Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer

Abstract

Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity — including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment — affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.

Key points

  • Prostate-specific membrane antigen (PSMA) is an in-demand targetable transmembrane folate hydrolase enzyme used for PET imaging and targeted therapy using α- and β-emitters.

  • PSMA expression is often suppressed in androgen receptor-negative advanced prostate cancers and in liver metastases, presenting a challenge for patient management and a need for alternative theranostic targets for these patients.

  • The PSMA regulatory network comprises a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) promoter, intergenic enhancers and differentially methylated regions.

  • Regardless of PSMA expression levels in tumour tissue, a definition of PSMA positivity using PET is a prerequisite for the use of PSMA-radioligand therapy. Adjunctive companion imaging methods, such as fluorodeoxyglucose-PET or other tracers, might improve patient selection for PSMA-targeted therapies.

  • Our understanding of PSMA heterogeneity is expanding across cellular, tumoural and spatial, inter-patient, intra-patient, intra-lineage, inter-lineage and temporal dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PSMA enzymatic active site and its crosstalk with other signalling pathways in prostate cancer.
Fig. 2: PSMA expression in prostate luminal epithelium.
Fig. 3: GUL-based targeting of the PSMA enzymatic active site in prostate cancer.
Fig. 4: PSMA suppression during progression of prostate cancer.
Fig. 5: Defining PSMA positivity is essential for selecting patients for PSMA-RLT.
Fig. 6: The complexity of PSMA heterogeneity demands a more nuanced approach.
Fig. 7: Genomic and epigenomic features of the PSMA regulatory network.
Fig. 8: Cellular internalization of PSMA and exposure of DNA to radiation following uptake of PSMA-radioligand.

Similar content being viewed by others

References

  1. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  PubMed  Google Scholar 

  2. Polkinghorn, W. R. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3, 1245–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang, K.-H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, K.-H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hussain, M. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378, 2465–2474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis, I. D. et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N. Engl. J. Med. 381, 121–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aggarwal, R. et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 36, 2492–2503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.e476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamada, Y. & Beltran, H. Clinical and biological features of neuroendocrine prostate cancer. Curr. Oncol. Rep. 23, 15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Hofman, M. S. et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 19, 825–833 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Hofman, M. S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Sartor, O. et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buteau, J. P. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 23, 1389–1397 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Chow, K. M. et al. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: a systematic review and meta-analysis. Eur. Urol. 84, 36–48 (2023).

    Article  PubMed  Google Scholar 

  21. Pienta, K. J. et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206, 52–61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. 77, 403–417 (2020).

    Article  PubMed  Google Scholar 

  23. Maurer, T., Eiber, M., Schwaiger, M. & Gschwend, J. E. Current use of PSMA–PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Sartor, O. et al. LBA13 phase III trial of [177Lu]Lu-PSMA-617 in taxane-naive patients with metastatic castration-resistant prostate cancer (PSMAfore). Ann. Oncol. 34, S1324–S1325 (2023).

    Article  Google Scholar 

  25. Bakht, M. K. et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr. Relat. Cancer 26, 131–146 (2019).

    Article  CAS  Google Scholar 

  26. Bakht, M. K. et al. Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for 18F-FDG imaging of PSMA-suppressed tumors. J. Nucl. Med. 61, 904–910 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bakht, M. K. et al. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. Nat. Cancer 4, 699–715 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sayar, E. et al. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight 8, e162907 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  32. Wright, G. L., Haley, C., Beckett, M. L. & Schellhammer, P. F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1, 18–28 (1995).

    Article  PubMed  Google Scholar 

  33. Rahn, K. A., Slusher, B. S. & Kaplin, A. I. Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr. Med. Chem. 19, 1335–1345 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Rahn, K. A. et al. Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc. Natl Acad. Sci. USA 109, 20101–20106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis, M. I., Bennett, M. J., Thomas, L. M. & Bjorkman, P. J. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl Acad. Sci. USA 102, 5981–5986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schülke, N. et al. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl Acad. Sci. USA 100, 12590–12595 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rawlings, N. D. & Barrett, A. J. Structure of membrane glutamate carboxypeptidase. Biochim. Biophys. Acta 1339, 247–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bernstein, L. H., Gutstein, S., Weiner, S. & Efron, G. The absorption and malabsorption of folic acid and its polyglutamates. Am. J. Med. 48, 570–579 (1970).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, R., Diop-Bove, N., Visentin, M. & Goldman, I. D. Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 31, 177–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Figueiredo, J. C. et al. Folic acid and risk of prostate cancer: results from a randomized clinical trial. J. Natl Cancer Inst. 101, 432–435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Yao, V. & Bacich, D. J. Prostate specific membrane antigen (PSMA) expression gives prostate cancer cells a growth advantage in a physiologically relevant folate environment in vitro. Prostate 66, 867–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Reina-Campos, M. et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35, 385–400.e389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaittanis, C. et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J. Exp. Med. 215, 159–175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palamiuc, L. & Emerling, B. M. PSMA brings new flavors to PI3K signaling: a role for glutamate in prostate cancer. J. Exp. Med. 215, 17–19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bakht, M. K. et al. Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proc. Natl Acad. Sci. USA 119, e2025710119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  48. Barron, D. A. & Rowley, D. R. The reactive stroma microenvironment and prostate cancer progression. Endocr. Relat. Cancer 19, R187–R204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chang, S. S. et al. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 5, 2674–2681 (1999).

    CAS  PubMed  Google Scholar 

  51. Conway, R. E. et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis 19, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Pandit-Taskar, N. et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 5, 13 (2015).

    Article  Google Scholar 

  53. Tagawa, S. T. et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer 125, 2561–2569 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Ruggiero, A. et al. Targeting the internal epitope of prostate-specific membrane antigen with 89Zr-7E11 immuno-PET. J. Nucl. Med. 52, 1608–1615 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Eder, M. et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 23, 688–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Ganguly, T. et al. A high-affinity [18F]-labeled phosphoramidate peptidomimetic PSMA-targeted inhibitor for PET imaging of prostate cancer. Nucl. Med. Biol. 42, 780–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rowe, S. P. et al. Prospective evaluation of PSMA-targeted 18F-DCFPyL PET/CT in men with biochemical failure after radical prostatectomy for prostate cancer. J. Nucl. Med. 61, 58–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuten, J. et al. Head-to-head comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in staging prostate cancer using histopathology and immunohistochemical analysis as reference-standard. J. Nucl. Med. 61, 527–532 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Cardinale, J. et al. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals 10, 77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Youn, S. et al. Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: synthesis and structural characterization. Bioorg. Med. Chem. Lett. 25, 5232–5236 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Pavlicek, J., Ptacek, J. & Barinka, C. Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr. Med. Chem. 19, 1300–1309 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Machulkin, A. E. et al. Small-molecule PSMA ligands. Current state, SAR and perspectives. J. Drug. Target. 24, 679–693 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Barinka, C. et al. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J. Med. Chem. 51, 7737–7743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, L. Y. et al. The molecular pruning of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen. Bioorg. Med. Chem. 15, 7434–7443 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Novakova, Z. et al. Unprecedented binding mode of hydroxamate-based inhibitors of glutamate carboxypeptidase II: structural characterization and biological activity. J. Med. Chem. 59, 4539–4550 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Lucaroni, L. et al. Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics. Eur. J. Nucl. Med. Mol. Imaging 50, 957–961 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Bidkar, A. P. et al. Treatment of prostate cancer with CD46-targeted 225Ac alpha particle radioimmunotherapy. Clin. Cancer Res. 29, 1916–1928 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, Z., Heston, W. D., Wang, X. & Basilion, J. P. GCP III is not the “off-target” for urea-based PSMA ligands. Eur. J. Nucl. Med. Mol. Imaging 50, 2944–2946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heynickx, N., Segers, C., Coolkens, A., Baatout, S. & Vermeulen, K. Characterization of non-specific uptake and retention mechanisms of [177Lu]Lu-PSMA-617 in the salivary glands. Pharmaceuticals 16, 692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heynickx, N., Herrmann, K., Vermeulen, K., Baatout, S. & Aerts, A. The salivary glands as a dose limiting organ of PSMA-targeted radionuclide therapy: a review of the lessons learnt so far. Nucl. Med. Biol. 98, 30–39 (2021).

    Article  PubMed  Google Scholar 

  71. Emmett, L. et al. The PRIMARY score: using intraprostatic 68Ga-PSMA PET/CT patterns to optimize prostate cancer diagnosis. J. Nucl. Med. 63, 1644–1650 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wolff, A. C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013).

    Article  PubMed  Google Scholar 

  73. Paschalis, A. et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur. Urol. 76, 469–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuo, P. H., Benson, T., Messmann, R. & Groaning, M. Why we did what we did: PSMA PET/CT selection criteria for the VISION trial. J. Nucl. Med. 63, 816–818 (2022).

    Article  PubMed  Google Scholar 

  75. Seifert, R. et al. Second version of the prostate cancer molecular imaging standardized evaluation framework including response evaluation for clinical trials (PROMISE V2). Eur. Urol. 83, 405–412 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Eiber, M. et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J. Nucl. Med. 59, 469–478 (2018).

    Article  PubMed  Google Scholar 

  77. Saha, G. B. Physics and Radiobiology of Nuclear Medicine (Springer Science & Business Media, 2012).

  78. Calais, J. et al. Safety of PSMA-targeted molecular radioligand therapy with 177Lu-PSMA-617: results from the prospective multicenter phase 2 trial RESIST-PC (NCT03042312). J. Nucl. Med. 62, 1447–1456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnfield, E. G. et al. Clinical insignificance of [18F]PSMA-1007 avid non-specific bone lesions: a retrospective evaluation. Eur. J. Nucl. Med. Mol. Imaging 48, 4495–4507 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, M. Y. et al. Solitary rib lesions showing prostate-specific membrane antigen (PSMA) uptake in pre-treatment staging 68Ga-PSMA-11 positron emission tomography scans for men with prostate cancer: benign or malignant? BJU Int. 126, 396–401 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Le Wen, C. et al. Factors predicting metastatic disease in 68Ga-PSMA-11 PET-positive osseous lesions in prostate cancer. J. Nucl. Med. 61, 1779 (2020).

    Article  Google Scholar 

  82. Tim, E. P. et al. Predicting outcomes of indeterminate bone lesions on 18F-DCFPyL PSMA PET/CT scans in the setting of high-risk primary or recurrent prostate cancer. J. Nucl. Med. 64, 395 (2023).

    Article  Google Scholar 

  83. Guner, L. A. et al. Enhancing PSMA PET/CT imaging of prostate cancer: investigating the impact of multiple time point evaluation, diuretic administration, cribriform pattern, and intraductal carcinoma. Ann. Nucl. Med. 37, 618–628 (2023).

    Article  PubMed  Google Scholar 

  84. Current, K. et al. Investigating PSMA-targeted radioligand therapy efficacy as a function of cellular PSMA levels and intratumoral PSMA heterogeneity. Clin. Cancer Res. 26, 2946–2955 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gafita, A. et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 22, 1115–1125 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Thang, S. P. et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur. Urol. Oncol. 2, 670–676 (2019).

    Article  PubMed  Google Scholar 

  87. Violet, J. et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J. Nucl. Med. 61, 857–865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stylianou, N. et al. A molecular portrait of epithelial-mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene 38, 913–934 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Staniszewska, M. et al. Enzalutamide enhances PSMA expression of PSMA-low prostate cancer. Int. J. Mol. Sci. 22, 7431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bakht, M. K. et al. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: emerging opportunities and challenges. Nucl. Med. Mol. Imaging 51, 202–211 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Meller, B. et al. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 5, 66 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kashyap, A. et al. Quantification of tumor heterogeneity: from data acquisition to metric generation. Trends Biotechnol. 40, 647–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Assadi, M. et al. Predictive and prognostic potential of pretreatment 68Ga-PSMA PET tumor heterogeneity index in patients with metastatic castration-resistant prostate cancer treated with 177Lu-PSMA. Front. Oncol. 12, 1066926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lückerath, K. et al. Detection threshold and reproducibility of 68Ga-PSMA11 PET/CT in a mouse model of prostate cancer. J. Nucl. Med. 59, 1392–1397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nguyen, H. M. et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nyquist, M. D. et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 31, 107669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. K. et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc. Natl Acad. Sci. USA 115, E4473–E4482 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Olivier, P. et al. Phase III study of 18F-PSMA-1007 versus 18F-fluorocholine PET/CT for localization of prostate cancer biochemical recurrence: a prospective, randomized, crossover multicenter study. J. Nucl. Med. 64, 579–585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morgan, R., Wermuth, D., Molina, E. & Perraillon, M. Utilization and cost of radium-223 dichloride (Xofigo®) for treatment of metastatic castration-resistant prostate cancer (mCRPR) in the U.S. Medicare population. J. Nucl. Med. 62, 1309–1309 (2021).

    Google Scholar 

  105. Hoving, H. et al. Early 18F-FDHT PET/CT as a predictor of treatment response in mCRPC treated with enzalutamide. J. Clin. Oncol. 37, 232–232 (2019).

    Article  Google Scholar 

  106. Puca, L. et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med. 11, eaav0891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. O’Donoghue, J. A. et al. Pharmacokinetics and biodistribution of a [89Zr]Zr-DFO-MSTP2109A anti-STEAP1 antibody in metastatic castration-resistant prostate cancer patients. Mol. Pharm. 16, 3083–3090 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bhatia, V. et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat. Commun. 14, 2041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kesch, C. et al. High fibroblast-activation-protein expression in castration-resistant prostate cancer supports the use of FAPI-molecular theranostics. Eur. J. Nucl. Med. Mol. Imaging 49, 385–389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Keefe, D. S. et al. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim. Biophys. Acta 1443, 113–127 (1998).

    Article  PubMed  Google Scholar 

  111. Afshar-Oromieh, A. et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 2045–2054 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Unterrainer, L. et al. Early changes of PSMA PET signal after initiation of androgen receptor signaling inhibitors in mCRPC: an international multicenter retrospective study. J. Clin. Oncol. 41, 5063–5063 (2023).

    Article  Google Scholar 

  113. Tagawa, S. T. et al. PSMAddition: a phase 3 trial to compare treatment with 177Lu-PSMA-617 plus standard of care (SoC) and SoC alone in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 41, TPS5116–TPS5116 (2023).

    Article  Google Scholar 

  114. Emmett, L. et al. [177Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 25, 563–571 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Baca, S. C. et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat. Commun. 12, 1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McMullin, R. P. et al. A FOXA1-binding enhancer regulates Hoxb13 expression in the prostate gland. Proc. Natl Acad. Sci. USA 107, 98–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Watt, F. et al. A tissue-specific enhancer of the prostate-specific membrane antigen gene, FOLH1. Genomics 73, 243–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Giambartolomei, C. et al. H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. Am. J. Hum. Genet. 108, 2284–2300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seifert, R. et al. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving 177Lu-PSMA-617 radioligand therapy. Theranostics 10, 7812–7820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hindié, E. Predicting outcomes after 177Lu-PSMA therapy in castration-resistant prostate cancer. Lancet Oncol. 22, e425 (2021).

    Article  PubMed  Google Scholar 

  121. Wang, Z. et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35, 1209–1226.e1213 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Q. et al. Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J. Natl Cancer Inst. 105, 1463–1473 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, F., Han, Y. & Kang, Y. Bone marrow niches in the regulation of bone metastasis. Br. J. Cancer 124, 1912–1920 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Uwe, H., Frederik, G., Alfred, M. & Clemens, K. The future of radioligand therapy: α, β, or both? J. Nucl. Med. 58, 1017 (2017).

    Article  Google Scholar 

  127. Kostos, L. et al. AlphaBet: combination of radium-223 and [17 7Lu]Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front. Med. 9, 1059122 (2022).

    Article  Google Scholar 

  128. Rajasekaran, S. A. et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell 14, 4835–4845 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ghosh, A. & Heston, W. D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell Biochem. 91, 528–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, H. et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 58, 4055–4060 (1998).

    CAS  PubMed  Google Scholar 

  131. Anilkumar, G. et al. Association of prostate-specific membrane antigen with caveolin-1 and its caveolae-dependent internalization in microvascular endothelial cells: implications for targeting to tumor vasculature. Microvasc. Res. 72, 54–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Goodman et al. Interaction of prostate specific membrane antigen with clathrin and the adaptor protein complex-2. Int. J. Oncol. 31, 1199–1203 (2007).

    CAS  PubMed  Google Scholar 

  133. Schmidt, S. et al. Discriminatory role of detergent-resistant membranes in the dimerization and endocytosis of prostate-specific membrane antigen. PLoS ONE 8, e66193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Anilkumar, G. et al. Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity. Cancer Res. 63, 2645–2648 (2003).

    CAS  PubMed  Google Scholar 

  135. Christiansen, J. J. et al. N-glycosylation and microtubule integrity are involved in apical targeting of prostate-specific membrane antigen: implications for immunotherapy. Mol. Cancer Ther. 4, 704–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Oudard, S. et al. Cabazitaxel versus docetaxel as first-line therapy for patients with metastatic castration-resistant prostate cancer: a randomized phase III trial — FIRSTANA. J. Clin. Oncol. 35, 3189–3197 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Kondev, F. G. Nuclear data sheets for A=177. Nucl. Data Sheets 159, 1–412 (2019).

    Article  CAS  Google Scholar 

  138. Jain, A. K., Raut, R. & Tuli, J. K. Nuclear data sheets for A = 225. Nucl. Data Sheets 110, 1409–1472 (2009).

    Article  CAS  Google Scholar 

  139. Kratochwil, C. et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J. Nucl. Med. 58, 1624–1631 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Enger, S. A., Hartman, T., Carlsson, J. & Lundqvist, H. Cross-fire doses from β-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys. Med. Biol. 53, 1909 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. McDevitt, M. R., Sgouros, G. & Sofou, S. Targeted and nontargeted α-particle therapies. Annu. Rev. Biomed. Eng. 20, 73–93 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. He, Y. et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal. Transduct. Target. Ther. 7, 198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Enger, S. A., Hartman, T., Carlsson, J. & Lundqvist, H. Cross-fire doses from β-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys. Med. Biol. 53, 1909–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Azzam, E. I., De Toledo, S. M., Spitz, D. R. & Little, J. B. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from α-particle-irradiated normal human fibroblast cultures. Cancer Res. 62, 5436–5442 (2002).

    CAS  PubMed  Google Scholar 

  145. Marie, B. et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with α-, β-, and auger electron-emitting radionuclides. J. Nucl. Med. 47, 1007 (2006).

    Google Scholar 

  146. Bodei, L. et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 40, 800–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sheehan, B. et al. Prostate-specific membrane antigen expression and response to DNA damaging agents in prostate cancer. Clin. Cancer Res. 28, 3104–3115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Salas-Ramirez, M. et al. Radiation-induced double-strand breaks by internal ex vivo irradiation of lymphocytes: validation of a Monte Carlo simulation model using GATE and Geant4-DNA. Z. Med. Phys. https://doi.org/10.1016/j.zemedi.2023.07.007 (2023).

    Article  PubMed  Google Scholar 

  149. Khreish, F. et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur. J. Nucl. Med. Mol. Imaging 47, 721–728 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Müller, C. et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 46, 1919–1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Vlachostergios, P. J. et al. Imaging expression of prostate-specific membrane antigen and response to PSMA-targeted β-emitting radionuclide therapies in metastatic castration-resistant prostate cancer. Prostate 81, 279–285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Derlin, T. et al. PSMA-heterogeneity in metastatic castration-resistant prostate cancer: circulating tumor cells, metastatic tumor burden, and response to targeted radioligand therapy. Prostate 83, 1076–1088 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Vanwelkenhuyzen, J. et al. AR and PI3K genomic profiling of cell-free DNA can identify poor responders to lutetium-177-PSMA among patients with metastatic castration-resistant prostate cancer. Eur. Urol. Open. Sci. 53, 63–66 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang, C.-B. et al. Urine-derived exosomal PSMA is a promising diagnostic biomarker for the detection of prostate cancer on initial biopsy. Clin. Transl. Oncol. 25, 758–767 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Harmon, S. A. et al. A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J. Nucl. Med. 59, 1665–1671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Regula, N. et al. Comparison of 68Ga-PSMA-11 PET/CT with 11C-acetate PET/CT in re-staging of prostate cancer relapse. Sci. Rep. 10, 4993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shiiba, M. et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann. Nucl. Med. 26, 138–145 (2012).

    Article  PubMed  Google Scholar 

  158. Zoppolo, F. et al. 11C-SAM: radiosynthesis and preliminary biological studies as a potential agent for prostate cancer diagnosis. J. Nucl. Med. 57, 2700–2700 (2016).

    Google Scholar 

  159. Mori, H. et al. Imaging somatostatin receptor activity in neuroendocrine-differentiated prostate cancer. Intern. Med. 57, 3123–3128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Korsen, J. A. et al. Delta-like ligand 3 — targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc. Natl Acad. Sci. USA 119, e2203820119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kratochwil, C. et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 60, 801–805 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bakht, M. M. K. Molecular imaging targets in prostate cancers with neuroendocrine gene signature. Thesis, Univ. Windsor (Canada) https://scholar.uwindsor.ca/etd/8170 (2019).

  163. Uhlen et al. Tissue-based map of the human proteome. Science https://doi.org/10.1126/science.1260419 (2015).

Download references

Acknowledgements

This work supported by the Prostate Cancer Foundation, Department of Defense (W81XWH-17-1-0653 to H.B., W81XWH-22-1-0010 to M.K.B.), and NIH/NCI (R37CA241486 and P50CA272390 to H.B.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Himisha Beltran.

Ethics declarations

Competing interests

H.B. has served as consultant/advisory board member for Janssen, Astellas, AstraZeneca, Merck, Pfizer, Blue Earth Diagnostics, Amgen, Bayer, Daicchi Sankyo, Sanofi and Novartis, and has received research funding (to institution) from Janssen, AbbVie/Stemcentrx, Bristol Myers Squibb, Circle Pharma, Novartis and Daicchi Sankyo. M.K.B. declares no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Jeremie Calais, David Quigley, Michael Hofman, Tobias Maurer, Martin Sjöström and Fabian Falkenbach for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakht, M.K., Beltran, H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00900-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00900-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer