Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urine biomarkers in bladder cancer — current status and future perspectives

Abstract

Urine markers to detect bladder cancer have been the subject of research for decades. The idea that urine — being in continuous contact with tumour tissue — should provide a vector of tumour information remains an attractive concept. Research on this topic has resulted in a complex landscape of many different urine markers with varying degrees of clinical validation. These markers range from cell-based assays to proteins, transcriptomic markers and genomic signatures, with a clear trend towards multiplex assays. Unfortunately, the number of different urine markers and the efforts in research and development of clinical grade assays are not reflected in the use of these markers in clinical practice, which is currently limited. Numerous prospective trials are in progress with the aim of increasing the quality of evidence about urinary biomarkers in bladder cancer to achieve guideline implementation. The current research landscape suggests a division of testing approaches. Some efforts are directed towards addressing the limitations of current assays to improve the performance of urine markers for a straightforward detection of bladder cancer. Additionally, comprehensive genetic analyses are emerging based on advances in next-generation sequencing and are expected to substantially affect the potential application of urine markers in bladder cancer.

Key points

  • Urine cytology remains the only urine marker for bladder cancer detection recommended in guidelines as an adjunct to cystoscopy, although the sensitivity of this technique for the detection of low-grade tumours is limited, and numerous other markers are available.

  • Single protein-based markers such as nuclear matrix protein 22 (NMP22) and bladder tumour antigen (BTA) are susceptible to interference by benign conditions (such as inflammation), which lead to increased concentration of these proteins in urine.

  • The development of commercially available markers in the past decade has focused on assays based on multiplex protein, mRNA and DNA.

  • Non-coding RNA forms (microRNA, long non-coding RNA, circular RNA) and extracellular vesicles are growing areas of research on novel urinary biomarkers.

  • Genomic markers provide molecular insight into tumour biology and will expand the future application of biomarkers beyond diagnosis and surveillance.

  • The main obstacle to the implementation of urine markers in clinical practice is the lack of high-quality evidence from prospective randomized trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomarkers detectable in urine.

Similar content being viewed by others

References

  1. Compérat, E., Varinot, J., Moroch, J., Eymerit-Morin, C. & Brimo, F. A practical guide to bladder cancer pathology. Nat. Rev. Urol. 15, 143–154. (2018).

    Article  PubMed  Google Scholar 

  2. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433. (2020).

    Article  PubMed  Google Scholar 

  3. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO Guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  4. Babjuk, M. et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur. Urol. 81, 75–94 (2022).

    Article  PubMed  Google Scholar 

  5. Leal, J., Luengo-Fernandez, R., Sullivan, R. & Witjes, J. A. Economic burden of bladder cancer across the European Union. Eur. Urol. 69, 438–447 (2016).

    Article  PubMed  Google Scholar 

  6. Birch, B. R. et al. Flexible cystoscopy in men: is topical anaesthesia with lignocaine gel worthwhile? Br. J. Urol. 73, 155–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Stenzl, A. et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J. Urol. 184, 1907–1913 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bensalah, K., Montorsi, F. & Shariat, S. F. Challenges of cancer biomarker profiling. Eur. Urol. 52, 1601–1609 (2007).

    Article  PubMed  Google Scholar 

  9. Yossepowitch, O., Herr, H. W. & Donat, S. M. Use of urinary biomarkers for bladder cancer surveillance: patient perspectives. J. Urol. 177, 1277–1282; discussion 177, 1282 (2007).

    Article  PubMed  Google Scholar 

  10. Papanicolaou, G. N. & Marshall, V. F. Urine sediment smears as a diagnostic procedure in cancers of the urinary tract. Science 101, 519–520 (1945).

    Article  CAS  PubMed  Google Scholar 

  11. Reid, M. D., Osunkoya, A. O., Siddiqui, M. T. & Looney, S. W. Accuracy of grading of urothelial carcinoma on urine cytology: an analysis of interobserver and intraobserver agreement. Int. J. Clin. Exp. Pathol. 5, 882–891 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Barkan, G. A. et al. The Paris System for reporting urinary cytology: the quest to develop a standardized terminology. Acta Cytol. 60, 185–197 (2016).

    Article  PubMed  Google Scholar 

  13. Wojcik, E. M., Kurtycz, D. F. I. & Rosenthal, D. L. We’ll always have Paris! The Paris System for Reporting Urinary Cytology 2022. J. Am. Soc. Cytopathol. 11, 62–66 (2022).

    Article  PubMed  Google Scholar 

  14. Yafi, F. A. et al. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. 33, 66.e25–66.e31 (2015).

    Article  PubMed  Google Scholar 

  15. Sullivan, P. S., Chan, J. B., Levin, M. R. & Rao, J. Urine cytology and adjunct markers for detection and surveillance of bladder cancer. Am. J. Transl. Res. 2, 412–440 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Lopez-Beltran, A., Luque, R. J., Mazzucchelli, R., Scarpelli, M. & Montironi, R. Changes produced in the urothelium by traditional and newer therapeutic procedures for bladder cancer. J. Clin. Pathol. 55, 641–647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murphy, W. M., Crabtree, W. N., Jukkola, A. F. & Soloway, M. S. The diagnostic value of urine versus bladder washing in patients with bladder cancer. J. Urol. 126, 320–322 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Matthew, T. et al. in The Paris System for Reporting Urinary Cytology (eds Dorothy, L. et al.) (Springer, 2022).

  19. Humayun-Zakaria, N., Ward, D. G., Arnold, R. & Bryan, R. T. Trends in urine biomarker discovery for urothelial bladder cancer: DNA, RNA, or protein? Transl. Androl. Urol. 10, 2787–2808 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heicappell, R., Müller, M., Fimmers, R. & Miller, K. Qualitative determination of urinary human complement factor H-related protein (hcfHrp) in patients with bladder cancer, healthy controls, and patients with benign urologic disease. Urol. Int. 65, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mian, C. et al. Immunocyt: a new tool for detecting transitional cell cancer of the urinary tract. J. Urol. 161, 1486–1489 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sarosdy, M. F. et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J. Urol. 168, 1950–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lotan, Y. et al. Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol. Oncol. 28, 441–448 (2010).

    Article  PubMed  Google Scholar 

  24. Lotan, Y. et al. Optimal trial design for studying urinary markers in bladder cancer: a collaborative review. Eur. Urol. Oncol. 1, 223–230 (2018).

    Article  PubMed  Google Scholar 

  25. Chou, R. et al. AHRQ Comparative effectiveness reviews: emerging approaches to diagnosis and treatment of non-muscle-invasive bladder cancer (US Agency for Healthcare Research and Quality, 2015).

  26. Cai, Q. et al. Urine BLCA-4 exerts potential role in detecting patients with bladder cancers: a pooled analysis of individual studies. Oncotarget 6, 37500–37510 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. D’Costa, J. J., Goldsmith, J. C., Wilson, J. S., Bryan, R. T. & Ward, D. G. A systematic review of the diagnostic and prognostic value of urinary protein biomarkers in urothelial bladder cancer. Bladder Cancer 2, 301–317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, Y. L. et al. Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for bladder cancer: a systematic review and meta-analysis. Tumour Biol. 36, 3137–3145 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Sharma, S., Zippe, C. D., Pandrangi, L., Nelson, D. & Agarwal, A. Exclusion criteria enhance the specificity and positive predictive value of NMP22 and BTA stat. J. Urol. 162, 53–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Pode, D. et al. Noninvasive detection of bladder cancer with the BTA stat test. J. Urol. 161, 443–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Todenhöfer, T. et al. Influence of urinary tract instrumentation and inflammation on the performance of urine markers for the detection of bladder cancer. Urology 79, 620–624 (2012).

    Article  PubMed  Google Scholar 

  32. Shariat, S. F. et al. Risk stratification for bladder tumor recurrence, stage and grade by urinary nuclear matrix protein 22 and cytology. Eur. Urol. 45, 304–313 (2004).

    Article  PubMed  Google Scholar 

  33. van Rhijn, B. W., van der Poel, H. G. & van der Kwast, T. H. Urine markers for bladder cancer surveillance: a systematic review. Eur. Urol. 47, 736–748 (2005).

    Article  PubMed  Google Scholar 

  34. Irani, J. et al. BTA stat and BTA TRAK: a comparative evaluation of urine testing for the diagnosis of transitional cell carcinoma of the bladder. Eur. Urol. 35, 89–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Boman, H., Hedelin, H. & Holmäng, S. Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence. J. Urol. 167, 80–83 (2002).

    Article  PubMed  Google Scholar 

  36. Lokeshwar, V. B. et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology 66, 35–63 (2005).

    Article  PubMed  Google Scholar 

  37. Chou, R. et al. Urinary biomarkers for diagnosis of bladder cancer: a systematic review and meta-analysis. Ann. Intern. Med. 163, 922–931 (2015).

    Article  PubMed  Google Scholar 

  38. Shariat, S. F., Karam, J. A., Lotan, Y. & Karakiewizc, P. I. Critical evaluation of urinary markers for bladder cancer detection and monitoring. Rev. Urol. 10, 120–135 (2008).

    PubMed  PubMed Central  Google Scholar 

  39. Compton, D. A. & Cleveland, D. W. NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–957 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Carpinito, G. A. et al. Urinary nuclear matrix protein as a marker for transitional cell carcinoma of the urinary tract. J. Urol. 156, 1280–1285 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Habibzadeh, F. & Habibzadeh, P. The likelihood ratio and its graphical representation. Biochem. Med. 29, 020101 (2019).

    Article  Google Scholar 

  42. Wang, Z. et al. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: a systematic review and meta-analysis. Oncotarget 8, 100648–100656 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kinders, R. et al. Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin. Cancer Res 4, 2511–2520 (1998).

    CAS  PubMed  Google Scholar 

  44. Malkowicz, S. B. The application of human complement factor H-related protein (BTA TRAK) in monitoring patients with bladder cancer. Urol. Clin. North Am. 27, 63–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Cserhalmi, M., Papp, A., Brandus, B., Uzonyi, B. & Józsi, M. Regulation of regulators: role of the complement factor H-related proteins. Semin. Immunol. 45, 101341 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Junnikkala, S. et al. Exceptional resistance of human H2 glioblastoma cells to complement-mediated killing by expression and utilization of factor H and factor H-like protein 1. J. Immunol. 164, 6075–6081 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Miyake, M. et al. Urinary BTA: indicator of bladder cancer or of hematuria. World J. Urol. 30, 869–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fradet, Y. & Lockhard, C. Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark. Can. J. Urol. 4, 400–405 (1997).

    PubMed  Google Scholar 

  49. Têtu, B. Diagnosis of urothelial carcinoma from urine. Mod. Pathol. 22, S53–S59 (2009).

    Article  PubMed  Google Scholar 

  50. Bergeron, A., Champetier, S., LaRue, H. & Fradet, Y. MAUB is a new mucin antigen associated with bladder cancer. J. Biol. Chem. 271, 6933–6940 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Fradet, Y., Islam, N., Boucher, L., Parent-Vaugeois, C. & Tardif, M. Polymorphic expression of a human superficial bladder tumor antigen defined by mouse monoclonal antibodies. Proc. Natl Acad. Sci. USA 84, 7227–7231 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmitz-Dräger, B. et al. Immunocytology in the assessment of patients with painless gross haematuria. BJU Int. 101, 455–458 (2008).

    PubMed  Google Scholar 

  53. Skacel, M. et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J. Urol. 169, 2101–2105 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Dimashkieh, H. et al. Evaluation of UroVysion and cytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 121, 591–597 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halling, K. C. et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J. Urol. 164, 1768–1775 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Gofrit, O. N. et al. The predictive value of multi-targeted fluorescent in-situ hybridization in patients with history of bladder cancer. Urol. Oncol. 26, 246–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Zellweger, T. et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int. J. Cancer 119, 1660–1665 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Mischinger, J. et al. Comparison of different concepts for interpretation of chromosomal aberrations in urothelial cells detected by fluorescence in situ hybridization. J. Cancer Res. Clin. Oncol. 143, 677–685. (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Bubendorf, L. & Grilli, B. UroVysion multiprobe FISH in urinary cytology. Methods Mol. Med. 97, 117–131 (2004).

    CAS  PubMed  Google Scholar 

  60. Köhler, C. U. et al. Automated quantification of FISH signals in urinary cells enables the assessment of chromosomal aberration patterns characteristic for bladder cancer. Biochem. Biophys. Res. Commun. 448, 467–472 (2014).

    Article  PubMed  Google Scholar 

  61. Konety, B. R. et al. Detection of bladder cancer using a novel nuclear matrix protein, BLCA-4. Clin. Cancer Res. 6, 2618–2625 (2000).

    CAS  PubMed  Google Scholar 

  62. Konety, B. R. & Getzenberg, R. H. Nuclear structural proteins as biomarkers of cancer. J. Cell Biochem. 75, 183–191 (1999).

    Article  Google Scholar 

  63. Myers-Irvin, J. M., Van, Le. T. S. & Getzenberg, R. H. Mechanistic analysis of the role of BLCA-4 in bladder cancer pathobiology. Cancer Res. 65, 7145–7150 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Van, Le. T. S., Myers, J., Konety, B. R., Barder, T. & Getzenberg, R. H. Functional characterization of the bladder cancer marker, BLCA-4. Clin. Cancer Res. 10, 1384–1391 (2004).

    Article  Google Scholar 

  65. Myers-Irvin, J. M. & Getzenberg, R. H. Retraction: Mechanistic analysis of the role of BLCA-4 in bladder cancer pathobiology. Cancer Res. 74, 974 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Van, Le. T. S., Myers, J., Getzenberg, R. H., Konety, B. R. & Barder, T. Retraction: functional characterization of the bladder cancer marker, BLCA-4. Clin. Cancer Res. 19, 3327 (2013).

    Article  Google Scholar 

  67. Stoeber, K. et al. DNA replication licensing and human cell proliferation. J. Cell Sci. 114, 2027–2041 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Roupret, M. et al. Diagnostic accuracy of MCM5 for the detection of recurrence in nonmuscle invasive bladder cancer followup: a blinded, prospective cohort, multicenter European study. J. Urol. 204, 685–690 (2020).

    Article  PubMed  Google Scholar 

  69. Stoeber, K. et al. Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J. Natl Cancer Inst. 94, 1071–1079 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, G., Sharma, A., Krishna, M., Ahluwalia, P. & Gautam, G. Diagnostic performance of minichromosome maintenance 5 (MCM5) in bladder cancer: a systematic review and meta-analysis. Urol. Oncol. 40, 235–242 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Dudderidge, T. et al. A novel, non-invasive test enabling bladder cancer detection in urine sediment of patients presenting with haematuria — a prospective multicentre performance evaluation of ADXBLADDER. Eur. Urol. Oncol. 3, 42–46 (2020).

    Article  PubMed  Google Scholar 

  72. Southgate, J., Harnden, P. & Trejdosiewicz, L. K. Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications. Histol. Histopathol. 14, 657–664 (1999).

    CAS  PubMed  Google Scholar 

  73. Barak, V., Goike, H., Panaretakis, K. W. & Einarsson, R. Clinical utility of cytokeratins as tumor markers. Clin. Biochem. 37, 529–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lu, P. et al. Diagnostic accuracy of the UBC® Rapid Test for bladder cancer: a meta-analysis. Oncol. Lett. 16, 3770–3778 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Linder, S. Cytokeratin markers come of age. Tumour Biol. 28, 189–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Fernandez-Gomez, J. et al. Urinary CYFRA 21.1 is not a useful marker for the detection of recurrences in the follow-up of superficial bladder cancer. Eur. Urol. 51, 1267–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Furuya, H. et al. Analytical validation of ONCURIA™ a multiplex bead-based immunoassay for the non-invasive bladder cancer detection. Pract. Lab. Med. 22, e00189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hirasawa, Y. et al. Diagnostic performance of Oncuria™, a urinalysis test for bladder cancer. J. Transl. Med. 19, 141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosser, C. J. et al. Bladder cancer-associated gene expression signatures identified by profiling of exfoliated urothelia. Cancer Epidemiol. Biomark. Prev. 18, 444–453 (2009).

    Article  CAS  Google Scholar 

  80. Bours, M. J. Bayes’ rule in diagnosis. J. Clin. Epidemiol. 131, 158–160 (2021).

    Article  PubMed  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03193541 (2023).

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03193528 (2023).

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03193515 (2022).

  84. Murakami, K. et al. Application of a multiplex urinalysis test for the prediction of intravesical BCG treatment response: a pilot study. Cancer Biomark. 33, 151–157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04564781 (2023).

  86. Akhtar, M., Gallagher, L. & Rohan, S. Survivin: role in diagnosis, prognosis, and treatment of bladder cancer. Adv. Anat. Pathol. 13, 122–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ku, J. H., Godoy, G., Amiel, G. E. & Lerner, S. P. Urine survivin as a diagnostic biomarker for bladder cancer: a systematic review. BJU Int. 110, 630–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. El-Salahy, E. M. Evaluation of cytokeratin-19 & cytokeratin-20 and interleukin-6 in Egyptian bladder cancer patients. Clin. Biochem. 35, 607–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Guo, B. et al. Quantitative detection of cytokeratin 20 mRNA in urine samples as diagnostic tools for bladder cancer by real-time PCR. Exp. Oncol. 31, 43–47 (2009).

    CAS  PubMed  Google Scholar 

  90. Mi, Y. et al. Diagnostic accuracy of urine cytokeratin 20 for bladder cancer: a meta-analysis. Asia Pac. J. Clin. Oncol. 15, e11–e19. (2019).

    Article  PubMed  Google Scholar 

  91. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Sullivan, P. et al. A multigene urine test for the detection and stratification of bladder cancer in patients presenting with hematuria. J. Urol. 188, 741–747 (2012).

    Article  PubMed  Google Scholar 

  93. Holyoake, A. et al. Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladder. Clin. Cancer Res. 14, 742–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Lotan, Y. et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urol. Oncol. 35, 531.e15–531.e22 (2017).

    Article  PubMed  Google Scholar 

  95. Kavalieris, L. et al. Performance characteristics of a multigene urine biomarker test for monitoring for recurrent urothelial carcinoma in a multicenter study. J. Urol. 197, 1419–1426 (2017).

    Article  PubMed  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04943380 (2023).

  97. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05080998 (2022).

  98. Wallace, E. et al. Development of a 90-minute integrated noninvasive urinary assay for bladder cancer detection. J. Urol. 199, 655–662 (2018).

    Article  PubMed  Google Scholar 

  99. Valenberg, F. et al. Prospective validation of an mRNA-based urine test for surveillance of patients with bladder cancer. Eur. Urol. 75, 853–860 (2019).

    Article  PubMed  Google Scholar 

  100. Dreyer, T. K., Ernst, A., Dyrskjøt, L. & Jensen, J. B. DaBlaCa-15: surveillance of high grade non-muscle invasive bladder cancer using XPERT® bladder cancer monitor — Seals XPERT. Aarhus Univ. https://pure.au.dk/portal/en/publications/dablaca15-surveillance-of-high-grade-nonmuscle-invasive-bladder-cancer-using-xpert-bladder-cancer-monitor(588ce4fd-9ade-4038-a3c4-80b196ab40ca).html (2021).

  101. Schaefer, A., Stephan, C., Busch, J., Yousef, G. M. & Jung, K. Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat. Rev. Urol. 7, 286–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Schmittgen, T. D. et al. Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fendler, A., Stephan, C., Yousef, G. M., Kristiansen, G. & Jung, K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat. Rev. Urol. 13, 734–752. (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Ostenfeld, M. S. et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 74, 5758–5771 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Hanke, M. et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28, 655–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, X. et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int. J. Cancer 136, 854–862 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, X. MiR-101 acts as a novel bio-marker in the diagnosis of bladder carcinoma. Medicine 98, e16051 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Blanca, A. et al. Expression of miR-100 and miR-138 as prognostic biomarkers in non-muscle-invasive bladder cancer. Apmis 127, 545–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Fang, Z. et al. Circulating miR-205: a promising biomarker for the detection and prognosis evaluation of bladder cancer. Tumour Biol. 37, 8075–8082 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, X. et al. Direct quantitative detection for cell-free miR-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 7, 3255–3266 (2016).

    Article  PubMed  Google Scholar 

  111. Goodall, G. J. & Wickramasinghe, V. O. RNA in cancer. Nat. Rev. Cancer 21, 22–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Ma, L. et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 47, D128–D134. (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Srivastava, A. K. et al. Appraisal of diagnostic ability of UCA1 as a biomarker of carcinoma of the urinary bladder. Tumour Biol. 35, 11435–11442 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Milowich, D. et al. Diagnostic value of the UCA1 test for bladder cancer detection: a clinical study. Springerplus 4, 349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Eissa, S., Matboli, M., Essawy, N. O., Shehta, M. & Kotb, Y. M. Rapid detection of urinary long non-coding RNA urothelial carcinoma associated one using a PCR-free nanoparticle-based assay. Biomarkers 20, 212–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Gielchinsky, I. et al. H19 non-coding RNA in urine cells detects urothelial carcinoma: a pilot study. Biomarkers 22, 661–666 (2017).

    CAS  PubMed  Google Scholar 

  117. Du, L. et al. Cell-free lncRNA expression signatures in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. J. Cell Mol. Med. 22, 2838–2845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, X., Wang, R., Han, C., Wang, Z. & Jin, X. A panel of urinary long non-coding RNAs differentiate bladder cancer from urocystitis. J. Cancer 11, 781–787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, X. et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol. Cancer 20, 4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Song, Z. et al. Identification of urinary hsa_circ _0137439 as potential biomarker and tumor regulator of bladder cancer. Neoplasma 67, 137–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, L. et al. Analysis of ceRNA network identifies prognostic circRNA biomarkers in bladder cancer. Neoplasma 66, 736–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Goel, A. et al. Back-splicing transcript isoforms (circular RNAs) affect biologically relevant pathways and offer an additional layer of information to stratify NMIBC patients. Front. Oncol. 10, 812 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang, R. et al. Urinary molecular pathology for patients with newly diagnosed urothelial bladder cancer. J. Urol. 206, 873–884 (2021).

    Article  PubMed  Google Scholar 

  124. Ablat, J. et al. Clinical validation of an ultra-deep next generation DNA sequencing approach for the detection of bladder cancer in the urine. J. Clin. Oncol. 36, e16515 (2018).

    Article  Google Scholar 

  125. Porten, S. P. Epigenetic alterations in bladder cancer. Curr. Urol. Rep. 19, 102 (2018).

    Article  PubMed  Google Scholar 

  126. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wolff, E. M. et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 70, 8169–8178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nunes, S. P., Henrique, R., Jerónimo, C. & Paramio, J. M. DNA methylation as a therapeutic target for bladder cancer. Cells 9, 1850 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marques-Magalhães, Â., Graça, I., Henrique, R. & Jerónimo, C. Targeting DNA methyltransferases in urological tumors. Front. Pharmacol. 9, 366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wasserstrom, A. F. D. et al. Molecular urine cytology — Bladder EpiCheck is a novel molecular diagnostic tool for monitoring of bladder cancer patients. J. Urol. 195, e140 (2016).

    Article  Google Scholar 

  131. Witjes, J. A. et al. Performance of the Bladder EpiCheck™ methylation test for patients under surveillance for non-muscle-invasive bladder cancer: results of a multicenter, prospective, blinded clinical trial. Eur. Urol. Oncol. 1, 307–313 (2018).

    Article  PubMed  Google Scholar 

  132. van Kessel, K. E. et al. Evaluation of an epigenetic profile for the detection of bladder cancer in patients with hematuria. J. Urol. 195, 601–607 (2016).

    Article  PubMed  Google Scholar 

  133. van Kessel, K. E. et al. Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy. J. Urol. 197, 590–595 (2017).

    Article  PubMed  Google Scholar 

  134. van Kessel, K. E. M. et al. A urine based genomic assay to triage patients with hematuria for cystoscopy. J. Urol. 204, 50–57 (2020).

    Article  PubMed  Google Scholar 

  135. Chen, X. et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J. Clin. Invest. 130, 6278–6289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04314245 (2020).

  137. Feber, A. et al. UroMark-a urinary biomarker assay for the detection of bladder cancer. Clin. Epigenetics 9, 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Paul, D. S. et al. Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing. Epigenetics 9, 678–684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02676180 (2019).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02781428 (2019).

  141. Mehrmohamadi, M., Sepehri, M. H., Nazer, N. & Norouzi, M. R. A comparative overview of epigenomic profiling methods. Front. Cell Dev. Biol. 9, 714687 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rodriguez Pena, M. D. C. et al. Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch. 476, 423–429 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Springer, S. U. et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. eLife 7, e32143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Eich, M. L. et al. Incidence and distribution of UroSEEK gene panel in a multi-institutional cohort of bladder urothelial carcinoma. Mod. Pathol. 32, 1544–1550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Batista, R. et al. Validation of a novel, sensitive, and specific urine-based test for recurrence surveillance of patients with non-muscle-invasive bladder cancer in a comprehensive multicenter study. Front. Genet. 10, 1237 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ward, D. G. et al. Targeted deep sequencing of urothelial bladder cancers and associated urinary DNA: a 23-gene panel with utility for non-invasive diagnosis and risk stratification. BJU Int. 124, 532–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ward, D. G. et al. Highly sensitive and specific detection of bladder cancer via targeted ultra-deep sequencing of urinary DNA. Eur. Urol. Oncol. 6, 67–75 (2022).

    Article  PubMed  Google Scholar 

  149. Zeng, S. et al. Noninvasive detection of urothelial carcinoma by cost-effective low-coverage whole-genome sequencing from urine-exfoliated cell DNA. Clin. Cancer Res. 26, 5646–5654 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04432909 (2021).

  151. Simeone, P. et al. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers. Int. J. Mol. Sci. 21, 2514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Georgantzoglou, N., Pergaris, A., Masaoutis, C. & Theocharis, S. Extracellular vesicles as biomarkers carriers in bladder cancer: diagnosis, surveillance, and treatment. Int. J. Mol. Sci. 22, 2744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest. 126, 1208–1215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Han, L., Lam, E. W. & Sun, Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol. Cancer 18, 59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Liang, L. G. et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 7, 46224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sunkara, V., Woo, H. K. & Cho, Y. K. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 141, 371–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Tomiyama, E. et al. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci. 112, 2033–2045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Piao, X. M., Cha, E. J., Yun, S. J. & Kim, W. J. Role of exosomal miRNA in bladder cancer: a promising liquid biopsy biomarker. Int. J. Mol. Sci. 22, 1713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lee, J. et al. Altered proteome of extracellular vesicles derived from bladder cancer patients urine. Mol. Cell 41, 179–187 (2018).

    CAS  Google Scholar 

  160. Lin, S. Y. et al. Proteome profiling of urinary exosomes identifies α 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci. Rep. 6, 34446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Erdbrügger, U. et al. Urinary extracellular vesicles: a position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 10, e12093 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Roobol, M. J., Bangma, C. H., el Bouazzaoui, S., Franken-Raab, C. G. & Zwarthoff, E. C. Feasibility study of screening for bladder cancer with urinary molecular markers (the BLU-P project). Urol. Oncol. 28, 686–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Starke, N., Singla, N., Haddad, A. & Lotan, Y. Long-term outcomes in a high-risk bladder cancer screening cohort. BJU Int. 117, 611–617 (2016).

    Article  PubMed  Google Scholar 

  164. Lotan, Y., Svatek, R. S. & Malats, N. Screening for bladder cancer: a perspective. World J. Urol. 26, 13–18 (2008).

    Article  PubMed  Google Scholar 

  165. Schmitz-Dräger, B. J. et al. Microhematuria assessment an IBCN consensus-Based upon a critical review of current guidelines. Urol. Oncol. 34, 437–451 (2016).

    Article  PubMed  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03988309 (2023).

  167. Todenhöfer, T. et al. Individual risk assessment in bladder cancer patients based on a multi-marker panel. J. Cancer Res. Clin. Oncol. 139, 49–56 (2013).

    Article  PubMed  Google Scholar 

  168. Mengual, L. et al. Gene expression signature in urine for diagnosing and assessing aggressiveness of bladder urothelial carcinoma. Clin. Cancer Res. 16, 2624–2633 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Benderska-Söder, N. et al. Toward noninvasive follow-up of low-risk bladder cancer — rationale and concept of the UroFollow trial. Urol. Oncol. 38, 886–895 (2020).

    Article  PubMed  Google Scholar 

  170. van der Aa, M. N. et al. Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J. Urol. 183, 76–80 (2010).

    Article  PubMed  Google Scholar 

  171. Kamat, A. M. et al. Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guérin therapy for bladder cancer: results of a prospective trial. J. Urol. 187, 862–867 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mengual, L. et al. Clinical utility of fluorescent in situ hybridization for the surveillance of bladder cancer patients treated with bacillus Calmette-Guérin therapy. Eur. Urol. 52, 752–759 (2007).

    Article  PubMed  Google Scholar 

  173. Lotan, Y. et al. Evaluation of the fluorescence in situ hybridization test to predict recurrence and/or progression of disease after bacillus Calmette-Guérin for primary high grade nonmuscle invasive bladder cancer: results from a prospective multicenter trial. J. Urol. 202, 920–926 (2019).

    Article  PubMed  Google Scholar 

  174. Kamat, A. M. et al. Cytokine panel for response to intravesical therapy (CyPRIT): nomogram of changes in urinary cytokine levels predicts patient response to bacillus Calmette-Guérin. Eur. Urol. 69, 197–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Witjes, J. A. et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: summary of the 2020 Guidelines. Eur. Urol. 79, 82–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Chauhan, P. S. et al. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: a cohort study. PLoS Med. 18, e1003732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Abbosh P. Optimization of urinary DNA deep sequencing tests to enhance clinical staging of bladder cancer patients. NIH RePORTER https://reporter.nih.gov/search/T5bqHfViV0yOXyzjQ_rYyw/project-details/10214260 (2022).

  178. Birkenkamp-Demtröder, K. et al. Genomic alterations in liquid biopsies from patients with bladder cancer. Eur. Urol. 70, 75–82 (2016).

    Article  PubMed  Google Scholar 

  179. Dudley, J. C. et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 9, 500–509 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Li, C. et al. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis. Biochem. Biophys. Res. Commun. 446, 1047–1052 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, Y. T. et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J. Proteome Res. 9, 5803–5815 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Abogunrin, F. et al. The impact of biomarkers in multivariate algorithms for bladder cancer diagnosis in patients with hematuria. Cancer 118, 2641–2650 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Rosser, C. J., Dai, Y., Miyake, M., Zhang, G. & Goodison, S. Simultaneous multi-analyte urinary protein assay for bladder cancer detection. BMC Biotechnol. 14, 24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sheryka, E., Wheeler, M. A., Hausladen, D. A. & Weiss, R. M. Urinary interleukin-8 levels are elevated in subjects with transitional cell carcinoma. Urology 62, 162–166 (2003).

    Article  PubMed  Google Scholar 

  186. Urquidi, V. et al. IL-8 as a urinary biomarker for the detection of bladder cancer. BMC Urol. 12, 12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bian, W. & Xu, Z. Combined assay of CYFRA21-1, telomerase and vascular endothelial growth factor in the detection of bladder transitional cell carcinoma. Int. J. Urol. 14, 108–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Chen, L. M. et al. External validation of a multiplex urinary protein panel for the detection of bladder cancer in a multicenter cohort. Cancer Epidemiol. Biomark. Prev. 23, 1804–1812 (2014).

    Article  CAS  Google Scholar 

  189. Urquidi, V. et al. CCL18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS ONE 7, e37797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liang, Z. et al. Hyaluronic acid/hyaluronidase as biomarkers for bladder cancer: a diagnostic meta-analysis. Neoplasma 64, 901–908 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Srivastava, A. K. et al. Clinical utility of urinary soluble Fas in screening for bladder cancer. Asia Pac. J. Clin. Oncol. 12, e215–e221 (2016).

    Article  PubMed  Google Scholar 

  192. Woodman, A. C., Goodison, S., Drake, M., Noble, J. & Tarin, D. Noninvasive diagnosis of bladder carcinoma by enzyme-linked immunosorbent assay detection of CD44 isoforms in exfoliated urothelia. Clin. Cancer Res. 6, 2381–2392 (2000).

    CAS  PubMed  Google Scholar 

  193. Cussenot, O. et al. Detection of specific chromosomal aberrations in urine using BCA-1 (oligo-CGH-array) enhances diagnostic sensitivity and predicts the aggressiveness of non-muscle-invasive bladder transitional cell carcinoma. World J. Urol. 32, 551–557 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.M. (MA 9796/1-1) is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Author information

Authors and Affiliations

Authors

Contributions

M.M. researched data for the article. All authors contributed substantially to discussion of the content. M.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter C. Black.

Ethics declarations

Competing interests

P.C.B. has consulted for AbbVie, Astellas Pharma, AstraZeneca, Bayer, Biosyent, Bristol-Myers Squibb, EMD-Serono, Ferring, Janssen Oncology, Merck, Nanology, Nonagen, Pfizer, Prokarium, Protara, QED, Roche Canada, Sanofi Canada, STIMIT, Urogen Pharma and Verity, has received research funding from iProgen, and shares a patent with Veracyte. M.M. is an adviser for VitaDx. T.T. is a speaker/adviser for Amgen, Astellas Pharma, AstraZeneca, Bayer, Bristol-Myers Squibb, Ipsen, Janssen, Merck, MSD, Pfizer, Roche and Sanofi.

Peer review

Peer review information

Nature Reviews Urology thanks Rui Henrique, who co-reviewed with João Lobo, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CxBladder: https://www.cxbladder.com/au/what-is-cxbladder/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maas, M., Todenhöfer, T. & Black, P.C. Urine biomarkers in bladder cancer — current status and future perspectives. Nat Rev Urol 20, 597–614 (2023). https://doi.org/10.1038/s41585-023-00773-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00773-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing