Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune effects of α and β radionuclides in metastatic prostate cancer

Abstract

External beam radiotherapy is used for radical treatment of organ-confined prostate cancer and to treat lesions in metastatic disease whereas molecular radiotherapy with labelled prostate-specific membrane antigen ligands and radium-223 (223Ra) is indicated for metastatic prostate cancer and has demonstrated substantial improvements in symptom control and overall survival compared with standard-of-care treatment. Prostate cancer is considered an immunologically cold tumour, so limited studies investigating the treatment-induced effects on the immune response have been completed. However, emerging data support the idea that radiotherapy induces an immune response in prostate cancer, but whether the response is an antitumour or pro-tumour response is dependent on the radiotherapy regime and is also cell-line dependent. In vitro data demonstrate that single-dose radiotherapy regimes induce a greater immune-suppressive profile than fractionated regimes; less is known about the immune response induced by molecular radiotherapy agents, but evidence suggests that these agents might induce an immune-suppressive systemic immune response, indicated by increased expression of inhibitory checkpoint molecules such as programmed cell death 1 ligand 1 and 2, and that these changes could be associated with clinical response. Different radiotherapy modalities can induce distinct immune profiles, which can either activate or suppress immune-mediated tumour killing and the current preclinical models used for prostate cancer research are not yet optimal for studying the complexity of the radiotherapy-induced immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radionuclides approved by the FDA or currently under investigation for prostate cancer.
Fig. 2: Immune cell composition of prostate cancer.
Fig. 3: Opposing immune activation and the immune-suppressive effects of radiotherapy.

Similar content being viewed by others

References

  1. James, N. D. et al. The Lancet Commission on prostate cancer: planning for the surge in cases. Lancet 403, 1683–1722 (2024).

    Article  PubMed  Google Scholar 

  2. Hague, C. & Logue, J. P. Clinical experience with radium-223 in the treatment of patients with advanced castrate-resistant prostate cancer and symptomatic bone metastases. Ther. Adv. Urol. 8, 175–180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. McBean, R., O’Kane, B., Parsons, R. & Wong, D. Lu277-PSMA therapy for men with advanced prostate cancer: initial 18 months experience at a single Australian tertiary institution. J. Med. Imaging Radiat. Oncol. 63, 538–545 (2019).

    Article  PubMed  Google Scholar 

  4. Fong, L. et al. A phase 1b study of atezolizumab with radium-223 dichloride in men with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 4746–4756 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang, S., Tang, W., Luo, H., Jin, F. & Wang, Y. The role of image-guided radiotherapy in prostate cancer: a systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 38, 81–89 (2023).

    PubMed  CAS  Google Scholar 

  6. Parker, C. C. et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 392, 2353–2366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Desouky, O., Ding, N. & Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 8, 247–254 (2019).

    Google Scholar 

  8. Parker, C. et al. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1119–1134 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Bolla, M., Henry, A., Mason, M. & Wiegel, T. The role of radiotherapy in localised and locally advanced prostate cancer. Asian J. Urol. 6, 153–161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mendez, L. C. & Morton, G. C. High dose-rate brachytherapy in the treatment of prostate cancer. Transl. Androl. Urol. 7, 357–370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zaorsky, N. G. et al. The evolution of brachytherapy for prostate cancer. Nat. Rev. Urol. 14, 415–439 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goyal, J. & Antonarakis, E. S. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 323, 135–146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ritawidya, R. et al. Lutetium-177-labeled prostate-specific membrane antigen-617 for molecular imaging and targeted radioligand therapy of prostate cancer. Adv. Pharm. Bull. 13, 701–711 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Marques, I. A. et al. Targeted alpha therapy using Radium-223: from physics to biological effects. Cancer Treat. Rev. 68, 47–54 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Parker, C. et al. Alpha emitter radium 223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Badrising, S. K. et al. Integrated analysis of pain, health-related quality of life, and analgesic use in patients with metastatic castration-resistant prostate cancer treated with radium-223. Prostate Cancer Prostatic Dis. 25, 248–255 (2022).

    Article  PubMed  CAS  Google Scholar 

  17. Morris, M. J. et al. Radium-224 mechanism of action: implications for use in treatment combinations. Nat. Rev. Urol. 16, 745–756 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. O’Sullivan, J. M. et al. Results of the ADRRAD trial of pelvic IMRT plus radium-223 in men with mHSPC metastatic to bone. J. Clin. Oncol. 38, 136 (2020).

    Article  Google Scholar 

  19. Turner, P. et al. First survival data from the ADRRAD clinical trial; pelvic radiotherapy and concurrent radium-223 in metastatic hormone sensitive prostate cancer (mHSPC). Clin. Oncol. 32, E130–E131 (2020).

    Article  Google Scholar 

  20. Sartor, O. et al. Lutetium-177 PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Emmett, L. et al. Lutetium177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 64, 52–60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rinne, S. S. & Vorobyeva, A. Radiometals — chemistry and radiolabeling. Nucl. Med. Mol. Imaging https://doi.org/10.1016/B978-0-12-822960-6.00044-2 (2022).

  23. Jang, A., Kendi, A. T., Johnson, G. B., Halfdanarson, T. R. & Sartor, O. Targeted alpha-particle therapy: a review of current trials. Int. J. Mol. Sci. 24, 11626 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brandmaier, A. & Formenti, S. The impact of radiation therapy on innate and adaptive tumor immunity. Semin. Radiat. Oncol. 30, 139–144 (2019).

    Article  Google Scholar 

  25. Wei, R., Liu, S., Zhang, S., Min, L. & Zhu, S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal. Cell. Pathol. 2020, 6283796 (2020).

    Article  Google Scholar 

  26. Pun, J. et al. Identification of cancer-associated fibroblasts subtypes in prostate cancer. Front. Immunol. 14, 1133160 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hirz, T. et al. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat. Commun. 14, 663 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wu, Z. et al. The landscape of immune cells infiltrating in prostate cancer. Front. Oncol. 10, 517637 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brown, J. M. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol. 87, 1035 (2013).

    Google Scholar 

  30. Eckert, F. et al. Impact of curative radiotherapy on the immune status of patients with localised prostate cancer. Oncoimmunology 7, e1496881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoffman, E. et al. Radiotherapy planning parameters correlate with changes in the peripheral immune status of patients undergoing curative radiotherapy for localised prostate cancer. Cancer Immunol. Immunother. 71, 541–552 (2022).

    Article  Google Scholar 

  32. Hurwitz, M. D. et al. Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer. Radiother. Oncol. 95, 350–358 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Finkelstein, S. E. et al. Combining immunotherapy and radiation for prostate cancer. Clin. Genitourin. Cancer 13, 1–9 (2015).

    Article  PubMed  Google Scholar 

  34. Kubo, M. et al. Enhanced activated T cell subsets in prostate cancer patients receiving iodine-125 low-dose-rate prostate brachytherapy. Oncol. Rep. 39, 417–424 (2018).

    PubMed  CAS  Google Scholar 

  35. Philippou, Y. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer 123, 1089–1100 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nesslinger, N. J. et al. Standard treatments induce antigen specific immune responses in prostate cancer. Clin. Cancer Res. 13, 1493–1502 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. Schaue, D. et al. T-cell responses to surviving in cancer patients undergoing radiation therapy. Clin. Cancer Res. 14, 4883–4890 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tuomela, K. et al. Radiotherapy transiently reduces the sensitivity of cancer cells to lymphocyte cytotoxicity. Proc. Natl Acad. Sci. USA 119, 3 (2022).

    Article  Google Scholar 

  39. Wang, H. et al. Immune cell profiling in Gleason 9 prostate cancer patients treated with brachytherapy versus external beam radiotherapy: an exploratory study. Radiother. Oncol. 155, 80–85 (2021).

    Article  PubMed  CAS  Google Scholar 

  40. Xu, J. et al. CSFIR signalling blockade stanches tumour-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ren, X. et al. Immunological classification of tumour types and advances in precision combination immunotherapy. Front. Immunol. 13, 790113 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bonaventura, P. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Stultz, J. & Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24, 697–717 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, J., Huang, D., Saw, P. E. & Song, E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. 43, 523–545 (2022).

    Article  PubMed  CAS  Google Scholar 

  45. Keam, S. P. et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J. Immunother. Cancer 8, e000792 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Andersen, L. B. et al. Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory T cells and macrophages as adverse prognostic factors. J. Pathol. 255, 155–165 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  48. Apetoh, L. et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev. 220, 47–59 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Dar, T. B., Henson, R. M. & Shiao, S. L. Targeting innate immunity to enhance the efficacy of radiation therapy. Front. Immunol. 9, 3077 (2018).

    Article  PubMed  CAS  Google Scholar 

  52. Sharma, P., Wagner, K., Wolchok, J. D. & Allison, J. P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805–812 (2012).

    Article  Google Scholar 

  53. Ruckert, M., Flohr, A. S., Hecht, M. & Gaipl, U. S. Radiotherapy and the immune system: more than just immune suppression. Stem Cell 39, 1155–1165 (2021).

    Article  Google Scholar 

  54. Colton, M., Cheadle, E. J., Honeychurch, J. & llidge, T. M. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat. Oncol. 15, 254 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sharma, R. A. et al. Clinical development of new drug-radiotherapy combinations. Nat. Rev. Clin. Oncol. 13, 627–642 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Carvalho, A. H. & Villar, R. C. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics 73, e557s (2018).

    Article  PubMed  Google Scholar 

  57. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  58. Honeychurch, J. & llidge, T. M. The influence of radiation in the context of developing combination immunotherapies in cancer. Ther. Adv. Vaccines Immunother. 5, 115–122 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumours. Nat. Med. 15, 1170–1178 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumour enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5, 403–416 (2014).

    Article  PubMed  Google Scholar 

  62. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chakraborty, M. et al. Irradiation of tumour cells upregulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 170, 6338–6347 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. Chakraborty, M. et al. External beam radiation of tumors alters phenotype of tumour cells to render them susceptible to vaccine-mediated T cell killing. Cancer Res. 64, 4328–4337 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. Garnett, C. T. et al. Sublethal irradiation of human tumour cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 64, 7985–7994 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Ifeadi, V. & Garnett-Benson, C. Sub-lethal irradiation of human colorectal tumour cells imparts enhanced and sustained susceptibility to multiple death receptors signalling pathways. PLoS One 7, e31762 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Reits, E. A. et al. Radiation modulates the peptide repertoire enhances MHC class I expression, and induces successful antitumour immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumour immunity in immunogenic tumours. Immunity 41, 843–852 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Diamond, J. M. et al. Exosome shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Najafi, M. et al. Macrophage polarity in cancer: a review. J. Cell. Biochem. 120, 2756–2765 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Shevtsov, M., Sato, H., Multhoff, G. & Shibata, A. Novel approaches to improve the efficacy of immune-radiotherapy. Front. Oncol. 9, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Seifert, L. et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology 150, 1659–1672 (2016).

    Article  PubMed  Google Scholar 

  73. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ko, V. M. et al. Radiotherapy and cGAS/STING signaling: impact on MDSCs in the tumor microenvironment. Cell. Immunol. 362, 104298 (2021).

    Article  Google Scholar 

  75. Liang, H. et al. Host STING-dependent MDSC mobilisation drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Eke, I. et al. Long-term expression changes of immune-related genes in prostate cancer after radiotherapy. Cancer Immunol. Immunother. 71, 839–850 (2022).

    Article  PubMed  CAS  Google Scholar 

  77. Derer, A. et al. Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front. Immunol. 7, 610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wan, X. et al. The mechanism of low-dose radiation-induced upregulation of immune checkpoint molecule expression in lung cancer. Biochem. Biophys. Res. Commun. 607, 102–107 (2022).

    Article  Google Scholar 

  79. Ding, X. C. et al. The change of soluble programmed cell death-ligand 1 in glioma patients receiving radiotherapy and its impact on clinical outcome. Front. Immunol. 11, 580335 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lin, Y., Xu, J. & Lan, H. Tumour-associated macrophages in tumour metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Haughey, C. M. et al. Investigating radiotherapy response in a novel syngeneic model of prostate cancer. Cancers 12, 2804 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Chen, R., Kang, R. & Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 54, 91–102 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kwak, M. S. et al. Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli. Redox Biol. 24, 1012023 (2019).

    Article  Google Scholar 

  85. De Groot, A. E. et al. Characterisation of tumour-associated macrophages in prostate cancer transgenic mouse model. Prostate 81, 629–647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boibesset, C. et al. Subversion of infiltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clin. Transl. Med. 12, e581 (2022).

    Article  Google Scholar 

  87. Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jubel, J. M., Barbati, Z. R., Burger, C., Dieter, C., Wirtz, D. C. & Schildberg, F. A. The role of PD-1 in acute and chronic infection. Front. Immunol. 11, 487 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li, K. et al. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat. Commun. 12, 2746 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wartewig, T. et al. PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma. Nat. Cancer 4, 1508–1525 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mizuno, R. et al. PD-1 primarily targets TCR signal in the inhibition of functional T-cell activation. Front. Immunol. 10, 630 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kim, Y., Lavoie, R. R., Dong, H., Park, S. & Lucien-Matteoni, F. Radiotherapy inhibits the antitumour immune response through release of immunosuppressive tumor-derived extracellular vesicles in prostate cancer. Cancer Res. 81, abstract 675 (2021).

    Article  Google Scholar 

  93. Cursano, M. C. et al. Combination radium-223 therapies in patients with bone metastases from castration-resistant prostate cancer: a review. Crit. Rev. Oncol. Hematol. 146, 102864 (2020).

    Article  PubMed  CAS  Google Scholar 

  94. Malamas, A. S., Gameiro, S. R., Knudson, K. M. & Hodge, J. W. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget 7, 86937–86947 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leung, C. N., Howell, D. M. & Howell, R. W. Radium-223 dichloride causes transient changes in natural killer cell population and cytotoxic function. Int. J. Radiat. Biol. 97, 1417–1424 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kim, J. W. et al. Immune analysis of radium-223 in patients with metastatic prostate cancer. Clin. Genitourin. Cancer 16, e469–e476 (2018).

    Article  PubMed  Google Scholar 

  97. Kim, J. W. et al. Survival and immune analysis of radium-223 in patients with metastatic prostate cancer. Am. Soc. Clin. Oncol. 36, e24144 (2018).

    Article  Google Scholar 

  98. Vardaki, I. et al. Radium-223 treatment increase immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment. Clin. Cancer Res. 27, 3253–3264 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Aggarwal, R. R. et al. Immunogenic priming with 177Lu-PSMA-617 plus pembrolizumab in metastatic castration resistant prostate cancer (mCRPC): a phase 1b study. J. Clin. Oncol. 39, 15 (2021).

    Article  Google Scholar 

  100. Marshall, C. F. et al. Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bone-metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 1623–1630 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Creemers, J. H. A. et al. Immunophenotyping reveals longitudinal changes in circulating immune cells during radium-223 therapy in patients with metastatic castration-resistant prostate cancer. Front. Oncol. 18, 667658 (2021).

    Article  Google Scholar 

  102. Handke, A. et al. Analysing the tumor transcriptome of prostate cancer to predict efficacy of Lu-PSMA therapy. J. Immunother. Cancer 11, e007354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Risbridger, G. P. et al. Preclinical models of prostate cancer: patient-derived xenografts, organoids and other explant models. Cold Spring Hard. Perspect. Med. 35, 485–489 (2018).

    Google Scholar 

  104. Dorff, T. B. et al. Evaluating changes in immune function and bone microenvironment during radium-223 treatment of patients with castration-resistant prostate cancer. Cancer Biother. Radiopharm. 35, 485–489 (2020).

    PubMed  CAS  Google Scholar 

  105. Kgatle, M. M. et al. Immune checkpoints, inhibitors and radionuclides in prostate cancer: promising combinatorial therapy approach. Int. J. Mol. Sci. 22, 4109 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

S.L. was supported by the Cancer Research UK Manchester Centre award (CTRQQR-2021\100010). P.H. and A.C. were supported by the NIHR Manchester Biomedical Research Centre (BRC-1215-20007). This work was funded by Peel Holdings and The Movember Foundation through the Manchester/Belfast Movember Centre of Excellence (CE013_2_004).

Author information

Authors and Affiliations

Authors

Contributions

S.L. researched data for the article. S.L., T.A.D.S., F.C., J.H., P.H. and A.C. contributed substantially to discussion of the content. S.L., F.C. and J.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sapna Lunj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Mariza Vorster and Helle Damgaard Zacho for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunj, S., Smith, T.A.D., Reeves, K.J. et al. Immune effects of α and β radionuclides in metastatic prostate cancer. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00924-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00924-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer