Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Influence of substance use on male reproductive health and offspring outcomes

Abstract

The prevalence of substance use globally is rising and is highest among men of reproductive age. In Africa, and South and Central America, cannabis use disorder is most prevalent and in Eastern and South-Eastern Europe, Central America, Canada and the USA, opioid use disorder predominates. Substance use might be contributing to the ongoing global decline in male fertility, and emerging evidence has linked paternal substance use with short-term and long-term adverse effects on offspring development and outcomes. This trend is concerning given that substance use is increasing, including during the COVID-19 pandemic. Preclinical studies have shown that male preconception substance use can influence offspring brain development and neurobehaviour through epigenetic mechanisms. Additionally, human studies investigating paternal health behaviours during the prenatal period suggest that paternal tobacco, opioid, cannabis and alcohol use is associated with reduced offspring mental health, in particular hyperactivity and attention-deficit hyperactivity disorder. The potential effects of paternal substance use are areas in which to focus public health efforts and health-care provider counselling of couples or individuals interested in conceiving.

Key points

  • Alcohol consumption, especially chronic and heavy intake, alters the hypothalamic–pituitary–gonadal axis, male reproductive hormones, semen parameters, testicular damage and results in decreased sexual function.

  • Cannabis use adversely affects male fertility, resulting in substantial testicular atrophy, altered reproductive hormones, and changes in semen parameters.

  • Opioid abuse can negatively affect male reproductive hormones and spermatogenesis, and is associated with an increased risk of reduced testicular volume and erectile dysfunction.

  • Nicotine smoke is linked to impaired semen parameters and erectile dysfunction, and seems to follow a dose-dependent pattern.

  • Preconception paternal alcohol intake is associated with adverse short-term and long-term offspring outcomes, including birth defects, growth abnormalities, neurodevelopmental disorders and addiction vulnerability.

  • Preconception paternal cannabis use has been linked to increased rates of pregnancy loss, decreased infant birthweight and offspring behavioural problems, including poor attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roberts, A. et al. Alcohol and other substance use during the COVID-19 pandemic: a systematic review. Drug. Alcohol. Depend. 229, 109150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sylvestre, M. P. et al. A longitudinal study of change in substance use from before to during the COVID-19 pandemic in young adults. Lancet Reg. Health Am. 8, 100168 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. Center for Behavioral Health Statistics and Quality. Results from the 2021 National Survey on Drug Use and Health: detailed tables. Substance Abuse and Mental Health Services Administration https://www.samhsa.gov/data/report/2021-nsduh-detailed-tables (2022).

  4. Brener, N. D. et al. Use of tobacco products, alcohol, and other substances among high school students during the COVID-19 pandemic — adolescent behaviors and experiences survey, United States, January–June 2021. MMWR Suppl. 71, 8–15 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Finelli, R., Mottola, F. & Agarwal, A. Impact of alcohol consumption on male fertility potential: a narrative review. Int. J. Environ. Res. Public Health 19, 328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lo, J. O., Hedges, J. C. & Girardi, G. Impact of cannabinoids on pregnancy, reproductive health, and offspring outcomes. Am. J. Obstet. Gynecol. 227, 571–581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ryan, K. S., Bash, J. C., Hanna, C. B., Hedges, J. C. & Lo, J. O. Effects of marijuana on reproductive health: preconception and gestational effects. Curr. Opin. Endocrinol. Diabetes Obes. 28, 558–565 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Greil, A. L., Slauson-Blevins, K. & McQuillan, J. The experience of infertility: a review of recent literature. Sociol. Health Illn. 32, 140–162 (2010).

    Article  PubMed  Google Scholar 

  9. Hasanpoor-Azghdy, S. B., Simbar, M. & Vedadhir, A. The emotional-psychological consequences of infertility among infertile women seeking treatment: results of a qualitative study. Iran. J. Reprod. Med. 12, 131–138 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Lo, J. O., D’Mello, R. J., Watch, L., Schust, D. J. & Murphy, S. K. An epigenetic synopsis of parental substance use. Epigenomics 15, 453–473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Easey, K. E. & Sharp, G. C. The impact of paternal alcohol, tobacco, caffeine use and physical activity on offspring mental health: a systematic review and meta-analysis. Reprod. Health 18, 214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ross, E. J., Graham, D. L., Money, K. M. & Stanwood, G. D. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 40, 61–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Killinger, C. E., Robinson, S. & Stanwood, G. D. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse 66, 902–908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sansone, A. et al. Smoke, alcohol and drug addiction and male fertility. Reprod. Biol. Endocrinol. 16, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salonen, I., Pakarinen, P. & Huhtaniemi, I. Effect of chronic ethanol diet on expression of gonadotropin genes in the male rat. J. Pharmacol. Exp. Ther. 260, 463–467 (1992).

    CAS  PubMed  Google Scholar 

  18. Salonen, I. & Huhtaniemi, I. Effects of chronic ethanol diet on pituitary-testicular function of the rat. Biol. Reprod. 42, 55–62 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Badr, F. M., Bartke, A., Dalterio, S. & Bulger, W. Suppression of testosterone production by ethyl alcohol. Possible mode of action. Steroids 30, 647–655 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. La Vignera, S., Condorelli, R. A., Balercia, G., Vicari, E. & Calogero, A. E. Does alcohol have any effect on male reproductive function? A review of literature. Asian J. Androl. 15, 221–225 (2013).

    Article  PubMed  Google Scholar 

  21. Talebi, A. R., Sarcheshmeh, A. A., Khalili, M. A. & Tabibnejad, N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol 45, 403–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Adler, R. A. Clinical review 33: clinically important effects of alcohol on endocrine function. J. Clin. Endocrinol. Metab. 74, 957–960 (1992).

    CAS  PubMed  Google Scholar 

  23. Emanuele, M. A. & Emanuele, N. V. Alcohol’s effects on male reproduction. Alcohol. Health Res. World 22, 195–201 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grover, S., Mattoo, S. K., Pendharkar, S. & Kandappan, V. Sexual dysfunction in patients with alcohol and opioid dependence. Indian. J. Psychol. Med. 36, 355–365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lloyd, C. W. & Williams, R. H. Endocrine changes associated with Laennec’s cirrhosis of the liver. Am. J. Med. 4, 315–330 (1948).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X.-M. et al. Alcohol intake and risk of erectile dysfunction: a dose–response meta-analysis of observational studies. Int. J. Impot. Res. 30, 342–351 (2018).

    Article  PubMed  Google Scholar 

  27. Hassan, M. A. & Killick, S. R. Negative lifestyle is associated with a significant reduction in fecundity. Fertil. Steril. 81, 384–392 (2004).

    Article  PubMed  Google Scholar 

  28. Alcohol Research. Current reviews editorial staff drinking patterns and their definitions. Alcohol. Res. 39, 17–18 (2018).

    Google Scholar 

  29. Nguyen-Thanh, T., Hoang-Thi, A. P. & Anh Thu, D. T. Investigating the association between alcohol intake and male reproductive function: a current meta-analysis. Heliyon 9, e15723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rachdaoui, N. & Sarkar, D. K. Pathophysiology of the effects of alcohol abuse on the endocrine system. Alcohol. Res. 38, 255–276 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Muthusami, K. R. & Chinnaswamy, P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril. 84, 919–924 (2005). This study definitively demonstrated that chronic alcohol consumption has a significant influence on male reproductive hormones and on semen quality.

    Article  CAS  PubMed  Google Scholar 

  32. Gordon, G. G., Altman, K., Southren, A. L., Rubin, E. & Lieber, C. S. Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. N. Engl. J. Med. 295, 793–797 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. Maneesh, M., Dutta, S., Chakrabarti, A. & Vasudevan, D. M. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian. J. Physiol. Pharmacol. 50, 291–296 (2006).

    CAS  PubMed  Google Scholar 

  34. Jensen, T. K. et al. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum. Reprod. 29, 1801–1809 (2014). This cross-sectional study including men from Europe and the USA demonstrated that moderate alcohol intake is not associated with poorer semen quality outcomes in healthy men.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brambilla, D. J., Matsumoto, A. M., Araujo, A. B. & McKinlay, J. B. The effect of diurnal variation on clinical measurement of serum testosterone and other sex hormone levels in men. J. Clin. Endocrinol. Metab. 94, 907–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Alvergne, A., Faurie, C. & Raymond, M. Variation in testosterone levels and male reproductive effort: insight from a polygynous human population. Hormones Behav. 56, 491–497 (2009).

    Article  CAS  Google Scholar 

  37. Li, Y., Lin, H., Li, Y. & Cao, J. Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil. Steril. 95, 116–123 (2011).

    Article  PubMed  Google Scholar 

  38. Pajarinen, J. T. & Karhunen, P. J. Spermatogenic arrest and ‘Sertoli cell-only’ syndrome — common alcohol-induced disorders of the human testis. Int. J. Androl. 17, 292–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Kucheria, K., Saxena, R. & Mohan, D. Semen analysis in alcohol dependence syndrome. Andrologia 17, 558–563 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Mallidis, C., Howard, E. J. & Baker, H. W. Variation of semen quality in normal men. Int. J. Androl. 14, 99–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Van Thiel, D. H., Lester, R. & Sherins, R. J. Hypogonadism in alcoholic liver disease: evidence for a double defect. Gastroenterology 67, 1188–1199 (1974).

    Article  PubMed  Google Scholar 

  42. Bujan, L. et al. Testicular size in infertile men: relationship to semen characteristics and hormonal blood levels. Br. J. Urol. 64, 632–637 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, J. Y., Ng, E. M., Chen, R. Y. & Ko, J. S. Alcohol consumption and erectile dysfunction: meta-analysis of population-based studies. Int. J. Impot. Res. 19, 343–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Li, S., Song, J. M., Zhang, K. & Zhang, C. L. A meta-analysis of erectile dysfunction and alcohol consumption. Urol. Int. 105, 969–985 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ricci, E. et al. Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod. Biomed. Online 34, 38–47 (2017). This meta-analysis study highlights that any alcohol use is potentially detrimental to semen volume and normal sperm morphology.

    Article  CAS  PubMed  Google Scholar 

  46. Center for Behavioral Health Statistics and Quality. Key substance use and mental health indicators in the United States: results from the 2020 National Survey on Drug Use and Health. (Substance Abuse and Mental Health Services Administration, Rockville, MD, 2021).

  47. Center for Behavioral Health Statistics and Quality. 2021 NSDUH detailed tables. SAMHSA https://www.samhsa.gov/data/sites/default/files/reports/rpt39441/NSDUHDetailedTabs2021/NSDUHDetailedTabs2021/NSDUHDetTabsSect1pe2021.htm (2023).

  48. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  49. Farkas, I. et al. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology 151, 5818–5829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gammon, C. M., Freeman, G. M. Jr, Xie, W., Petersen, S. L. & Wetsel, W. C. Regulation of gonadotropin-releasing hormone secretion by cannabinoids. Endocrinology 146, 4491–4499 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Jakubovic, A., McGeer, E. G. & McGeer, P. L. Effects of cannabinoids on testosterone and protein synthesis in rat testis Leydig cells in vitro. Mol. Cell Endocrinol. 15, 41–50 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Maccarrone, M. et al. Anandamide activity and degradation are regulated by early postnatal aging and follicle-stimulating hormone in mouse Sertoli cells. Endocrinology 144, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Francavilla, F. et al. Characterization of the endocannabinoid system in human spermatozoa and involvement of transient receptor potential vanilloid 1 receptor in their fertilizing ability. Endocrinology 150, 4692–4700 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Maccarrone, M., Rapino, C., Francavilla, F. & Barbonetti, A. Cannabinoid signalling and effects of cannabis on the male reproductive system. Nat. Rev. Urol. 18, 19–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. An, D., Peigneur, S., Hendrickx, L. A. & Tytgat, J. Targeting cannabinoid receptors: current status and prospects of natural products. Int. J. Mol. Sci. 21, 5064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajanahally, S. et al. The relationship between cannabis and male infertility, sexual health, and neoplasm: a systematic review. Andrology 7, 139–147 (2019). This systematic review highlights various human studies on how cannabis use contributes to impaired male fertility.

    Article  CAS  PubMed  Google Scholar 

  57. Belladelli, F. et al. Effects of recreational cannabis on testicular function in primary infertile men. Andrology 10, 1172–1180 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Kolodny, R. C., Masters, W. H., Kolodner, R. M. & Toro, G. Depression of plasma testosterone levels after chronic intensive marihuana use. N. Engl. J. Med. 290, 872–874 (1974).

    Article  CAS  PubMed  Google Scholar 

  59. Hedges, J. C. et al. Cessation of chronic delta-9-tetrahydrocannabinol use partially reverses impacts on male fertility and the sperm epigenome in rhesus macaques. Fertil. Steril. 120, 163–174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gundersen, T. D. et al. Association between use of marijuana and male reproductive hormones and semen quality: a study among 1,215 healthy young men. Am. J. Epidemiol. 182, 473–481 (2015). This large prospective study demonstrates that cannabis use in healthy men of reproductive age has an impact on semen quality, including concentration and total sperm count.

    Article  PubMed  Google Scholar 

  61. Fantus, R. J., Lokeshwar, S. D., Kohn, T. P. & Ramasamy, R. The effect of tetrahydrocannabinol on testosterone among men in the United States: results from the National Health and Nutrition Examination Survey. World J. Urol. 38, 3275–3282 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Barbonetti, A. et al. Is marijuana a foe of male sexuality?: data from a large cohort of men with sexual dysfunction. Andrology 12, 9–19 (2023).

    Article  PubMed  Google Scholar 

  63. Thistle, J. E. et al. Marijuana use and serum testosterone concentrations among U.S. males. Andrology 5, 732–738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luboshitzky, R., Zabari, Z., Shen-Orr, Z., Herer, P. & Lavie, P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J. Clin. Endocrinol. Metab. 86, 1134–1139 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Belladelli, F. et al. The association between cannabis use and testicular function in men: a systematic review and meta-analysis. Andrology 9, 503–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Cone, E. J., Johnson, R. E., Moore, J. D. & Roache, J. D. Acute effects of smoking marijuana on hormones, subjective effects and performance in male human subjects. Pharmacol. Biochem. Behav. 24, 1749–1754 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Hedges, J. C. et al. Chronic exposure to delta-9-tetrahydrocannabinol impacts testicular volume and male reproductive health in rhesus macaques. Fertil. Steril. 117, 698–707 (2022). This article demonstrates that chronic exposure to THC results in significant dose–response testicular atrophy, increased serum gonadotropin levels, and decreased serum sex steroids, and provides a novel, human-relevant animal model system to interrogate how cannabis impacts male fertility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rossato, M., Ion Popa, F., Ferigo, M., Clari, G. & Foresta, C. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J. Clin. Endocrinol. Metab. 90, 984–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Agirregoitia, E. et al. The CB2 cannabinoid receptor regulates human sperm cell motility. Fertil. Steril. 93, 1378–1387 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Pacey, A. A. et al. Modifiable and non-modifiable risk factors for poor sperm morphology. Hum. Reprod. 29, 1629–1636 (2014).

    Article  PubMed  Google Scholar 

  71. Carroll, K., Pottinger, A. M., Wynter, S. & DaCosta, V. Marijuana use and its influence on sperm morphology and motility: identified risk for fertility among Jamaican men. Andrology 8, 136–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Hehemann, M. C. et al. Evaluation of the impact of marijuana use on semen quality: a prospective analysis. Ther. Adv. Urol. 13, 17562872211032484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Payne, K. S., Mazur, D. J., Hotaling, J. M. & Pastuszak, A. W. Cannabis and male fertility: a systematic review. J. Urol. 202, 674–681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oshio, S. et al. Individual variation in semen parameters of healthy young volunteers. Arch. Androl. 50, 417–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, H. F., Nahas, G. G. & Hembree, W. C. III Effects of marihuana inhalation on spermatogenesis of the rat. Adv. Biosci. 22–23, 419–427 (1978).

    PubMed  Google Scholar 

  76. Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of cannabinoids on spermatogenesis in mice. Adv. Biosci. 22–23, 407–418 (1978).

    PubMed  Google Scholar 

  77. HEMBREE III, W., Nahas, G., Zeidenberg, P. & Huang, H. in Marihuana Biological Effects 429–439 (Elsevier, 1979).

  78. Generoso, W. M., Cain, K. T., Cornett, C. V. & Shelby, M. D. Tests for induction of dominant-lethal mutations and heritable translocations with tetrahydrocannabinol in male mice. Mutat. Res. 143, 51–53 (1985).

    Article  CAS  PubMed  Google Scholar 

  79. Hembree, W. C. III, Nahas, G. G., Zeidenberg, P. & Huang, H. F. Changes in human spermatozoa associated with high dose marihuana smoking. Adv. Biosci. 22–23, 429–439 (1978).

    PubMed  Google Scholar 

  80. Murphy, S. K. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1221 (2018). This article shows, to our knowledge for the first time, that cannabis use results in substantial disruption in the DNA methylome of sperm in humans and rats.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dixit, V. P., Gupta, C. L. & Agrawal, M. Testicular degeneration and necrosis induced by chronic administration of cannabis extract in dogs. Endokrinologie 69, 299–305 (1977).

    CAS  PubMed  Google Scholar 

  82. Gabrys, R. Clearing the Smoke on Cannabis: Regular Use and Cognitive Functioning. (Canadian Centre on Substance Use and Addiction, 2019).

  83. Whan, L. B., West, M. C., McClure, N. & Lewis, S. E. Effects of delta-9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil. Steril. 85, 653–660 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Barbonetti, A. et al. Energetic metabolism and human sperm motility: impact of CB1 receptor activation. Endocrinology 151, 5882–5892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Δ9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. Lung Cell Mol. Physiol. 284, L298–306, (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Pertwee, R. G. Cannabinoid receptors and pain. Prog. Neurobiol. 63, 569–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Blickenstorfer, K. et al. Are WHO recommendations to perform 2 consecutive semen analyses for reliable diagnosis of male infertility still valid? J. Urol. 201, 783–791 (2019).

    Article  PubMed  Google Scholar 

  88. Björndahl, L. et al. Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology. Hum. Reprod. 37, 2497–2502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Banerjee, A., Singh, A., Srivastava, P., Turner, H. & Krishna, A. Effects of chronic bhang (cannabis) administration on the reproductive system of male mice. Birth Defects Res. B Dev. Reprod. Toxicol. 92, 195–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Dixit, V. P., Sharma, V. N. & Lohiya, N. K. The effect of chronically administered cannabis extract on the testicular function of mice. Eur. J. Pharmacol. 26, 111–114 (1974).

    Article  CAS  PubMed  Google Scholar 

  91. Fujimoto, G. I., Morrill, G. A., O’Connell, M. E., Kostellow, A. B. & Retura, G. Effects of cannabinoids given orally and reduced appetite on the male rat reproductive system. Pharmacology 24, 303–313 (1982).

    Article  CAS  PubMed  Google Scholar 

  92. Goldstein, H., Harclerode, J. & Nyquist, S. E. Effects of chronic administration of delta-9-tetrahydrocannabinol and cannabidiol on rat testicular esterase isozymes. Life Sci. 20, 951–954 (1977).

    Article  CAS  PubMed  Google Scholar 

  93. Carvalho, R. K. et al. Chronic exposure to cannabidiol induces reproductive toxicity in male Swiss mice. J. Appl. Toxicol. 38, 1215–1223 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Mandal, T. K. & Das, N. S. Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems. Toxicol. Ind. Health 26, 11–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Alagbonsi, I. A., Olayaki, L. A. & Salman, T. M. Melatonin and vitamin C exacerbate cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats. J. Basic. Clin. Physiol. Pharmacol. 27, 277–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Aitken, R. J. & Roman, S. D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell Longev. 1, 15–24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Asadi, N., Bahmani, M., Kheradmand, A. & Rafieian-Kopaei, M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J. Clin. Diagn. Res. 11, Ie01–ie05 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Teixeira, T. A. et al. Marijuana is associated with a hormonal imbalance among several habits related to male infertility: a retrospective study. Front. Reprod. Health 4, 820451 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cohen, S. Cannabis and sex: multifaceted paradoxes. J. Psychoact. Drugs 14, 55–58 (1982).

    Article  CAS  Google Scholar 

  100. Succu, S. et al. The cannabinoid CB1 receptor antagonist SR 141716A induces penile erection by increasing extra-cellular glutamic acid in the paraventricular nucleus of male rats. Behav. Brain Res. 169, 274–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Melis, M. R. et al. The cannabinoid receptor antagonist SR-141716A induces penile erection in male rats: involvement of paraventricular glutamic acid and nitric oxide. Neuropharmacology 50, 219–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Aversa, A. et al. Early endothelial dysfunction as a marker of vasculogenic erectile dysfunction in young habitual cannabis users. Int. J. Impot. Res. 20, 566–573 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Pizzol, D. et al. Relationship between cannabis use and erectile dysfunction: a systematic review and meta-analysis. Am. J. Mens Health 13, 1557988319892464 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Johnson, S. D., Phelps, D. L. & Cottler, L. B. The association of sexual dysfunction and substance use among a community epidemiological sample. Arch. Sex. Behav. 33, 55–63 (2004).

    Article  PubMed  Google Scholar 

  105. Smith, A. M. et al. Cannabis use and sexual health. J. Sex. Med. 7, 787–793 (2010).

    Article  PubMed  Google Scholar 

  106. Tart, C. T. Marijuana intoxication common experiences. Nature 226, 701–704 (1970).

    Article  CAS  PubMed  Google Scholar 

  107. Wiebe, E. & Just, A. How cannabis alters sexual experience: a survey of men and women. J. Sex. Med. 16, 1758–1762 (2019).

    Article  PubMed  Google Scholar 

  108. Moser, A., Ballard, S. M., Jensen, J. & Averett, P. The influence of cannabis on sexual functioning and satisfaction. J. Cannabis Res. 5, 2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bhambhvani, H. P., Kasman, A. M., Wilson-King, G. & Eisenberg, M. L. A survey exploring the relationship between cannabis use characteristics and sexual function in men. Sex. Med. 8, 436–445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sun, A. J. & Eisenberg, M. L. Association between marijuana use and sexual frequency in the United States: a population-based study. J. Sex. Med. 14, 1342–1347 (2017).

    Article  PubMed  Google Scholar 

  111. Shiff, B. et al. The impact of cannabis use on male sexual function: a 10-year, single-center experience. Can. Urol. Assoc. J. 15, E652–e657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Murphy, L. L., Gher, J., Steger, R. W. & Bartke, A. Effects of Δ9-tetrahydrocannabinol on copulatory behavior and neuroendocrine responses of male rats to female conspecifics. Pharmacol. Biochem. Behav. 48, 1011–1017 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Dhawan, K. & Sharma, A. Restoration of chronic-Δ9-THC-induced decline in sexuality in male rats by a novel benzoflavone moiety from Passiflora incarnata Linn. Br. J. Pharmacol. 138, 117–120 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wise, L. A. et al. Marijuana use and fecundability in a North American preconception cohort study. J. Epidemiol. Community Health 72, 208–215 (2018).

    Article  PubMed  Google Scholar 

  115. Kasman, A. M., Thoma, M. E., McLain, A. C. & Eisenberg, M. L. Association between use of marijuana and time to pregnancy in men and women: findings from the National Survey of Family Growth. Fertil. Steril. 109, 866–871 (2018).

    Article  PubMed  Google Scholar 

  116. Berryman, S. H., Anderson, R. A. Jr., Weis, J. & Bartke, A. Evaluation of the co-mutagenicity of ethanol and delta 9-tetrahydrocannabinol with Trenimon. Mutat. Res. 278, 47–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Freeman, T. P. et al. Changes in delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations in cannabis over time: systematic review and meta-analysis. Addiction 116, 1000–1010 (2021).

    Article  PubMed  Google Scholar 

  118. The Lancet Public, H. Opioid overdose crisis: time for a radical rethink. Lancet Public. Health 7, e195 (2022).

    Article  Google Scholar 

  119. de Camargo, K. R. Jr. & Kapadia, F. The global opioid overdose crisis. Am. J. Public. Health 112, S93 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Han, B. et al. Prescription opioid use, misuse, and use disorders in U.S. adults: 2015 national survey on drug use and health. Ann. Intern. Med. 167, 293–301, (2017).

    Article  PubMed  Google Scholar 

  121. Jalali, M. S., Botticelli, M., Hwang, R. C., Koh, H. K. & McHugh, R. K. The opioid crisis: a contextual, social-ecological framework. Health Res. Policy Syst. 18, 87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Subirán, N., Casis, L. & Irazusta, J. Regulation of male fertility by the opioid system. Mol. Med. 17, 846–853 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Katz, N. & Mazer, N. A. The impact of opioids on the endocrine system. Clin. J. Pain. 25, 170–175 (2009).

    Article  PubMed  Google Scholar 

  124. Rubinstein, A. L. & Carpenter, D. M. Association between commonly prescribed opioids and androgen deficiency in men: a retrospective cohort analysis. Pain. Med. 18, 637–644 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Eshraghi, Y. et al. Establishing a dose-response relationship between opioid use and hypogonadism: a retrospective case-control study. Ochsner J. 21, 249–253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Marudhai, S. et al. Long-term opioids linked to hypogonadism and the role of testosterone supplementation therapy. Cureus 12, e10813 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Roberts, L. J., Finch, P. M., Pullan, P. T., Bhagat, C. I. & Price, L. M. Sex hormone suppression by intrathecal opioids: a prospective study. Clin. J. Pain. 18, 144–148 (2002).

    Article  PubMed  Google Scholar 

  128. Daniell, H. W. Hypogonadism in men consuming sustained-action oral opioids. J. Pain. 3, 377–384 (2002).

    Article  PubMed  Google Scholar 

  129. Ahmadnia, H. et al. Short-period influence of chronic morphine exposure on serum levels of sexual hormones and spermatogenesis in rats. Nephrourol. Mon. 8, e38052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Safarinejad, M. R. et al. The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod. Toxicol. 36, 18–23 (2013). This study demonstrates for the first time that opiate use has a negative impact on semen quality and sperm DNA integrity.

    Article  CAS  PubMed  Google Scholar 

  131. Farag, A. G. A. et al. Tramadol (opioid) abuse is associated with a dose- and time-dependent poor sperm quality and hyperprolactinaemia in young men. Andrologia 50, e13026 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Ghasemi-Esmailabad, S. et al. The effects of morphine abuse on sperm parameters, chromatin integrity and apoptosis in men. JBRA Assist. Reprod. 26, 444–449 (2022).

    PubMed  PubMed Central  Google Scholar 

  133. Stefano, G. B., Liu, Y. & Goligorsky, M. S. Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J. Biol. Chem. 271, 19238–19242 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Weinberg, J. B., Doty, E., Bonaventura, J. & Haney, A. F. Nitric oxide inhibition of human sperm motility. Fertil. Steril. 64, 408–413 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Jalili, C., Ahmadi, S., Roshankhah, S. & Salahshoor, M. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice. Int. J. Reprod. Biomed. 14, 95–102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cyrus, A. et al. The effect of opium dependency on testis volume: a case-control study. Iran. J. Reprod. Med. 10, 517–522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cioe, P. A., Friedmann, P. D. & Stein, M. D. Erectile dysfunction in opioid users: lack of association with serum testosterone. J. Addict. Dis. 29, 455–460 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhao, S. et al. Association between opioid use and risk of erectile dysfunction: a systematic review and meta-analysis. J. Sex. Med. 14, 1209–1219 (2017).

    Article  PubMed  Google Scholar 

  139. Yafi, F. A. et al. Erectile dysfunction. Nat. Rev. Dis. Primers 2, 16003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Briand Madrid, L. et al. Factors associated with perceived loss of libido in people who inject opioids: results from a community-based survey in France. Drug. Alcohol. Depend. 190, 121–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  142. Le Foll, B. et al. Tobacco and nicotine use. Nat. Rev. Dis. Primers 8, 19 (2022).

    Article  PubMed  Google Scholar 

  143. Annechino, R. & Antin, T. M. J. Truth telling about tobacco and nicotine. Int. J. Env. Res. Public. Health 16, 530 (2019).

    Article  Google Scholar 

  144. Mitra, A. et al. Effect of smoking on semen quality, FSH, testosterone level, and CAG repeat length in androgen receptor gene of infertile men in an Indian city. Syst. Biol. Reprod. Med. 58, 255–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Tweed, J. O., Hsia, S. H., Lutfy, K. & Friedman, T. C. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol. Metab. 23, 334–342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Asare-Anane, H. et al. Tobacco smoking is associated with decreased semen quality. Reprod. Health 13, 90 (2016). This study, analysing semen parameters in men from Ghana, demonstrated that smokers had significantly lower semen volume, sperm concentration, sperm motility, total sperm count, sperm morphology, free testosterone and follicle-stimulating hormone than non-smokers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Halmenschlager, G., Rossetto, S., Lara, G. M. & Rhoden, E. L. Evaluation of the effects of cigarette smoking on testosterone levels in adult men. J. Sex. Med. 6, 1763–1772 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Svartberg, J. & Jorde, R. Endogenous testosterone levels and smoking in men. The fifth Tromsø study. Int. J. Androl. 30, 137–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Hruškovičová, H. et al. Effects of smoking cessation on hormonal levels in men. Physiol. Res. 62, 67–73 (2013).

    Article  PubMed  Google Scholar 

  150. Sharma, R., Harlev, A., Agarwal, A. & Esteves, S. C. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 70, 635–645 (2016). This systematic review and meta-analysis demonstrates that cigarette smoking is associated with reduced sperm counts and sperm motility, and that effects on semen quality are pronounced in moderate and heavy cigarette smokers.

    Article  PubMed  Google Scholar 

  151. Kulaksiz, D. et al. Sperm concentration and semen volume increase after smoking cessation in infertile men. Int. J. Impot. Res. 34, 614–619 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Condorelli, R. A. et al. In vitro effects of nicotine on sperm motility and bio-functional flow cytometry sperm parameters. Int. J. Immunopathol. Pharmacol. 26, 739–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Axelsson, J., Lindh, C. H. & Giwercman, A. Exposure to polycyclic aromatic hydrocarbons and nicotine, and associations with sperm DNA fragmentation. Andrology 10, 740–748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ranganathan, P., Rao, K. A. & Thalaivarasai Balasundaram, S. Deterioration of semen quality and sperm-DNA integrity as influenced by cigarette smoking in fertile and infertile human male smokers — a prospective study. J. Cell Biochem. 120, 11784–11793 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Taha, E. A., Ez-Aldin, A. M., Sayed, S. K., Ghandour, N. M. & Mostafa, T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidative stress, zinc in fertile men. Urology 80, 822–825 (2012).

    Article  PubMed  Google Scholar 

  156. Calogero, A. et al. Cigarette smoke extract immobilizes human spermatozoa and induces sperm apoptosis. Reprod. Biomed. Online 19, 564–571 (2009).

    Article  PubMed  Google Scholar 

  157. Jalili, C. et al. Protective effect of gallic acid on nicotine-induced testicular toxicity in mice. Res. Pharm. Sci. 16, 414–424, (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mosadegh, M., Hasanzadeh, S. & Razi, M. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression. Iran. J. Basic. Med. Sci. 20, 199–208 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Bjurlin, M. A. et al. Ethnicity and smoking status are associated with awareness of smoking related genitourinary diseases. J. Urol. 188, 724–728 (2012).

    Article  PubMed  Google Scholar 

  160. Kovac, J. R., Labbate, C., Ramasamy, R., Tang, D. & Lipshultz, L. I. Effects of cigarette smoking on erectile dysfunction. Andrologia 47, 1087–1092 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Centers for Disease Control. in How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General (Centers for Disease Control and Prevention, 2010).

  162. Burnett, A. L., Lowenstein, C. J., Bredt, D. S., Chang, T. S. & Snyder, S. H. Nitric oxide: a physiologic mediator of penile erection. Science 257, 401–403 (1992).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, C. et al. The association of smoking and erectile dysfunction: results from the Fangchenggang Area Male Health and Examination Survey (FAMHES). J. Androl. 33, 59–65 (2012).

    Article  PubMed  Google Scholar 

  164. Gades, N. M. et al. Association between smoking and erectile dysfunction: a population-based study. Am. J. Epidemiol. 161, 346–351 (2005).

    Article  PubMed  Google Scholar 

  165. Millett, C. et al. Smoking and erectile dysfunction: findings from a representative sample of Australian men. Tob. Control. 15, 136–139 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Austoni, E. et al. Smoking as a risk factor for erectile dysfunction: data from the Andrology Prevention Weeks 2001-2002 a study of the Italian Society of Andrology (s.I.a.). Eur. Urol. 48, 810–817 (2005). discussion 817-818.

    Article  PubMed  Google Scholar 

  167. Mirone, V. et al. Cigarette smoking as risk factor for erectile dysfunction: results from an Italian epidemiological study. Eur. Urol. 41, 294–297 (2002).

    Article  PubMed  Google Scholar 

  168. Pourmand, G., Alidaee, M. R., Rasuli, S., Maleki, A. & Mehrsai, A. Do cigarette smokers with erectile dysfunction benefit from stopping?: a prospective study. BJU Int. 94, 1310–1313 (2004).

    Article  PubMed  Google Scholar 

  169. Mima, M. et al. The impact of smoking on sexual function. BJU Int. 130, 186–192 (2022).

    Article  PubMed  Google Scholar 

  170. Lam, T. H., Abdullah, A. S. M., Ho, L. M., Yip, A. W. C. & Fan, S. Smoking and sexual dysfunction in Chinese males: findings from men’s health survey. Int. J. Impot. Res. 18, 364–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Nieto, S. J. & Kosten, T. A. Who’s your daddy? Behavioral and epigenetic consequences of paternal drug exposure. Int. J. Dev. Neurosci. 78, 109–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Goldberg, L. R. & Gould, T. J. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur. J. Neurosci. 50, 2453–2466 (2019).

    Article  PubMed  Google Scholar 

  173. Soubry, A. POHaD: why we should study future fathers. Env. Epigenet 4, dvy007 (2018). This review highlights the importance of studying paternal exposures and how they can contribute to offspring health.

    Article  Google Scholar 

  174. Chang, R. C., Wang, H., Bedi, Y. & Golding, M. C. Preconception paternal alcohol exposure exerts sex-specific effects on offspring growth and long-term metabolic programming. Epigenetics Chromatin 12, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Thomas, K. N. et al. Preconception paternal ethanol exposures induce alcohol-related craniofacial growth deficiencies in fetal offspring. J. Clin. Invest. 133, e167624 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhou, Q. et al. Association of preconception paternal alcohol consumption with increased fetal birth defect risk. JAMA Pediatrics 175, 742–743 (2021). This epidemiological study demonstrates that preconception paternal alcohol consumption may increase the risks of birth defects in offspring.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liang, F. et al. Paternal ethanol exposure and behavioral abnormities in offspring: associated alterations in imprinted gene methylation. Neuropharmacology 81, 126–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Meek, L. R., Myren, K., Sturm, J. & Burau, D. Acute paternal alcohol use affects offspring development and adult behavior. Physiol. Behav. 91, 154–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Xia, R. et al. Association between paternal alcohol consumption before conception and anogenital distance of offspring. Alcohol. Clin. Exp. Res. 42, 735–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Cicero, T. J. et al. Acute alcohol exposure markedly influences male fertility and fetal outcome in the male rat. Life Sci. 55, 901–910 (1994).

    Article  CAS  PubMed  Google Scholar 

  181. Rompala, G. R. & Homanics, G. E. Intergenerational effects of alcohol: a review of paternal preconception ethanol exposure studies and epigenetic mechanisms in the male germline. Alcohol. Clin. Exp. Res. 43, 1032–1045 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rahimipour, M., Talebi, A. R., Anvari, M., Sarcheshmeh, A. A. & Omidi, M. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 170, 423–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Rompala, G. R. et al. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front. Genet. 9, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Luan, M. et al. Preconceptional paternal alcohol consumption and the risk of child behavioral problems: a prospective cohort study. Sci. Rep. 12, 1508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Marmorstein, N. R., Iacono, W. G. & McGue, M. Alcohol and illicit drug dependence among parents: associations with offspring externalizing disorders. Psychol. Med. 39, 149–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Nie, Z. et al. Evaluation of interactive effects between paternal alcohol consumption and paternal socioeconomic status and environmental exposures on congenital heart defects. Birth Defects Res. 112, 1273–1286 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Infante-Rivard, C. & El-Zein, M. Parental alcohol consumption and childhood cancers: a review. J. Toxicol. Env. Health B Crit. Rev. 10, 101–129 (2007).

    Article  CAS  Google Scholar 

  188. Thor, S., Hemmingsson, T., Danielsson, A.-K. & Landberg, J. Fathers’ alcohol consumption and risk of substance-related disorders in offspring. Drug. Alcohol. Depend. 233, 109354 (2022).

    Article  PubMed  Google Scholar 

  189. Hayer, S. et al. Cannabis and pregnancy: a review. Obstet. Gynecol. Surv. 78, 411–428 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lo, J. O., Hedges, J. C. & Metz, T. D. Cannabis use and perinatal health research. JAMA 330, 913–914, (2023).

    Article  PubMed  Google Scholar 

  191. Lo, J. O. et al. Cannabis use in pregnancy and neonatal outcomes: a systematic review and meta-analysis. Cannabis Cannabinoid Res. https://doi.org/10.1089/can.2022.0262 (2023).

  192. Innocenzi, E. et al. Paternal activation of CB2 cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Sci. Rep. 9, 17034 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dalterio, S., Badr, F., Bartke, A. & Mayfield, D. Cannabinoids in male mice: effects on fertility and spermatogenesis. Science 216, 315–316 (1982).

    Article  CAS  PubMed  Google Scholar 

  194. Klonoff-Cohen, H. S., Natarajan, L. & Chen, R. V. A prospective study of the effects of female and male marijuana use on in vitro fertilization (IVF) and gamete intrafallopian transfer (GIFT) outcomes. Am. J. Obstet. Gynecol. 194, 369–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. El Marroun, H. et al. Intrauterine cannabis exposure affects fetal growth trajectories: the Generation R Study. J. Am. Acad. Child. Adolesc. Psychiatry 48, 1173–1181 (2009).

    Article  PubMed  Google Scholar 

  196. Harlow, A. F., Wesselink, A. K., Hatch, E. E., Rothman, K. J. & Wise, L. A. Male preconception marijuana use and spontaneous abortion: a prospective cohort study. Epidemiology 32, 239–247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Klonoff-Cohen, H. & Lam-Kruglick, P. Maternal and paternal recreational drug use and sudden infant death syndrome. Arch. Pediatr. Adolesc. Med. 155, 765–770, (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Levin, E. D. et al. Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol. 74, 106806 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Holloway, Z. R. et al. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology 78, 57–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. El Marroun, H. et al. Preconception and prenatal cannabis use and the risk of behavioural and emotional problems in the offspring; a multi-informant prospective longitudinal study. Int. J. Epidemiol. 48, 287–296 (2019).

    Article  PubMed  Google Scholar 

  201. Korhonen, T. et al. Genetic and environmental influences underlying externalizing behaviors, cigarette smoking and illicit drug use across adolescence. Behav. Genet. 42, 614–625 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Schrott, R. et al. Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring. Epigenetics Chromatin 15, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wilson, P. D., Loffredo, C. A., Correa-Villaseñor, A. & Ferencz, C. Attributable fraction for cardiac malformations. Am. J. Epidemiol. 148, 414–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Ewing, C. K., Loffredo, C. A. & Beaty, T. H. Paternal risk factors for isolated membranous ventricular septal defects. Am. J. Med. Genet. 71, 42–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  205. Steinberger, E. K., Ferencz, C. & Loffredo, C. A. Infants with single ventricle: a population-based epidemiological study. Teratology 65, 106–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Jenkins, K. J. et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 2995–3014 (2007).

    Article  PubMed  Google Scholar 

  207. Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control. 4, 217–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  208. Schrott, R. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 15, 161–173 (2020).

    Article  PubMed  Google Scholar 

  209. Chien, W.-H. et al. Deep exon resequencing of DLGAP2 as a candidate gene of autism spectrum disorders. Mol. Autism 4, 26 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Gerra, M. C. et al. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl. Psychiatry 8, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bidwell, L. C. et al. NCAM1-TTC12-ANKK1-DRD2 variants and smoking motives as intermediate phenotypes for nicotine dependence. Psychopharmacology 232, 1177–1186 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Ma, Y., Yuan, W., Jiang, X., Cui, W. Y. & Li, M. D. Updated findings of the association and functional studies of DRD2/ANKK1 variants with addictions. Mol. Neurobiol. 51, 281–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Jalali, Z., Bahrampour, S., Khalili, P., Khademalhosseini, M. & Esmaeili Nadimi, A. Cohort-based analysis of paternal opioid use in relation to offspring’s BMI and plasma lipid profile. Sci. Rep. 11, 9462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pachenari, N., Azizi, H., Ghasemi, E., Azadi, M. & Semnanian, S. Exposure to opiates in male adolescent rats alters pain perception in the male offspring. Behav. Pharmacol. 29, 255–260 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Azadi, M., Moazen, P., Wiskerke, J., Semnanian, S. & Azizi, H. Preconception paternal morphine exposure leads to an impulsive phenotype in male rat progeny. Psychopharmacology 238, 3435–3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Ellis, A. S. et al. Paternal morphine self-administration produces object recognition memory deficits in female, but not male offspring. Psychopharmacology 237, 1209–1221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Joffe, J. M., Peruzović, M. & Milković, K. Progeny of male rats treated with methadone: physiological and behavioural effects. Mutat. Res. 229, 201–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  218. Cicero, T. J. et al. Influence of morphine exposure during adolescence on the sexual maturation of male rats and the development of their offspring. J. Pharmacol. Exp. Ther. 256, 1086–1093 (1991).

    CAS  PubMed  Google Scholar 

  219. Cicero, T. J., Nock, B., O’Connor, L., Adams, M. & Meyer, E. R. Adverse effects of paternal opiate exposure on offspring development and sensitivity to morphine-induced analgesia. J. Pharmacol. Exp. Ther. 273, 386–392 (1995).

    CAS  PubMed  Google Scholar 

  220. Pooriamehr, A., Sabahi, P. & Miladi-Gorji, H. Effects of environmental enrichment during abstinence in morphine dependent parents on anxiety, depressive-like behaviors and voluntary morphine consumption in rat offspring. Neurosci. Lett. 656, 37–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Toussaint, A. B. et al. Chronic paternal morphine exposure increases sensitivity to morphine-derived pain relief in male progeny. Sci. Adv. 8, eabk2425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. du Fossé, N. A. et al. Paternal smoking is associated with an increased risk of pregnancy loss in a dose-dependent manner: a systematic review and meta-analysis. FS Rev. 2, 227–238 (2021).

    Google Scholar 

  223. Zhou, Q. et al. Association between preconception paternal smoking and birth defects in offspring: evidence from the database of the National Free Preconception Health Examination Project in China. BJOG 127, 1358–1364 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. McCarthy, D. M. & Bhide, P. G. Heritable consequences of paternal nicotine exposure: from phenomena to mechanisms. †. Biol. Reprod. 105, 632–643 (2021).

    Article  PubMed  Google Scholar 

  225. Hawkey, A. B. et al. Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol. 74, 106808 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liu, Y. et al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin 15, 3 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gould, T. J. Epigenetic and long-term effects of nicotine on biology, behavior, and health. Pharmacol. Res. 192, 106741 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Jung, Y. et al. An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nat. Neurosci. 19, 905–914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Goldberg, L. R. et al. Paternal nicotine enhances fear memory, reduces nicotine administration, and alters hippocampal genetic and neural function in offspring. Addict. Biol. 26, e12859 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Zeid, D. et al. Multigenerational nicotine exposure affects offspring nicotine metabolism, nicotine-induced hypothermia, and basal corticosterone in a sex-dependent manner. Neurotoxicol Teratol. 85, 106972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. McCarthy, D. M. et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 16, e2006497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Laubenthal, J. et al. Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J. 26, 3946–3956 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Musson, R., Gąsior, Ł., Bisogno, S. & Ptak, G. E. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum. Reprod. Update 28, 376–399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Axelsson, J. et al. The impact of paternal and maternal smoking on semen quality of adolescent men. PLoS One 8, e66766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 115, 54–61 (2021).

    Article  PubMed  Google Scholar 

  236. Practice Committee of the American Society for Reproductive Medicine and the Practice Committee of the Society for Reproductive Endocrinology and Infertility Optimizing Natural Fertility: a committee opinion. Fertil Steril 117, 53–63 (2022).

  237. Belcher, H. M. et al. Spectrum of early intervention services for children with intrauterine drug exposure. Infants Young Child. 18, 2–15 (2005).

    Article  Google Scholar 

  238. Peacock-Chambers, E. et al. Early intervention referral and enrollment among infants with neonatal abstinence syndrome. J. Dev. Behav. Pediatr. 40, 441–450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Roche, D. J. O. et al. Alcohol, tobacco, and marijuana consumption is associated with increased odds of same-day substance co- and tri-use. Drug. Alcohol. Depend. 200, 40–49 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Jordan, T., Ngo, B. & Jones, C. A. The use of cannabis and perceptions of its effect on fertility among infertility patients. Hum. Reprod. Open. 2020, hoz041 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Carvalho, R. K. et al. Chronic cannabidiol exposure promotes functional impairment in sexual behavior and fertility of male mice. Reprod. Toxicol. 81, 34–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Koff, W. C. Marijuana and sexual activity. J. Sex. Res. 10, 194–204 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.O.L. is funded by NIH NIDA DP1 DA056793. C.A.E. is funded by NIH OD R01OD028223 and was previously funded by NIH NIEHS K22ES025418.

Author information

Authors and Affiliations

Authors

Contributions

J.O.L., J.C.H., W.H.C., K.R.T., I.D.B. and C.A.E. researched data for the article. All authors contributed substantially to discussion of the content. J.O.L., J.C.H., W.H.C., K.R.T., I.D.B. and C.A.E. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jamie O. Lo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Nicole McPherson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, J.O., Hedges, J.C., Chou, W.H. et al. Influence of substance use on male reproductive health and offspring outcomes. Nat Rev Urol 21, 534–564 (2024). https://doi.org/10.1038/s41585-024-00868-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-024-00868-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing