Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neoadjuvant lutetium PSMA, the TIME and immune response in high-risk localized prostate cancer

Abstract

High-risk localized prostate cancer remains a lethal disease with high rates of recurrence, metastases and death, despite attempts at curative local treatment including surgery. Disease recurrence is thought to be a result of failure of local control and occult micrometastases. Neoadjuvant strategies before surgery have been effective in many cancers, but, to date, none has worked in this setting for prostate cancer. Prostate-specific membrane antigen (PSMA)-based theranostics is an exciting and rapidly evolving field in prostate cancer. The novel intravenous radionuclide therapy, [177Lu]Lu-PSMA-617 (lutetium PSMA) has been shown to be effective in treating men with metastatic castration-resistant prostate cancer, targeting cells expressing PSMA throughout the body. When given in a neoadjuvant setting, lutetium PSMA might also improve long-term oncological outcomes in men with high-risk localized disease. A component of radiotherapy is potentially an immunogenic form of cancer cell death. Lutetium PSMA could cause cancer cell death, resulting in release of tumour antigens and induction of a tumour-specific systemic immune response. This targeted radioligand treatment has the potential to treat local and systemic tumour sites by directly targeting cells that express PSMA, but might also act indirectly via this systemic immune response. In selected patients, lutetium PSMA could potentially be combined with systemic immunotherapies to augment the antitumour T cell response, and this might produce long-lasting immunity in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiotherapy induces immunogenic cell death and T cell responses to tumour antigen.
Fig. 2: Potential for an immunogenic response to systemic lutetium PSMA treatment.

Similar content being viewed by others

References

  1. Bandini, M. et al. Neoadjuvant and adjuvant treatment in high-risk prostate cancer. Expert Rev. Clin. Pharmacol. 11, 425–438 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. James, N. D. et al. The Lancet Commission on prostate cancer: planning for the surge in cases. Lancet 403, 1683–1722 (2024).

    Article  PubMed  Google Scholar 

  3. Sandhu, S. et al. Prostate cancer. Lancet 398, 1075–1090 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Evans, S. M. et al. Patterns of care for men diagnosed with prostate cancer in Victoria from 2008 to 2011. Med. J. Aust. 198, 540–545 (2013).

    Article  PubMed  Google Scholar 

  5. Chang, A. J., Autio, K. A., Roach, M. & Scher, H. I. High-risk prostate cancer – classification and therapy. Nat. Rev. Clin. Oncol. 11, 308–323 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eggener, S. E. et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J. Urol. 185, 869–875 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rider, J. R. et al. Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur. Urol. 63, 88–96 (2013).

    Article  PubMed  Google Scholar 

  8. Zumsteg, Z. S. et al. The natural history and predictors of outcome following biochemical relapse in the dose escalation era for prostate cancer patients undergoing definitive external beam radiotherapy. Eur. Urol. 67, 1009–1016 (2015).

    Article  PubMed  Google Scholar 

  9. Ferrari, A. C. et al. Molecular load of pathologically occult metastases in pelvic lymph nodes is an independent prognostic marker of biochemical failure after localized prostate cancer treatment. J. Clin. Oncol. 24, 3081–3088 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lou, D. Y. & Fong, L. Neoadjuvant therapy for localized prostate cancer: examining mechanism of action and efficacy within the tumor. Urol. Oncol. 34, 182–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Weber, W. A. et al. What is theranostics? J. Nucl. Med. 64, 669–670 (2023).

    Article  PubMed  Google Scholar 

  12. Bostwick, D. G., Pacelli, A., Blute, M., Roche, P. & Murphy, G. P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82, 2256–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. O’Keefe, D. S., Bacich, D. J., Huang, S. S. & Heston, W. D. W. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J. Nucl. Med. 59, 1007–1013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sweat, S. D., Pacelli, A., Murphy, G. P. & Bostwick, D. G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52, 637–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Calopedos, R. J. S., Chalasani, V., Asher, R., Emmett, L. & Woo, H. H. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 20, 352–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Fallah, J. et al. FDA approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 29, 1651–1657 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofman, M. S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Versluis, J. M., Long, G. V. & Blank, C. U. Learning from clinical trials of neoadjuvant checkpoint blockade. Nat. Med. 26, 475–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Emens, L. A. et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 81, 116–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Rodríguez-Ruiz, M. E., Vanpouille-Box, C., Melero, I., Formenti, S. C. & Demaria, S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 39, 644–655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Denham, J. W. et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12, 451–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Pietzak, E. J. & Eastham, J. A. Neoadjuvant treatment of high-risk, clinically localized prostate cancer prior to radical prostatectomy. Curr. Urol. Rep. 17, 37 (2016).

    Article  PubMed  Google Scholar 

  25. Tosco, L. et al. Systematic review of systemic therapies and therapeutic combinations with local treatments for high-risk localized prostate cancer. Eur. Urol. 75, 44–60 (2019).

    Article  PubMed  Google Scholar 

  26. Aus, G. et al. Three-month neoadjuvant hormonal therapy before radical prostatectomy: a 7-year follow-up of a randomized controlled trial. BJU Int. 90, 561–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Dalkin, B. L., Ahmann, F. R., Nagle, R. & Johnson, C. S. Randomized study of neoadjuvant testicular androgen ablation therapy before radical prostatectomy in men with clinically localized prostate cancer. J. Urol. 155, 1357–1360 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Gleave, M. E. et al. Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical prostatectomy: biochemical and pathological effects. J. Urol. 166, 500–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Klotz, L. H. et al. Long-term followup of a randomized trial of 0 versus 3 months of neoadjuvant androgen ablation before radical prostatectomy. J. Urol. 170, 791–794 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Labrie, F. et al. Neoadjuvant hormonal therapy: the Canadian experience. Urology 49, 56–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Schulman, C. C., Debruyne, F. M. J. & Forster, G. 4-Year follow-up results of a European prospective randomized study on neoadjuvant hormonal therapy prior to radical prostatectomy in T2–3N0M0 prostate cancer. European Study Group on Neoadjuvant Treatment of Prostate Cancer. Eur. Urol. 38, 706–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Selli, C. et al. Effects of complete androgen blockade for 12 and 24 weeks on the pathological stage and resection margin status of prostate cancer. J. Clin. Pathol. 55, 508–513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soloway, M. S. et al. Neoadjuvant androgen ablation before radical prostatectomy in cT2bNxMo prostate cancer: 5-year results. J. Urol. 167, 112–116 (2002).

    Article  PubMed  Google Scholar 

  34. van der Kwast, T. H. et al. Prolonged neoadjuvant combined androgen blockade leads to a further reduction of prostatic tumor volume: three versus six months of endocrine therapy. Urology 53, 523–529 (1999).

    Article  PubMed  Google Scholar 

  35. Yee, D. S. et al. Long-term follow-up of 3-month neoadjuvant hormone therapy before radical prostatectomy in a randomized trial. BJU Int. 105, 185–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Shelley, M. D. et al. A systematic review and meta-analysis of randomised trials of neo-adjuvant hormone therapy for localised and locally advanced prostate carcinoma. Cancer Treat. Rev. 35, 9–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Febbo, P. G. et al. Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin. Cancer Res. 11, 5233–5240 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ross, R. W. et al. Phase 2 study of neoadjuvant docetaxel plus bevacizumab in patients with high-risk localized prostate cancer: a Prostate Cancer Clinical Trials Consortium trial. Cancer 118, 4777–4784 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Vuky, J. et al. Phase II trial of neoadjuvant docetaxel and CG1940/CG8711 followed by radical prostatectomy in patients with high-risk clinically localized prostate cancer. Oncologist 18, 687–688 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eastham, J. A. et al. Cancer and Leukemia Group B 90203 (Alliance): radical prostatectomy with or without neoadjuvant chemohormonal therapy in localized, high-risk prostate cancer. J. Clin. Oncol. 38, 3042–3050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Montgomery, B. et al. Neoadjuvant enzalutamide prior to prostatectomy. Clin. Cancer Res. 23, 2169–2176 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Fong, L. et al. Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J. Natl Cancer Inst. 106, dju268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Taplin, M.-E. et al. Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: results of a randomized phase II neoadjuvant study. J. Clin. Oncol. 32, 3705–3715 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shenderov, E. et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat. Med. 29, 888–897 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devos, G. et al. ARNEO: a randomized phase II trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer. Eur. Urol. 83, 508–518 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Sargos, P. et al. Oncologic impact and safety of pre-operative radiotherapy in localized prostate and bladder cancer: a comprehensive review from the Cancerology Committee of the Association Française d’Urologie. Cancers 13, 6070 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammer, L. et al. A phase I trial of neoadjuvant stereotactic body radiotherapy prior to radical prostatectomy for locally advanced prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 115, 132–141 (2023).

    Article  PubMed  Google Scholar 

  48. Taplin, M.-E. et al. PROTEUS: a randomized, double-blind, placebo (PBO)-controlled, phase 3 trial of apalutamide (APA) plus androgen deprivation therapy (ADT) versus PBO plus ADT prior to radical prostatectomy (RP) in patients with localized high-risk or locally advanced prostate cancer (PC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), TPS5100 (2019).

    Article  Google Scholar 

  49. Emmett, L. et al. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 64, 52–60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ferrier, M. G. & Radchenko, V. An appendix of radionuclides used in targeted alpha therapy. J. Med Imaging Radiat. Sci. 50, S58–S65 (2019).

    Article  PubMed  Google Scholar 

  51. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson, S. Radionuclide therapies in prostate cancer: integrating radium-223 in the treatment of patients with metastatic castration-resistant prostate cancer. Curr. Oncol. Rep. 18, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fahey, F. H., Grant, F. D. & Thrall, J. H. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 4, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zenda, S. et al. Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int. J. Clin. Oncol. 19, 739–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Dearnaley, D. P. et al. Palliation of bone metastases in prostate cancer. Hemibody irradiation or strontium-89? Clin. Oncol. 4, 101–107 (1992).

    Article  CAS  Google Scholar 

  56. Dolezal, J., Vizda, J. & Odrazka, K. Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer. Urol. Int. 78, 50–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. van Dodewaard-de Jong, J. M. et al. A randomised, phase II study of repeated rhenium-188-HEDP combined with docetaxel and prednisone versus docetaxel and prednisone alone in castration-resistant prostate cancer (CRPC) metastatic to bone; the Taxium II trial. Eur. J. Nucl. Med. Mol. Imaging 44, 1319–1327 (2017).

    Article  PubMed  Google Scholar 

  58. Kong, G., Buteau, J. & Hofman, M. S. Is 161Tb really happening? J. Nucl. Med. 65, 686–687 (2024).

    Article  PubMed  Google Scholar 

  59. Alcocer-Ávila, M. E. et al. Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases. EJNMMI Phys. 7, 33 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. [No authors listed] EANM’23 abstract book congress Sep 9-13, 2023. Eur. J. Nucl. Med. Mol. Imaging 50, 1–898 (2023).

    Article  Google Scholar 

  61. Violet, J. et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J. Nucl. Med. 60, 517–523 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Jackson, P., Hofman, M., McIntosh, L., Buteau, J. P. & Ravi Kumar, A. Radiation dosimetry in 177Lu-PSMA-617 therapy. Semin. Nucl. Med. 52, 243–254 (2022).

    Article  PubMed  Google Scholar 

  63. Fendler, W. P., Rahbar, K., Herrmann, K., Kratochwil, C. & Eiber, M. 177Lu-PSMA radioligand therapy for prostate cancer. J. Nucl. Med. 58, 1196–1200 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Kratochwil, C. et al. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 50, 2830–2845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hofman, M. S. et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 19, 825–833 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Violet, J. et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J. Nucl. Med. 61, 857–865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tilki, D. et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. Part II – 2024 update: treatment of relapsing and metastatic prostate cancer. Eur. Urol., https://doi.org/10.1016/j.eururo.2024.04.010 (2024).

    Article  PubMed  Google Scholar 

  68. Schaeffer, E. M. et al. Prostate cancer, version 4.2023, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 21, 1067–1096 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Seifert, R. et al. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving 177Lu-PSMA-617 radioligand therapy. Theranostics 10, 7812–7820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buteau, J. P. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 23, 1389–1397 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Eapen, R. S. et al. Administering [177Lu]Lu-PSMA-617 prior to radical prostatectomy in men with high-risk localised prostate cancer (LuTectomy): a single-centre, single-arm, phase 1/2 study. Eur. Urol. 85, 217–226 (2023).

    Article  PubMed  Google Scholar 

  72. Golan, S. et al. Neoadjuvant 177Lu-PSMA-I&T radionuclide treatment in patients with high-risk prostate cancer before radical prostatectomy: a single-arm phase 1 trial. Eur. Urol. Oncol. 6, 151–159 (2022).

    Article  PubMed  Google Scholar 

  73. Beddok, A., Lim, R., Thariat, J., Shih, H. A. & El Fakhri, G. A comprehensive primer on radiation oncology for non-radiation oncologists. Cancers 15, 4906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, B., Yee, C. & Lee, K.-M. The effect of radiation on the immune response to cancers. Int. J. Mol. Sci. 15, 927–943 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ollivier, L., Labbé, M., Fradin, D., Potiron, V. & Supiot, S. Interaction between modern radiotherapy and immunotherapy for metastatic prostate cancer. Front. Oncol. 11, 744679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Demaria, S., Golden, E. B. & Formenti, S. C. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 1, 1325–1332 (2015).

    Article  PubMed  Google Scholar 

  77. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Friedman, E. J. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr. Pharm. Des. 8, 1765–1780 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  80. Golden, E. B., Pellicciotta, I., Demaria, S., Barcellos-Hoff, M. H. & Formenti, S. C. The convergence of radiation and immunogenic cell death signaling pathways. Front. Oncol. 2, 88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Toulany, M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes 10, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chajon, E., Castelli, J., Marsiglia, H. & De Crevoisier, R. The synergistic effect of radiotherapy and immunotherapy: a promising but not simple partnership. Crit. Rev. Oncol. Hematol. 111, 124–132 (2017).

    Article  PubMed  Google Scholar 

  83. Lauber, K., Ernst, A., Orth, M., Herrmann, M. & Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol. 2, 116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Turgeon, G.-A., Weickhardt, A., Azad, A. A., Solomon, B. & Siva, S. Radiotherapy and immunotherapy: a synergistic effect in cancer care. Med. J. Aust. 210, 47–53 (2019).

    Article  PubMed  Google Scholar 

  85. Siva, S., MacManus, M. P., Martin, R. F. & Martin, O. A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 356, 82–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Mole, R. H. Whole body irradiation – radiobiology or medicine? BJR Suppl. 26, 234–241 (1953).

    Article  CAS  Google Scholar 

  87. MacManus, M. P. et al. Abscopal regressions of lymphoma after involved-site radiation therapy confirmed by positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 108, 204–211 (2020).

    Article  PubMed  Google Scholar 

  88. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spiotto, M., Fu, Y.-X. & Weichselbaum, R. R. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci. Immunol. 1, EAAG1266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Invest. 131, e138740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gupta, A. et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 189, 558–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khoo, L. T. & Chen, L.-Y. Role of the cGAS–STING pathway in cancer development and oncotherapeutic approaches. EMBO Rep. 19, e46935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Clarke, C. & Smyth, M. J. Calreticulin exposure increases cancer immunogenicity. Nat. Biotechnol. 25, 192–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. McBride, W. H. et al. A sense of danger from radiation. Radiat. Res. 162, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  102. Seyedin, S. N. et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy 7, 967–980 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kwan, E. M. et al. Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: the phase 2 ICE-PAC clinical trial. Eur. Urol. 81, 253–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Chatta, G. S. et al. Tumor infiltrating dendritic cells (DC) in prostate cancer (PCa): implications for vaccine therapy [abstract]. J. Clin. Oncol. 23 (Suppl. 16), 4674 (2005).

    Article  Google Scholar 

  108. Merrick, A. et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br. J. Cancer 92, 1450–1458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73, 2782–2794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yin, Z., Li, C., Wang, J. & Xue, L. Myeloid-derived suppressor cells: roles in the tumor microenvironment and tumor radiotherapy. Int. J. Cancer 144, 933–946 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Formenti, S. C. & Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 10, 718–726 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sia, J. et al. Regulatory T cells shape the differential impact of radiation dose-fractionation schedules on host innate and adaptive antitumor immune defenses. Int. J. Radiat. Oncol. Biol. Phys. 111, 502–514 (2021).

    Article  PubMed  Google Scholar 

  114. Mempel, T. R., Lill, J. K. & Altenburger, L. M. How chemokines organize the tumour microenvironment. Nat. Rev. Cancer 24, 28–50 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Kohli, K., Pillarisetty, V. G. & Kim, T. S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 29, 10–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Mondini, M. et al. CCR2-dependent recruitment of Tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance. Cancer Immunol. Res 7, 376–387 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Nishikawa, H. & Koyama, S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J. Immunother. Cancer 9, e002591 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barcellos-Hoff, M. H., Derynck, R., Tsang, M. L. & Weatherbee, J. A. Transforming growth factor-beta activation in irradiated murine mammary gland. J. Clin. Invest. 93, 892–899 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gonzalez-Junca, A. et al. Autocrine TGFβ is a survival factor for monocytes and drives immunosuppressive lineage commitment. Cancer Immunol. Res. 7, 306–320 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Barcellos-Hoff, M. H. The radiobiology of TGFβ. Semin. Cancer Biol. 86, 857–867 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Colak, S. & Ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer Res 3, 56–71 (2017).

    Article  CAS  Google Scholar 

  123. Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J. & Driscoll, J. J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lan, Y. et al. Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell 39, 1388–1403.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Shou, M., Zhou, H. & Ma, L. New advances in cancer therapy targeting TGF-β signaling pathways. Mol. Ther. Oncolytics 31, 100755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang, N. et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Noh, K.-E. et al. TGF-β/IL-7 chimeric switch receptor-expressing CAR-T cells inhibit recurrence of CD19-positive B cell lymphoma. Int. J. Mol. Sci. 22, 8706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vitkin, N., Nersesian, S., Siemens, D. R. & Koti, M. The tumor immune contexture of prostate cancer. Front. Immunol. 10, 603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Calagua, C. et al. A subset of localized prostate cancer displays an immunogenic phenotype associated with losses of key tumor suppressor genes. Clin. Cancer Res. 27, 4836–4847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Weiner, A. B. et al. Plasma cells are enriched in localized prostate cancer in Black men and are associated with improved outcomes. Nat. Commun. 12, 935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Keam, S. P. et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J. Immunother. Cancer 8, e000792 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dhatchinamoorthy, K., Colbert, J. D. & Rock, K. L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 636568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Yenyuwadee, S., Sanchez-Trincado Lopez, J. L., Shah, R., Rosato, P. C. & Boussiotis, V. A. The evolving role of tissue-resident memory T cells in infections and cancer. Sci. Adv. 8, eabo5871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Prostate Cancer Foundation through their Young Investigator Award. The LuTectomy trial was funded by the Movember Foundation, the Australian Government Medical Research Future Fund (MRFF) with contribution from the EJ Whitten Foundation and Novartis. PSMA-617 was supplied by Novartis and no carrier added 177Lu by the Australian Nuclear Science and Technology Organisation (ANSTO). Finally, they thank the patients who participated in the LuTectomy clinical trial and the staff involved in the study from numerous departments at the Peter MacCallum Cancer Centre, Melbourne.

Author information

Authors and Affiliations

Authors

Contributions

R.S.E., M.S.H., D.G.M. and P.J.N. researched data for the article. R.S.E., S.G.W., S.P.K., M.S.H., D.G.M. and P.J.N. contributed substantially to discussion of the content. R.S.E., S.G.W., M.S.H., D.G.M. and P.J.N. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Renu S. Eapen or Paul J. Neeson.

Ethics declarations

Competing interests

R.S.E. is supported through the Prostate Cancer Foundation (PCF) Michael and Lori Milken Young Investigator Award. She reports honorarium for advisory board and speaker activity from Janssen, Bayer, Astellas, AstraZeneca, Ipsen, MSD, MDI and Amgen. L.A. reports honorarium from Bristol Myers Squibb (BMS), Eisai and Ipsen. M.S.H. reports philanthropic/government grant support from PCF funded by CANICA Oslo Norway, Peter MacCallum Foundation, Medical Research Future Fund, NHMRC Investigator Grant, Movember, US Department of Defence and the Prostate Cancer Foundation of Australia. D.G.M. reports reimbursement for advisory board and speaker activity from Janssen, Bayer, AstraZeneca, Ipsen and Ferring. P.J.N. reports research funding from BMS, Roche Genentech, MSD, Crispr therapeutics and Allergan. There was no impact on this work from other interests.

Peer review

Peer review information

Nature Reviews Urology thanks Riccardo Laudicella and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eapen, R.S., Williams, S.G., Macdonald, S. et al. Neoadjuvant lutetium PSMA, the TIME and immune response in high-risk localized prostate cancer. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00913-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00913-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research