al. MicroRNA expression signatures of stage, grade, and progression in clear cell RCC. Cancer Biol. Ther. 15, 329–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, X. et al. Identification of a four-microRNA panel in serum for screening renal cell carcinoma. Pathol. Res. Pract. 227, 153625 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Han, P. et al. Epigenetic inactivation of ACAT1 promotes epithelial-mesenchymal transition of clear cell renal cell carcinoma. Genes. Genomics 44, 487–497 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Yao, W. et al. MiR-30a-5p enhances cisplatin sensitivity by downregulating RIF1 in ovarian cancer. Ann. Clin. Lab. Sci. 53, 418–426 (2023).

    CAS  PubMed  Google Scholar 

  132. Zhao, H. et al. MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF. Artif. Cell Nanomed. Biotechnol. 47, 278–289 (2019).

    Article  CAS  Google Scholar 

  133. Wei, W. et al. MiR-30a-5p suppresses tumor metastasis of human colorectal cancer by targeting ITGB3. Cell Physiol. Biochem. 39, 1165–1176 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, L. et al. Down-regulation of miR-30a-5p is associated with poor prognosis and promotes chemoresistance of gemcitabine in pancreatic ductal adenocarcinoma. J. Cancer 10, 5031–5040 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Outeiro-Pinho, G. et al. MicroRNA-30a-5pme: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 39, 98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, C. et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol. Biochem. 43, 2405–2419 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, Z. et al. The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis. 8, e2859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Falaleeva, M. & Stamm, S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 35, 46–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Dieci, G., Preti, M. & Montanini, B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94, 83–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Su, H. et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348–1358 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Gao, L. et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int. J. Cancer 136, E623–E629 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Crea, F. et al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol. Oncol. 10, 693–703 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, L., Xin, M. & Wang, P. Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: a comprehensive analysis based on RNA sequencing dataset. Math. Biosci. Eng. 18, 7837–7860 (2021).

    Article  PubMed  Google Scholar 

  144. Li, J.-N., Wang, M.-Y., Chen, Y.-T., Kuo, Y.-L. & Chen, P.-S. Expression of SnoRNA U50A is associated with better prognosis and prolonged mitosis in breast cancer. Cancers 13, 6304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. van der Werf, J., Chin, C. V. & Fleming, N. I. SnoRNA in cancer progression, metastasis and immunotherapy response. Biology 10, 809 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Huang, Z., Du, Y., Wen, J., Lu, B. & Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 8, 259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dong, W. et al. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin. Transl. Med. 11, e411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tian, B. et al. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1 alpha. Oncogene 40, 3734–3747 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, K. et al. Plasma SNORD42B and SNORD111 as potential biomarkers for early diagnosis of non-small cell lung cancer. J. Clin. Lab. Anal. 36, e24740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huang, R., Liao, X. & Li, Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. Math. Biosci. Eng. 19, 2424–2452 (2022).

    Article  PubMed  Google Scholar 

  151. Zhao, Y. et al. Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J. Cell Mol. Med. 24, 2215–2228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Patterson, D. G. et al. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion. NPJ Breast Cancer 3, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yoon, J. K., Kim, D. H. & Koo, J. S. Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. J. Transl. Med. 12, 149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Escuin, D. et al. Small non-coding RNAs and their role in locoregional metastasis and outcomes in early-stage breast cancer patients. Int. J. Mol. Sci. 25, 3982 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Weng, L. et al. MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J. Pathol. 222, 41–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. MĂĽller, S. & Nowak, K. Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. Biomed. Res. Int. 2014, 948408 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tóth, K. F., Pezic, D., Stuwe, E. & Webster, A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51–77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Guo, B., Li, D., Du, L. & Zhu, X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 39, 567–575 (2020).

    Article  PubMed  Google Scholar 

  159. Li, Y. et al. Piwi-Interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol. Med. 21, 381–388 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ding, L. et al. PIWI-interacting RNA 57125 restrains clear cell renal cell carcinoma metastasis by downregulating CCL3 expression. Cell Death Discov. 7, 333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jia, S.-N., Han, Y.-B., Yang, R. & Yang, Z.-C. Chemokines in colon cancer progression. Semin. Cancer Biol. 86, 400–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Baba, T. & Mukaida, N. Role of macrophage inflammatory protein (MIP)-1α/CCL3 in leukemogenesis. Mol. Cell Oncol. 1, e29899 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Korbecki, J. et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 21, 8412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhao, C. et al. Mitochondrial PIWI-interacting RNAs are novel biomarkers for clear cell renal cell carcinoma. World J. Urol. 37, 1639–1647 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Busch, J. et al. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J. Exp. Clin. Cancer Res. 34, 61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Iliev, R. et al. Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. OncoTargets Ther. 9, 217–222 (2016).

    CAS  Google Scholar 

  167. Orellana, E. A., Siegal, E. & Gregory, R. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nientiedt, M. et al. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. Sci. Rep. 6, 37158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao, C. et al. 5’-tRNA halves are dysregulated in clear cell renal cell carcinoma. J. Urol. 199, 378–383 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. National Cancer Institute. Clear cell renal cell carcinoma. NIH https://www.cancer.gov/pediatric-adult-rare-tumor/rare-tumors/rare-kidney-tumors/clear-cell-renal-cell-carcinoma (2020).

  171. Dabestani, S. et al. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J. Urol. 34, 1081–1086 (2016).

    Article  PubMed  Google Scholar 

  172. Strauss, P. et al. A multiomics disease progression signature of low-risk ccRCC. Sci. Rep. 12, 13503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003).

    Article  PubMed  Google Scholar 

  174. Lakshminarayanan, H., Rutishauser, D., Schraml, P., Moch, H. & Bolck, H. A. Liquid biopsies in renal cell carcinoma-recent advances and promising new technologies for the early detection of metastatic disease. Front. Oncol. 10, 582843 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li, R. et al. A four-microRNA panel in serum may serve as potential biomarker for renal cell carcinoma diagnosis. Front. Oncol. 12, 1076303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lukamowicz-Rajska, M. et al. MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients. Oncotarget 7, 78433–78447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pastore, A. L. et al. Serum and urine biomarkers for human renal cell carcinoma. Dis. Markers 2015, 251403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nolazco, J. I., Soerensen, S. J. C. & Chung, B. I. Biomarkers for the detection and surveillance of renal cancer. Urol. Clin. North. Am. 50, 191–204 (2023).

    Article  PubMed  Google Scholar 

  179. Zieren, R. C. et al. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat. Rev. Urol. 21, 133–157 (2024).

    Article  PubMed  Google Scholar 

  180. Li, C. S., Lu, Z. Z., Fang, D. L., Zhou, W. J. & Wei, J. Immune-related long non-coding RNAs can serve as prognostic biomarkers for clear cell renal cell carcinoma. Transl. Androl. Urol. 10, 2478–2492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xin, S. et al. A cuproptosis-related lncRNA signature identified prognosis and tumour immune microenvironment in kidney renal clear cell carcinoma. Front. Mol. Biosci. 9, 974722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gao, L., Zhao, A. & Wang, X. Upregulation of lncRNA AGAP2-AS1 is an independent predictor of poor survival in patients with clear cell renal carcinoma. Oncol. Lett. 19, 3993–4001 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, C. et al. The downregulated long noncoding RNA DHRS4-AS1 is protumoral and associated with the prognosis of clear cell renal cell carcinoma. OncoTargets Ther. 11, 5631–5646 (2018).

    Article  CAS  Google Scholar 

  184. Li, J., Li, Y., He, X. & Zhao, Q. Gain of GAS5 reveals worse prognosis in kidney renal clear cell carcinoma and liver hepatocellular carcinoma from the Cancer Genome Atlas dataset. Transl. Cancer Res. 10, 223–232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Deng, Y. et al. Identification and experimental validation of a tumor-infiltrating lymphocytes-related long noncoding RNA signature for prognosis of clear cell renal cell carcinoma. Front. Immunol. 13, 1046790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu, H. et al. A panel of Four-lncRNA signature as a potential biomarker for predicting survival in clear cell renal cell carcinoma. J. Cancer 11, 4274–4283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, G. et al. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/β-catenin signaling pathway. Mol. Cancer 18, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Cui, Y., Wu, J., Zhou, Z., Ma, J. & Dong, L. Two novel lncRNAs AF111167.2 and AL162377.1 targeting miR-21-5p mediated down expression of SYDE2 correlates with poor prognosis and tumor immune infiltration of ccRCC. Heliyon 8, e11079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhao, P. et al. Long noncoding RNA SNHG6 promotes carcinogenesis by enhancing YBX1-mediated translation of HIF1α in clear cell renal cell carcinoma. FASEB J. 35, e21160 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Zhan, Y. et al. A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma. Cancer Med. 10, 6128–6139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Luo, Y. et al. Identification of a three-miRNA signature as a novel potential prognostic biomarker in patients with clear cell renal cell carcinoma. J. Cell. Biochem. 120, 13751–13764 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Li, X. et al. Integrated analysis of microRNA (miRNA) and mRNA profiles reveals reduced correlation between microrna and target gene in cancer. Biomed. Res. Int. 2018, 1972606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Liu, Y. & Qu, H.-C. miR-138-5p inhibits proliferation and invasion in kidney renal clear cell carcinoma by targeting SINA3 and regulation of the Notch signaling pathway. J. Clin. Lab. Anal. 35, e23766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ge, Y.-Z. et al. A tumor-specific microRNA signature predicts survival in clear cell renal cell carcinoma. J. Cancer Res. Clin. Oncol. 141, 1291–1299 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, Z., Zhang, Z., Zhang, C. & Xu, Y. Identification of potential pathogenic biomarkers in clear cell renal cell carcinoma. Oncol. Lett. 15, 8491–8499 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Lu, J., Tan, T., Zhu, L., Dong, H. & Xian, R. Hypomethylation causes MIR21 overexpression in tumors. Mol. Ther. Oncolytics 18, 47–57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Luo, Y. & Zhang, G. Identification of a necroptosis-related prognostic index and associated regulatory axis in kidney renal clear cell carcinoma. Int. J. Gen. Med. 15, 5407–5423 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The manuscript was edited for grammar and structure using the advanced language model ChatGPT. This study was supported by Czech Health Research Council-project no. NU22-08-00186 to R.V., Grant Agency of Charles University (project GAUK; grant no. 164323), Charles University Research Fund (Cooperation No. 43 - Surgical Disciplines) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 856620.

Author information

Authors and Affiliations

Authors

Contributions

T.T. researched data for the article. T.T. contributed substantially to discussion of the content. T.T. wrote the article. O.F., M.H. and R.V. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tereza Tesarova.

Ethics declarations

Competing interests

O.F. received honoraria from Novartis, Janssen, Merck, Pfizer, AstraZeneca, Roche and Novartis for consultations and lectures unrelated to this project. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Brandon Manley; Gabriel Malouf, who co-reviewed with Sehrish Bazai; and Rui Medeiros for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Fast facts from the Kidney Cancer Association: https://www.kidneycancer.org/fast-facts/

International Agency for Research on Cancer: https://gco.iarc.fr/

International MRCC Database Consortium: https://www.imdconline.com

LINC00460: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:42809

miR-21-5p: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:31586

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesarova, T., Fiala, O., Hora, M. et al. Non-coding transcriptome profiles in clear-cell renal cell carcinoma. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00926-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00926-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer