Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human sperm RNA in male infertility

Abstract

The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.

Key points

  • Evidence supports the presence of different seminal and testicular RNA profiles between men with infertility and fertile men.

  • Current study results indicate a role for testicular and seminal RNA profiles in predicting successful sperm retrieval.

  • RNA expression in spermatozoa seems to influence embryo quality and viability and might have an effect on the outcome of assisted reproductive techniques.

  • Quality of evidence is low, targets and tissues used among studies are heterogeneous and the sample sizes are small. Standardization of evidence is important to transfer this knowledge to clinical practice.

  • RNA expression has most often been investigated in seminal plasma and spermatozoa to evaluate its predictive role in sperm recovery and embryo quality, respectively. Their use as RNA sources in future studies will enable the standardization of evidence.

  • Evidence summarized in this Review could be used to enrich and standardize diagnostic platforms able to quantify the expression of RNAs selected in an evidence-based manner, and to test their role in the clinical management of patients and decision-making in well-sized studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-23a/b-5p might regulate spermatogenesis through interaction with PFKFB4, TEX15, HMMR and SPATA6.
Fig. 2: Mechanisms through which mir-375, miR-21, mir-140 and mir-34c might influence embryo development.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National public health action plan for the detection, prevention, and management of infertility. Atlanta, Georgia: Centers for Disease Control and Prevention (2014).

  2. Sun, H. et al. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990-2017: results from a global burden of disease study, 2017. Aging 11, 10952–10991 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 29, 157–176 (2023).

    Article  PubMed  Google Scholar 

  4. Skakkebæk, N. E. et al. Environmental factors in declining human fertility. Nat. Rev. Endocrinol. 18, 139–157 (2022).

    Article  PubMed  Google Scholar 

  5. Punab, M. et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 32, 18–31 (2017).

    CAS  PubMed  Google Scholar 

  6. Tüttelmann, F., Ruckert, C. & Röpke, A. Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med. Genet. 30, 12–20 (2018).

    PubMed  Google Scholar 

  7. Calogero, A. E. et al. The renaissance of male infertility management in the golden age of andrology. World J. Mens Health 41, 237–254 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aitken, R. J. & Bakos, H. W. Should we be measuring DNA damage in human spermatozoa? New light on an old question. Hum. Reprod. 36, 1175–1185 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Vallet-Buisan, M., Mecca, R., Jones, C., Coward, K. & Yeste, M. Contribution of semen to early embryo development: fertilization and beyond. Hum. Reprod. Update 29, 395–433 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Pessot, C. A. et al. Presence of RNA in the sperm nucleus. Biochem. Biophys. Res. Commun. 158, 272–278 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santiago, J. et al. All you need to know about sperm RNAs. Hum. Reprod. Update 28, 67–91 (2021).

    Article  PubMed  Google Scholar 

  13. Burl, R. B., Clough, S., Sendler, E., Estill, M. & Krawetz, S. A. Sperm RNA elements as markers of health. Syst. Biol. Reprod. Med. 64, 25–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Muñoz, X., Mata, A., Bassas, L. & Larriba, S. Altered miRNA signature of developing germ-cells in infertile patients relates to the severity of spermatogenic failure and persists in spermatozoa. Sci. Rep. 5, 17991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oluwayiose, O. A. et al. Altered non-coding RNA profiles of seminal plasma extracellular vesicles of men with poor semen quality undergoing in vitro fertilization treatment. Andrology 11, 677–686 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Abu-Halima, M. et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil. Steril. 99, 1249–1255 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Halima, M. et al. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil. Steril. 101, 78–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Abu-Halima, M. et al. Altered micro-ribonucleic acid expression profiles of extracellular microvesicles in the seminal plasma of patients with oligoasthenozoospermia. Fertil. Steril. 106, 1061–1069 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Abu-Halima, M. et al. Differential expression of miR-23a/b-3p and its target genes in male patients with subfertility. Fertil. Steril. 112, 323–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Huszar, G., Willetts, M. & Corrales, M. Hyaluronic acid (Sperm Select) improves retention of sperm motility and velocity in normospermic and oligospermic specimens. Fertil. Steril. 54, 1127–1134 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Kornovski, B. S., McCoshen, J., Kredentser, J. & Turley, E. The regulation of sperm motility by a novel hyaluronan receptor. Fertil. Steril. 61, 935–940 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Li, H. et al. Impaired planar germ cell division in the testis, caused by dissociation of RHAMM from the spindle, results in hypofertility and seminoma. Cancer Res. 76, 6382–6395 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gómez, M. et al. Switches in 6-phosphofructo-2-kinase isoenzyme expression during rat sperm maturation. Biochem. Biophys. Res. Commun. 387, 330–335 (2009).

    Article  PubMed  Google Scholar 

  24. Yuan, S. et al. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc. Natl Acad. Sci. USA 112, E430–E439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, F., Eckardt, S., Leu, N. A., McLaughlin, K. J. & Wang, P. J. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J. Cell. Biol. 180, 673–679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cito, G. et al. Blood plasma miR-20a-5p expression as a potential non-invasive diagnostic biomarker of male infertility: a pilot study. Andrology 8, 1256–1264 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Adamson, G. D. et al. International committee for monitoring assisted reproductive technology: world report on assisted reproductive technology, 2011. Fertil. Steril. 110, 1067–1080 (2018).

    Article  PubMed  Google Scholar 

  28. Conflitti, A. C. et al. Sperm DNA fragmentation and sperm-borne miRNAs: molecular biomarkers of embryo development? Int. J. Mol. Sci. 24, 1007 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, W. & Liu, N. [Correlation between the levels of miR-21, miR-34c, miR-140 and miR-375 in the sperm from in vitro fertilization patients and the embryo quality] (Chinese). Zhong Nan Da Xue Xue Bao Yi Xue Ban. 40, 864–871 (2015).

    CAS  PubMed  Google Scholar 

  30. Rouleau, J., MacLeod, A. R. & Szyf, M. Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J. Biol. Chem. 270, 1595–1601 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Ratajczak, M. Z. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem. Cytobiol. 50, 171–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, S., Shi, Q. & Sun, Y. The effect of sperm miR-34c on human embryonic development kinetics and clinical outcomes. Life Sci. 256, 117895 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Pantos, K. et al. Investigating the role of the microRNA-34/449 family in male infertility: a critical analysis and review of the literature. Front. Endocrinol. 12, 709943 (2021).

    Article  Google Scholar 

  35. Wang, M. et al. Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep. 7, 13403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abu-Halima, M. et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil. Steril. 113, 970–980 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Veeck, L. L. An Atlas of Human Gametes and Conceptuses: An Illustrated Reference for Assisted Reproductive Technology (CRC Press, 1999).

  38. Xu, H. et al. MicroRNA expression profile analysis in sperm reveals hsa-mir-191 as an auspicious omen of in vitro fertilization. BMC Genomics 21, 165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagpal, N. & Kulshreshtha, R. miR-191: an emerging player in disease biology. Front. Genet. 5, 99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sharma, S., Nagpal, N., Ghosh, P. C. & Kulshreshtha, R. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA 23, 1237–1246 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whittington, C. M. et al. Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci. Rep. 8, 2412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pereira, S. C. et al. Expression of obesity-related genes in human spermatozoa affects the outcomes of reproductive treatments. F S Sci. 2, 164–175 (2021).

    PubMed  Google Scholar 

  43. Yeo, G. S., Farooqi, I. S., Challis, B. G., Jackson, R. S. & O’Rahilly, S. The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. QJM 93, 7–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ben-Haim, M. S., Moshitch-Moshkovitz, S. & Rechavi, G. FTO: linking m6A demethylation to adipogenesis. Cell. Res. 25, 3–4 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Giebler, M., Greither, T., Handke, D., Seliger, G. & Behre, H. M. Lower spermatozoal PIWI-LIKE 1 and 2 transcript levels are significantly associated with higher fertilization rates in IVF. Int. J. Mol. Sci. 22, 11320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuramochi-Miyagawa, S. et al. Two mouse piwi-related genes: miwi and mili. Mech. Dev. 108, 121–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell. 2, 819–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 12, 503–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rocca, M. S. et al. TERRA: a novel biomarker of embryo quality and art outcome. Genes 12, 475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Azzalin, C. M. & Lingner, J. Telomere functions grounding on TERRA firma. Trends Cell Biol. 25, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Reig-Viader, R. et al. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis. Biol. Reprod. 90, 103 (2014).

    Article  PubMed  Google Scholar 

  54. Grosso, J. B. et al. Levels of seminal tRNA-derived fragments from normozoospermic men correlate with the success rate of ART. Mol. Hum. Reprod. 27, gaab017 (2021).

    Article  PubMed  Google Scholar 

  55. Hua, M. et al. Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization. Cell Discov. 5, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011).

    Article  Google Scholar 

  57. Chen, Y. et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 28, 879–896 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fayomi, A. P. & Orwig, K. E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell. Res. 29, 207–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schneider, S. et al. Protamine-2 deficiency initiates a reactive oxygen species (ROS)-mediated destruction cascade during epididymal sperm maturation in mice. Cells 9, 1789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rogenhofer, N. et al. The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum. Reprod. 28, 969–978 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Sarasa, J. et al. Comparison of ART outcomes in men with altered mRNA protamine 1/protamine 2 ratio undergoing intracytoplasmic sperm injection with ejaculated and testicular spermatozoa. Asian J. Androl. 22, 623–628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chiba, K., Enatsu, N. & Fujisawa, M. Management of non-obstructive azoospermia. Reprod. Med. Biol. 15, 165–173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jarvi, K. et al. The workup and management of azoospermic males. Can. Urol. Assoc. J. 9, 229–235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tsujimura, A. et al. Conventional multiple or microdissection testicular sperm extraction: a comparative study. Hum. Reprod. 17, 2924–2929 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Ramasamy, R., Yagan, N. & Schlegel, P. N. Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology 65, 1190–1194 (2005).

    Article  PubMed  Google Scholar 

  66. Takada, S. et al. Androgen decline in patients with nonobstructive azoospermia after microdissection testicular sperm extraction. Urology 72, 114–118 (2008).

    Article  PubMed  Google Scholar 

  67. Colpi, G. M. et al. Microsurgical TESE versus conventional TESE for ICSI in non-obstructive azoospermia: a randomized controlled study. Reprod. Biomed. Online 18, 315–319 (2009).

    Article  PubMed  Google Scholar 

  68. Ghalayini, I. F. et al. Clinical comparison of conventional testicular sperm extraction and microdissection techniques for non-obstructive azoospermia. J. Clin. Med. Res. 3, 124–131 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. Fang, N. et al. MicroRNA profile comparison of testicular tissues derived from successful and unsuccessful microdissection testicular sperm extraction retrieval in non-obstructive azoospermia patients. Reprod. Fertil. Dev. 31, 671–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Peoc’h, K. et al. The human “prion-like” protein Doppel is expressed in both Sertoli cells and spermatozoa. J. Biol. Chem. 277, 43071–43078 (2002).

    Article  PubMed  Google Scholar 

  71. Willems, M. et al. Micro RNA in semen/urine from non-obstructive azoospermia patients as biomarkers to predict the presence of testicular spermatozoa and spermatogonia. Life 13, 616 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larriba, S. et al. Seminal extracellular vesicle sncRNA sequencing reveals altered miRNA/isomiR profiles as sperm retrieval biomarkers for azoospermia. Andrology 12, 137–156 (2023).

    Article  PubMed  Google Scholar 

  73. Chen, H. et al. Outcome prediction of microdissection testicular sperm extraction based on extracellular vesicles piRNAs. J. Assist. Reprod. Genet. 38, 1429–1439 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Han, X. et al. Seminal plasma extracellular vesicles tRF-Val-AAC-010 can serve as a predictive factor of successful microdissection testicular sperm extraction in patients with non-obstructive azoospermia. Reprod. Biol. Endocrinol. 20, 106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plata-Peña, L., López-Rodrigo, O., Bassas, L. & Larriba, S. Experimental validation of seminal miR-31-5p as biomarker for azoospermia and evaluation of the effect of preanalytical variables. Andrology 11, 668–676 (2023).

    Article  PubMed  Google Scholar 

  76. Barceló, M., Mata, A., Bassas, L. & Larriba, S. Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue. Hum. Reprod. 33, 1087–1098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang, Y. et al. Circulating microRNAs in seminal plasma as predictors of sperm retrieval in microdissection testicular sperm extraction. Ann. Transl. Med. 10, 392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ji, C. et al. Potential of testis-derived circular RNAs in seminal plasma to predict the outcome of microdissection testicular sperm extraction in patients with idiopathic non-obstructive azoospermia. Hum. Reprod. 36, 2649–2660 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Urano, A. et al. Infertility with defective spermiogenesis in mice lacking AF5q31, the target of chromosomal translocation in human infant leukemia. Mol. Cell. Biol. 25, 6834–6845 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takubo, K. et al. Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2, 170–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Meehan, T., Loveland, K. L., de Kretser, D., Cory, S. & Print, C. G. Developmental regulation of the bcl-2 family during spermatogenesis: insights into the sterility of bcl-w-/- male mice. Cell Death Differ. 8, 225–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Yan, W. et al. Overexpression of Bcl-W in the testis disrupts spermatogenesis: revelation of a role of BCL-W in male germ cell cycle control. Mol. Endocrinol. 17, 1868–1879 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Chieffi, P. et al. HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene 21, 3644–3650 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Di Agostino, S. et al. Phosphorylation of high-mobility group protein A2 by Nek2 kinase during the first meiotic division in mouse spermatocytes. Mol. Biol. Cell 15, 1224–1232 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang, S., Wang, X., Wu, Y. & Han, C. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cell Dev. 24, 471–483 (2015).

    Article  CAS  Google Scholar 

  86. Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Lv, M. Q. et al. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology 8, 1834–1843 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Han, R. et al. MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2. J. Mol. Med. 94, 1267–1279 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, N. et al. MiR-449a attenuates autophagy of T-cell lymphoma cells by downregulating ATG4B expression. BMB Rep. 53, 254–259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yin, J. et al. Regulatory effects of autophagy on spermatogenesis. Biol. Reprod. 96, 525–530 (2017).

    Article  PubMed  Google Scholar 

  91. Gao, H., Khawar, M. B. & Li, W. Autophagy in reproduction. Adv. Exp. Med. Biol. 1206, 453–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Shi, S., Wang, T., Wang, L. & Wang, M. Nomogram based on a circular RNA biomarker for predicting the likelihood of successful sperm retrieval via microdissection testicular sperm extraction in patients with idiopathic non-obstructive azoospermia. Front. Endocrinol. 13, 1109807 (2023).

    Article  Google Scholar 

  93. Nielsen, J. E. et al. Characterisation and localisation of the endocannabinoid system components in the adult human testis. Sci. Rep. 9, 12866 (2019). Erratum in: Sci. Rep. 10, 1267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shi, S., Jia, Y., Ji, X., Zhou, L. & Zhang, Z. [Silencing circular RNA_monoglyceride lipase promotes the proliferation and inhibits apoptosis of Sertoli cells in testis] (Published in Chinese). Med. J. West. China 34, 185–194 (2022).

    Google Scholar 

  95. Kumar, P., Kuscu, C. & Dutta, A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41, 679–689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lyons, S. M., Fay, M. M., Akiyama, Y., Anderson, P. J. & Ivanov, P. RNA biology of angiogenin: current state and perspectives. RNA Biol. 14, 171–178 (2017).

    Article  PubMed  Google Scholar 

  97. Balatti, V., Pekarsky, Y. & Croce, C. M. Role of the tRNA-derived small RNAs in cancer: new potential biomarkers and target for therapy. Adv. Cancer Res. 135, 173–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, Q. et al. Circulatory exosomal tRF-Glu-CTC-005 and tRF-Gly-GCC-002 serve as predictive factors of successful microdissection testicular sperm extraction in patients with nonobstructive azoospermia. Fertil. Steril. 117, 512–521 (2022).

    Article  PubMed  Google Scholar 

  99. Ghieh, F. et al. Whole-exome sequencing in patients with maturation arrest: a potential additional diagnostic tool for prevention of recurrent negative testicular sperm extraction outcomes. Hum. Reprod. 37, 1334–1350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fohn, L. E. & Behringer, R. R. ESX1L, a novel X chromosome-linked human homeobox gene expressed in the placenta and testis. Genomics 74, 105–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Ozawa, H. et al. Paired-like homeodomain protein ESXR1 possesses a cleavable C-terminal region that inhibits cyclin degradation. Oncogene 23, 6590–6602 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, X. & Zhang, J. Rapid evolution of primate ESX1, an X-linked placenta- and testis-expressed homeobox gene. Hum. Mol. Genet. 16, 2053–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Pansa, A. et al. ESX1 mRNA expression in seminal fluid is an indicator of residual spermatogenesis in non-obstructive azoospermic men. Hum. Reprod. 29, 2620–2627 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Ando, M., Yamaguchi, K., Chiba, K., Miyake, H. & Fujisawa, M. Expression of VASA mRNA in testis as a significant predictor of sperm recovery by microdissection testicular sperm extraction in patient with nonobstructive azoospermia. J. Androl. 33, 711–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Castrillon, D. H., Quade, B. J., Wang, T. Y., Quigley, C. & Crum, C. P. The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl Acad. Sci. USA 97, 9585–9590 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Noce, T., Okamoto-Ito, S. & Tsunekawa, N. Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct. 26, 131–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Petersen, C., Füzesi, L. & Hoyer-Fender, S. Outer dense fibre proteins from human sperm tail: molecular cloning and expression analyses of two cDNA transcripts encoding proteins of approximately 70 kDa. Mol. Hum. Reprod. 5, 627–635 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Nayernia, K. et al. Asthenozoospermia in mice with targeted deletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp) gene. Mol. Cell Biol. 22, 3046–3052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dai, Y. et al. Multi-stage screening cell-free seminal mRNAs to diagnose completion of meiosis and predict testicular sperm retrieval in men with non-obstructive azoospermia. Andrology 10, 749–757 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Xu, E. Y., Moore, F. L. & Pera, R. A. A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc. Natl Acad. Sci. USA 98, 7414–7419 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Amjad, S. et al. Spermatozoa retrieval in azoospermia and expression profile of JMJD1A, TNP2, and PRM2 in a subset of the Karachi population. Andrology 9, 1934–1942 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Z. et al. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J. Biol. Chem. 285, 2758–2770 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Eelaminejad, Z., Favaedi, R., Sodeifi, N., Sadighi Gilani, M. A. & Shahhoseini, M. Deficient expression of JMJD1A histone demethylase in patients with round spermatid maturation arrest. Reprod. Biomed. Online 34, 82–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Kasioulis, I. et al. Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Mol. Biol. Cell. 25, 1216–1233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Haraguchi, T., Ishikawa, T., Yamaguchi, K. & Fujisawa, M. Cyclin and protamine as prognostic molecular marker for testicular sperm extraction in patients with azoospermia. Fertil. Steril. 91, 1424–1426 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Javadirad, S. M. & Mokhtari, M. TXNDC2 joint molecular marker is associated with testis pathology and is an accurate predictor of sperm retrieval. Sci. Rep. 11, 13064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miranda-Vizuete, A. et al. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J. Biol. Chem. 276, 31567–31574 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Jiménez, A. et al. Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity. FEBS Lett. 530, 79–84 (2002).

    Article  PubMed  Google Scholar 

  119. O’Flaherty, C. Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic. Clin. Androl. 24, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Smith, T. B., Baker, M. A., Connaughton, H. S., Habenicht, U. & Aitken, R. J. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free. Radic. Biol. Med. 65, 872–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Hashemi, M. S., Mozdarani, H., Ghaedi, K. & Nasr-Esfahani, M. H. Expression of ZMYND15 in testes of azoospermic men and association with sperm retrieval. Urology 114, 99–104 (2018).

    Article  PubMed  Google Scholar 

  122. Yan, W. et al. Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J. Biol. Chem. 285, 31418–31426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ayhan, Ö. et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J. Med. Genet. 51, 239–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes. Dev. 20, 1732–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cao, C. et al. Testicular piRNA profile comparison between successful and unsuccessful micro-TESE retrieval in NOA patients. J. Assist. Reprod. Genet. 35, 801–808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Luk, A. C., Chan, W. Y., Rennert, O. M. & Lee, T. L. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 147, R131–R141 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Anguera, M. C. et al. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet. 7, e1002248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, L., Lu, H., Xin, D., Cheng, H. & Zhou, R. A novel ncRNA gene from mouse chromosome 5 trans-splices with Dmrt1 on chromosome 19. Biochem. Biophys. Res. Commun. 400, 696–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Wen, K. et al. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 26, 1233–1244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hong, S. H. et al. Profiling of testis-specific long noncoding RNAs in mice. BMC Genomics 19, 539 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Satoh, Y. et al. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesis†. Biol. Reprod. 100, 833–848 (2019).

    Article  PubMed  Google Scholar 

  132. Xie, Y. et al. A panel of extracellular vesicle long noncoding RNAs in seminal plasma for predicting testicular spermatozoa in nonobstructive azoospermia patients. Hum. Reprod. 35, 2413–2427 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Guo, H. et al. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol. Hum. Reprod. 28, gaac031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Swiglo, B. A. et al. A case for clarity, consistency, and helpfulness: state-of-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. J. Clin. Endocrinol. Metab. 93, 666–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. H. et al. Rescue of male infertility through correcting a genetic mutation causing meiotic arrest in spermatogonial stem cells. Asian J. Androl. 23, 590–599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C., L.M.M., V.G. and V.C. researched data for the article. R. Cannarella, S.L.V. and A.E.C. contributed substantially to discussion of the content. R. Curto wrote the article. R. Cannarella, R.A.C. and A.E.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Rossella Cannarella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Eileen McLaughlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannarella, R., Crafa, A., Curto, R. et al. Human sperm RNA in male infertility. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00920-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00920-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing