Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From foes to friends: rethinking the role of lymph nodes in prostate cancer

Abstract

Clinically localized prostate cancer is often treated with radical prostatectomy combined with pelvic lymph node dissection. Data suggest that lymph node dissection does improve disease staging, but its therapeutic value has often been debated, with few studies showing that lymph node removal directly improves oncological outcomes; however, lymph nodes are an important first site of antigen recognition and immune system activation and the success of many currently used immunological therapies hinges on this dogma. Evidence, particularly in the preclinical setting, has demonstrated that the success of immune checkpoint inhibitors is dampened by the removal of tumour-draining lymph nodes. Thus, whether lymph nodes are truly ‘foes’ or whether they are actually ‘friends’ in oncological care is an important idea to discuss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pelvic lymph node stations.
Fig. 2: The role of lymphatics in promoting cancer cell dissemination.
Fig. 3: The cancer–immunity cycle and prostate cancer.
Fig. 4: A novel schema for the categorization of pelvic lymph nodes.

Similar content being viewed by others

References

  1. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

    Article  PubMed  Google Scholar 

  2. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    Article  PubMed  Google Scholar 

  3. Abdollah, F. et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur. Urol. 67, 212–219 (2015).

    Article  PubMed  Google Scholar 

  4. Deng, J. Y. & Liang, H. Clinical significance of lymph node metastasis in gastric cancer. World J. Gastroenterol. 20, 3967–3975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Song, Y. J. et al. The role of lymphovascular invasion as a prognostic factor in patients with lymph node-positive operable invasive breast cancer. J. Breast Cancer 14, 198–203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murakami, Y. et al. Number of metastatic lymph nodes, but not lymph node ratio, is an independent prognostic factor after resection of pancreatic carcinoma. J. Am. Coll. Surg. 211, 196–204 (2010).

    Article  PubMed  Google Scholar 

  7. Pereira, E. R., Jones, D., Jung, K. & Padera, T. P. The lymph node microenvironment and its role in the progression of metastatic cancer. Semin. Cell Dev. Biol. 38, 98–105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. du Bois, H., Heim, T. A. & Lund, A. W. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6, eabg3551 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gervasoni, J. E. Jr., Sbayi, S. & Cady, B. Role of lymphadenectomy in surgical treatment of solid tumors: an update on the clinical data. Ann. Surg. Oncol. 14, 2443–2462 (2007).

    Article  PubMed  Google Scholar 

  10. Moschini, M. et al. Determinants of long-term survival of patients with locally advanced prostate cancer: the role of extensive pelvic lymph node dissection. Prostate Cancer Prostatic Dis. 19, 63–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Bivalacqua, T. J. et al. Anatomic extent of pelvic lymph node dissection: impact on long-term cancer-specific outcomes in men with positive lymph nodes at time of radical prostatectomy. Urology 82, 653–658 (2013).

    Article  PubMed  Google Scholar 

  12. Joslyn, S. A. & Konety, B. R. Impact of extent of lymphadenectomy on survival after radical prostatectomy for prostate cancer. Urology 68, 121–125 (2006).

    Article  PubMed  Google Scholar 

  13. Engel, J. et al. Survival benefit of radical prostatectomy in lymph node-positive patients with prostate cancer. Eur. Urol. 57, 754–761 (2010).

    Article  PubMed  Google Scholar 

  14. Chen, J. et al. Pelvic lymph node dissection and its extent on survival benefit in prostate cancer patients with a risk of lymph node invasion >5%: a propensity score matching analysis from SEER database. Sci. Rep. 9, 17985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fossati, N. et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur. Urol. 72, 84–109 (2017).

    Article  PubMed  Google Scholar 

  16. Nocera, L. et al. Rate and extent of pelvic lymph node dissection in the US prostate cancer patients treated with radical prostatectomy. Clin. Genitourin. Cancer 16, e451–e467 (2018).

    Article  PubMed  Google Scholar 

  17. Lowrance, W. T. et al. Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J. Urol. 187, 2087–2092, (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fransen, M. F., van Hall, T. & Ossendorp, F. Immune checkpoint therapy: tumor draining lymph nodes in the spotlights. Int. J. Mol. Sci. 22, 9401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fransen, M. F., Arens, R. & Melief, C. J. Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment. Int. J. Cancer 132, 1971–1976 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher, A. L. & Heng, T. S. Lymph node stroma join the cancer support network. Cell Death Differ. 23, 1899–1901 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Pul, K. M., Fransen, M. F., van de Ven, R. & de Gruijl, T. D. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front. Immunol. 12, 643291 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  24. Cochran, A. J. et al. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6, 659–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Loeb, S., Partin, A. W. & Schaeffer, E. M. Complications of pelvic lymphadenectomy: do the risks outweigh the benefits? Rev. Urol. 12, 20–24 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Briganti, A. et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur. Urol. 50, 1006–1013 (2006).

    Article  PubMed  Google Scholar 

  27. Epstein, J. I. et al. Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and pelvic lymphadenectomy specimens. Scand. J. Urol. Nephrol. Suppl. 34–63 (2005).

  28. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974, (1998).

    Article  PubMed  Google Scholar 

  29. Cagiannos, I. et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J. Urol. 170, 1798–1803 (2003).

    Article  PubMed  Google Scholar 

  30. Partin, A. W. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 150, 110–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Briganti, A. et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur. Urol. 61, 480–487 (2012).

    Article  PubMed  Google Scholar 

  32. Martini, A. et al. Unilateral pelvic lymph node dissection in prostate cancer patients diagnosed in the era of magnetic resonance imaging-targeted biopsy: a study that challenges the dogma. J. Urol. 210, 117–127 (2023).

    Article  PubMed  Google Scholar 

  33. Cheng, L. et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer 91, 66–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Gervasi, L. A. et al. Prognostic significance of lymph nodal metastases in prostate cancer. J. Urol. 142, 332–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Muteganya, R., Goldman, S., Aoun, F., Roumeguere, T. & Albisinni, S. Current imaging techniques for lymph node staging in prostate cancer: a review. Front. Surg. 5, 74 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hovels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63, 387–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Harbin, A. C. & Eun, D. D. The role of extended pelvic lymphadenectomy with radical prostatectomy for high-risk prostate cancer. Urol. Oncol. 33, 208–216 (2015).

    Article  PubMed  Google Scholar 

  38. Gil-Vernet, J. M. Prostate cancer: anatomical and surgical considerations. Br. J. Urol. 78, 161–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X., Zhang, G., Wang, J. & Bi, J. Different lymph node dissection ranges during radical prostatectomy for patients with prostate cancer: a systematic review and network meta-analysis. World J. Surg. Oncol. 21, 80 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Namiki, S. et al. Pelvic lymphadenectomy may not improve biochemical recurrence-free survival in patients with prostate cancer treated with robot-assisted radical prostatectomy in Japan (The MSUG94 Group). Cancers 14, 5803 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Touijer, K. A. et al. Limited versus extended pelvic lymph node dissection for prostate cancer: a randomized clinical trial. Eur. Urol. Oncol. 4, 532–539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kawakami, J. et al. Changing patterns of pelvic lymphadenectomy for prostate cancer: results from CaPSURE. J. Urol. 176, 1382–1386 (2006).

    Article  PubMed  Google Scholar 

  43. Karlsson, M. C., Gonzalez, S. F., Welin, J. & Fuxe, J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol. Oncol. 11, 781–791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russo, E. et al. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep. 14, 1723–1734 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Borsig, L., Wolf, M. J., Roblek, M., Lorentzen, A. & Heikenwalder, M. Inflammatory chemokines and metastasis–tracing the accessory. Oncogene 33, 3217–3224 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kerjaschki, D. et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J. Clin. Invest. 121, 2000–2012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shao, L., Ouchi, T., Sakamoto, M., Mori, S. & Kodama, T. Activation of latent metastases in the lung after resection of a metastatic lymph node in a lymph node metastasis mouse model. Biochem. Biophys. Res. Commun. 460, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Buettner, M. & Bode, U. Lymph node dissection — understanding the immunological function of lymph nodes. Clin. Exp. Immunol. 169, 205–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stranford, S. & Ruddle, N. H. Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: parallels with lymph node stroma. Front. Immunol. 3, 350 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a glance — how spatial organization optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marzo, A. L. et al. Tumor antigens are constitutively presented in the draining lymph nodes. J. Immunol. 162, 5838–5845 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Baker, S. J. & Reddy, E. P. Understanding the temporal sequence of genetic events that lead to prostate cancer progression and metastasis. Proc. Natl Acad. Sci. USA 110, 14819–14820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Schrama, D., Ritter, C. & Becker, J. C. T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin. Immunopathol. 39, 255–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Drake, C. G. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 10, 580–593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hicklin, D. J., Marincola, F. M. & Ferrone, S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol. Med. Today 5, 178–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35, S185–S198 (2015).

    Article  PubMed  Google Scholar 

  62. Goldberg, M. V. et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110, 186–192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsushima, F. et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 110, 180–185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nicholson, L. T. & Fong, L. Immune checkpoint inhibition in prostate cancer. Trends Cancer 6, 174–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Francis, D. M. & Thomas, S. N. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv. Drug. Deliv. Rev. 114, 33–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nair, S. S., Weil, R., Dovey, Z., Davis, A. & Tewari, A. K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North. Am. 47, e17–e54 (2020).

    Article  PubMed  Google Scholar 

  68. Nair, S. S., Chakravarty, D., Patel, V., Bhardwaj, N. & Tewari, A. K. Genitourinary cancer neoadjuvant therapies: current and future approaches. Trends Cancer 9, 1041–1057 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Noori, M. et al. Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: a systematic review and meta-analysis. Front. Immunol. 14, 1181051 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Kleinovink, J. W. et al. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncoimmunology 6, e1294299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 1708 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Haffner, M. C. et al. Comprehensive evaluation of programmed death-ligand 1 expression in primary and metastatic prostate cancer. Am. J. Pathol. 188, 1478–1485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seliger, B. et al. Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunol. Immunother. 59, 529–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Koster, B. D. et al. Local adjuvant treatment with low-dose CpG-B Offers durable protection against disease recurrence in clinical stage I–II melanoma: data from two randomized phase II trials. Clin. Cancer Res. 23, 5679–5686 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Drake, C. G. in Neoadjuvant Immunotherapy Treatment of Localized Genitourinary Cancers: Multidisciplinary Management (eds Necchi, A. & Spiess, P. E.) 133–143 (Springer, 2022).

  81. Abdul Sater, H. et al. Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer. J. Immunother. Cancer 8, e000655 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chalabi, M. et al. LBA7 neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: the NICHE-2 study. Ann. Oncol. 33, S1389 (2022).

    Article  Google Scholar 

  83. Heymach, J. V. et al. Perioperative durvalumab for resectable non–small-cell lung cancer. N. Engl. J. Med. 389, 1672–1684 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Basile, G. et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial. Clin. Cancer Res. 28, 5107–5114 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mittendorf, E. A. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396, 1090–1100 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Nair, S. S. et al. Abstract CT096: phase I study of in situ autologous vaccination for prostate cancer in a neo-adjuvant setting. Cancer Res. 79, CT096–CT096 (2019).

    Article  Google Scholar 

  92. Nair, S. S. et al. Abstract CT023: prostate cancer in situ autovaccination with the intratumoral viral mimic poly-ICLC: making a cold tumor hot. Cancer Res. 84, CT023–CT023 (2024).

    Article  Google Scholar 

  93. Matsumoto, M. & Seya, T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv. Drug. Deliv. Rev. 60, 805–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Baxevanis, C. N., Fortis, S. P. & Perez, S. A. Prostate cancer: any room left for immunotherapies? Immunotherapy 11, 69–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, J. et al. Safety of neoadjuvant immunotherapy in resectable cancers: a meta-analysis. Front. Immunol. 13, 802672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fransen, M. F., Sluijter, M., Morreau, H., Arens, R. & Melief, C. J. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin. Cancer Res. 17, 2270–2280 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Maurer, T., Eiber, M., Schwaiger, M. & Gschwend, J. E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  104. Pienta, K. J. et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206, 52–61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. van Leeuwen, F. W. B. et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat. Rev. Urol. 16, 159–171 (2019).

    Article  PubMed  Google Scholar 

  107. Jilg, C. A. et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics 7, 1770–1780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wawroschek, F. et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol. Int. 70, 303–310 (2003).

    Article  PubMed  Google Scholar 

  109. Dell’Oglio, P. et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur. Urol. 79, 124–132 (2021).

    Article  PubMed  Google Scholar 

  110. Muraglia, L. et al. Prostate-specific membrane antigen (PSMA) radioguided surgery in prostate cancer: an overview of current application and future perspectives. Clin. Transl. Imaging 11, 255–261 (2023).

    Article  Google Scholar 

  111. Collamati, F. et al. First-in-human validation of a DROP-IN β-probe for robotic radioguided surgery: defining optimal signal-to-background discrimination algorithm. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-024-06653-6 (2024).

  112. Obradovic, A. Z. et al. T-cell infiltration and adaptive Treg resistance in response to androgen deprivation with or without vaccination in localized prostate cancer. Clin. Cancer Res. 26, 3182–3192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fear, V. S. et al. Tumour draining lymph node-generated CD8 T cells play a role in controlling lung metastases after a primary tumour is removed but not when adjuvant immunotherapy is used. Cancer Immunol. Immunother. 70, 3249–3258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. P. Padera for his kind review of and contributions to the intellectual content contained within this manuscript. They thank B. Halasz for her help conceptualizing the figures.

Author information

Authors and Affiliations

Authors

Contributions

R.G., C.K.D. and S.S.N. researched data for the article. R.G., C.K.D., S.S.N., A.M.P.-B. and A.K.T. contributed substantially to discussion of the content. R.G., C.K.D., S.S.N. and A.M.P.-B. wrote the article. A.H.Z., N.K., N.B. and A.K.T. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ashutosh K. Tewari.

Ethics declarations

Competing interests

N.K. serves on the advisory board for Onconox Inc. and has received funding from the NCI/NIH for her grant: R01 CA232574-01A1. N.B. is an extramural member of the Parker Institute for Cancer Immunotherapy, Carisma Therapeutics, Curevac, Genotwin, Novartis, Primevax, Rome Therapeutics and Tempest Therapeutics. N.B. receives research funds from Dragonfly Therapeutics, Harbour Biomed Sciences, Regeneron Pharmaceuticals Inc. and the Ludwig Institute for Cancer Research. A.K.T. has served as a site-PI on sponsored clinical trials from Kite Pharma Inc., Lumicell Inc., Dendron Pharmaceuticals, LLC., Oncovir Inc., Blue Earth Diagnostics Ltd., RhoVac ApS., Bayer HealthCare Pharmaceuticals Inc. and Janssen Research and Development, LLC. A.K.T. has also served as an unpaid consultant to Roivant Biosciences and as an adviser to Promaxo. He owns equity in Promaxo. R.G., C.K.D., S.S.N., A.M.P.-B. and A.H.Z. declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Marco Moschini and Masaki Shiota for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Das, C.K., Nair, S.S. et al. From foes to friends: rethinking the role of lymph nodes in prostate cancer. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00912-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00912-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing