Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The future of patient-derived xenografts in prostate cancer research

Abstract

Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A summary of PDXs in large international collections.
Fig. 2: The design of expansion versus a 1 × 1 × 1 study experiments with PDXs.
Fig. 3: Modelling tumour heterogeneity with PDXS.
Fig. 4: The features of PDXs ideal for collaborative research.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Sandhu, S. et al. Prostate cancer. Lancet 398, 1075–1090 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Centenera, M. M. et al. A patient‐derived explant (PDE) model of hormone‐dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arriaga, J. M. & Abate-Shen, C. Genetically engineered mouse models of prostate cancer in the postgenomic era. Cold Spring Harb. Perspect. Med. 9, a030528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Navone, N. M. et al. Movember GAP1 PDX project: an international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models. Prostate 78, 1262–1282 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Gleave, A. M., Ci, X., Lin, D. & Wang, Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 80, 518–526 (2020).

    Article  PubMed  Google Scholar 

  8. Risbridger, G. P., Toivanen, R. & Taylor, R. A. Preclinical models of prostate cancer: patient-derived xenografts, organoids, and other explant models. Cold Spring Harb. Perspect. Med. 8, a030536 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Davies, A. H., Wang, Y. & Zoubeidi, A. Patient-derived xenografts: a platform for accelerating translational research in prostate cancer. Mol. Cell. Endocrinol. 462, 17–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. van de Merbel, A. F., van der Horst, G. & van der Pluijm, G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat. Rev. Urol. 18, 33–45 (2021).

    Article  PubMed  Google Scholar 

  11. Inoue, T., Terada, N., Kobayashi, T. & Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 14, 267–283 (2017).

    Article  PubMed  Google Scholar 

  12. Risbridger, G. P., Lawrence, M. G. & Taylor, R. A. PDX: moving beyond drug screening to versatile models for research discovery. J. Endocr. Soc. 4, bvaa132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toivanen, R. et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci. Transl. Med. 5, 187ra71 (2013).

    Article  PubMed  Google Scholar 

  14. Priolo, C. et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am. J. Pathol. 176, 1901–1913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Risbridger, G. P. et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat. Commun. 12, 5049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y. et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab. Invest. 85, 1392–1404 (2005).

    Article  PubMed  Google Scholar 

  17. Palanisamy, N. et al. The MD anderson prostate cancer patient-derived xenograft series (MDA PCa PDX) captures the molecular landscape of prostate cancer and facilitates marker-driven therapy development. Clin. Cancer Res. 26, 4933–4946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen, H. M. et al. LuCaP prostate cancer patient‐derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Conte, N. et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 47, D1073–D1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Krupke, D. M. et al. The mouse tumor biology database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77, e67–e70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Marques, R. B. et al. The human PC346 xenograft and cell line panel: a model system for prostate cancer progression. Eur. Urol. 49, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Brennen, W. N. et al. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight 6, e146827 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU145). Int. J. Cancer 21, 274–281 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23 (1979).

    CAS  PubMed  Google Scholar 

  29. Horoszewicz, J. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).

    CAS  PubMed  Google Scholar 

  30. Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 2. J. Urol. 173, 360–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 1. J. Urol. 173, 342–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vargas, R. et al. Case study: patient-derived clear cell adenocarcinoma xenograft model longitudinally predicts treatment response. NPJ Precis. Oncol. 2, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 5, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Puca, L. et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun. 9, 2404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lawrence, M. G. et al. A preclinical xenograft model of prostate cancer using human tumors. Nat. Protoc. 8, 836–848 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, H., Nolley, R., Chen, Z. & Peehl, D. M. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am. J. Pathol. 177, 229–239 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porter, L. H. et al. Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate‐tolerant cells. BJU Int. 121, 971–978 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Risbridger, G. P. et al. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur. Urol. 67, 496–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Servant, R. et al. Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens. J. Pathol. 254, 543–555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Welti, J. et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin. Cancer Res. 24, 3149–3162 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. 10, eaar2036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mout, L. et al. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur. J. Cancer 150, 179–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Cyrta, J. et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat. Commun. 11, 5549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, S. et al. Establishment and analysis of three-dimensional (3D) organoids derived from patient prostate cancer bone metastasis specimens and their xenografts. J. Vis. Exp. 156, e60367 (2020).

    Google Scholar 

  49. Tang, F. et al. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science 376, eabe1505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Faugeroux, V. et al. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived explant model. Nat. Commun. 11, 1884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karkampouna, S. et al. Patient-derived xenografts and organoids model therapy response in prostate cancer. Nat. Commun. 12, 1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCulloch, D. R., Opeskin, K., Thompson, E. W. & Williams, E. D. BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate 65, 35–43 (2005).

    Article  PubMed  Google Scholar 

  53. Russell, P. J. et al. Establishing prostate cancer patient derived xenografts: lessons learned from older studies. Prostate 75, 628–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kohli, M. et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS ONE 10, e0145176 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yoshikawa, T. et al. An original patient-derived xenograft of prostate cancer with cyst formation. Prostate 76, 994–1003 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Troyer, D. A. et al. Characterization of PacMetUT1, a recently isolated human prostate cancer cell line. Prostate 68, 883–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Rubin, M. A. et al. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin. Cancer Res. 6, 1038–1045 (2000).

    CAS  PubMed  Google Scholar 

  58. Williams, E. S. et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J. Vis. Exp. 105, e53182 (2015).

    Google Scholar 

  59. Kimura, T. et al. A novel androgen-dependent prostate cancer xenograft model derived from skin metastasis of a Japanese patient. Prostate 69, 1660–1667 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Honda, M. et al. Differential expression of androgen receptor variants in hormone-sensitive prostate cancer xenografts, castration-resistant sublines, and patient specimens according to the treatment sequence. Prostate 79, 1043–1052 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Einstein, D. J. et al. Metastatic castration-resistant prostate cancer remains dependent on oncogenic drivers found in primary tumors. JCO Precis. Oncol. 5, 1514–1522 (2021).

    Article  Google Scholar 

  62. Patierno, B. M. et al. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis. 25, 513–523 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gil, V. et al. HER3 is an actionable target in advanced prostate cancer. Cancer Res. 81, 6207–6218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agemy, L. et al. Irradiation enhances the metastatic potential of prostatic small cell carcinoma xenografts. Prostate 68, 530–539 (2008).

    Article  PubMed  Google Scholar 

  65. Pinthus, J. H. et al. WISH-PC2: a unique xenograft model of human prostatic small cell carcinoma. Cancer Res. 60, 6563–6567 (2000).

    CAS  PubMed  Google Scholar 

  66. Okasho, K. et al. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13. Cancer Sci. 112, 2781–2791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lange, T. et al. Development and characterization of a spontaneously metastatic patient-derived xenograft model of human prostate cancer. Sci. Rep. 8, 17535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wetterauer, C. et al. Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75, 585–592 (2015).

    Article  PubMed  Google Scholar 

  69. Taurozzi, A. J. et al. Spontaneous development of Epstein–Barr virus associated human lymphomas in a prostate cancer xenograft program. PLoS ONE 12, e0188228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alsop, K. et al. A community-based model of rapid autopsy in end-stage cancer patients. Nat. Biotechnol. 34, 1010–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Ellis, W. J. et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048 (1996).

    CAS  PubMed  Google Scholar 

  72. Nguyen, H. M. et al. LuCaP prostate cancer patient‐derived xenografts reflect the molecular heterogeneity of advanced disease an–d serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lawrence, M. G. et al. Knowing what’s growing: why ductal and intraductal prostate cancer matter. Sci. Transl. Med. 12, eaaz0152 (2020).

    Article  PubMed  Google Scholar 

  74. Ranasinghe, W. et al. Ductal prostate cancers demonstrate poor outcomes with conventional therapies. Eur. Urol. 79, 298–306 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Lawrence, M. G. et al. Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy. Eur. Urol. 74, 562–572 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Porter, L. H. et al. Androgen receptor enhancer amplification in matched patient-derived xenografts of primary and castrate-resistant prostate cancer. J. Pathol. 254, 121–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Henzler, C. et al. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun. 7, 13668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu, Y. et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene 39, 6935–6949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Labrecque, M. P. et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Invest. 129, 4492–4505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li, Z. G. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J. Clin. Invest. 118, 2697–2710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tzelepi, V. et al. Modeling a lethal prostate cancer variant with small cell carcinoma features. Clin. Cancer Res. 18, 666–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Shi, M., Wang, Y. & Lin, D. Patient-derived xenograft models of neuroendocrine prostate cancer. Cancer Lett. 525, 160–169 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.e476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beltran, H. et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. 1, 466–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, H. et al. Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment. Nat. Commun. 12, 5086 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  PubMed Central  Google Scholar 

  91. Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baker, S. C. et al. The external RNA controls consortium: a progress report. Nat. Methods 2, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Yan, Y. et al. The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer. EMBO Mol. Med. 11, e10659 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brennen, W. N. & Isaacs, J. T. The what, when, and why of human prostate cancer xenografts. Prostate 78, 646–654 (2018).

    Article  PubMed  Google Scholar 

  95. Wang, Y. et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 64, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Michiel Sedelaar, J. P., Dalrymple, S. S. & Isaacs, J. T. Of mice and men — warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate 73, 1316–1325 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Hassan, S., Blick, T., Wood, J., Thompson, E. W. & Williams, E. D. Circulating tumour cells indicate the presence of residual disease post-castration in prostate cancer patient-derived xenograft models. Front. Cell Dev. Biol. 10, 858013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hassan, S., Blick, T., Thompson, E. W. & Williams, E. D. Diversity of epithelial-mesenchymal phenotypes in circulating tumour cells from prostate cancer patient-derived xenograft models. Cancers 13, 2750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Sarkar, N. et al. Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0692 (2022).

    Article  PubMed Central  Google Scholar 

  100. Chatalic, K. L. et al. A novel ¹¹¹In-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J. Nucl. Med. 56, 1094–1099 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Asrani, K. et al. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J. Pathol. 255, 425–437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baca, S. C. et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat. Commun. 12, 1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moll, J. M. et al. Abiraterone switches castration-resistant prostate cancer dependency from adrenal androgens towards androgen receptor variants and glucocorticoid receptor signalling. Prostate 82, 505–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pomerantz, M. M. et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat. Genet. 52, 790–799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiao, L. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Lam, H. M. et al. Durable response of enzalutamide-resistant prostate cancer to supraphysiological testosterone is associated with a multifaceted growth suppression and impaired DNA damage response transcriptomic program in patient-derived xenografts. Eur. Urol. 77, 144–155 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Isaacs, J. T., Brennen, W. N. & Denmeade, S. R. Serial bipolar androgen therapy (sBAT) using cyclic supraphysiologic testosterone (STP) to treat metastatic castration-resistant prostate cancer (mCRPC). Ann. Transl. Med. 7, S311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Qiu, X. et al. Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight 7, e157164 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Linxweiler, J. et al. A novel mouse model of human prostate cancer to study intraprostatic tumor growth and the development of lymph node metastases. Prostate 78, 664–675 (2018).

    Article  PubMed  Google Scholar 

  110. Migliardi, G. et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res. 18, 2515–2525 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Townsend, E. C. et al. The public repository of xenografts (ProXe) enables discovery and randomized phase II-like trials in mice. Cancer Cell 29, 574–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mer, A. S. et al. Integrative pharmacogenomics analysis of patient-derived xenografts. Cancer Res. 79, 4539–4550 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Ortmann, J. et al. Assessing therapy response in patient-derived xenografts. Sci. Transl. Med. 13, eabf4969 (2021).

    Article  PubMed  Google Scholar 

  114. Ci, X. et al. Conditionally reprogrammed cells from patient-derived xenograft to model neuroendocrine prostate cancer development. Cells 9, 1398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beshiri, M. L. et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin. Cancer Res. 24, 4332–4345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, W. et al. Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response. Prostate 79, 390–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. van de Merbel, A. F. et al. An ex vivo tissue culture model for the assessment of individualized drug responses in prostate and bladder cancer. Front. Oncol. 8, 400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. van de Merbel, A. F. et al. Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models. Cancer Gene Ther. 29, 793–802 (2022).

    Article  PubMed  Google Scholar 

  119. Shokoohmand, A. et al. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 220, 119402 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Monterosso, M. E. et al. Using the Microwell-mesh to culture microtissues in vitro and as a carrier to implant microtissues in vivo into mice. Sci. Rep. 11, 5118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Choo, N. et al. High-throughput imaging assay for drug screening of 3D prostate cancer organoids. SLAS Discov. 26, 1107–1124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fong, E. L. et al. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol. Pharm. 11, 2040–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sablatura, L. K. et al. Enhanced viability for ex vivo 3D hydrogel cultures of patient-derived xenografts in a perfused microfluidic platform. J. Vis. Exp. https://doi.org/10.3791/60872 (2020).

    Article  PubMed  Google Scholar 

  124. Fong, E. L. et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77, 164–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Jansson, K. H. et al. High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Sci. Rep. 8, 17239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Russell, W. M. S. & Burch, R. L. The Principles Of Humane Experimental Technique (Methuen, 1959).

  127. Van Hemelryk, A. et al. Patient-derived xenografts and organoids recapitulate castration-resistant prostate cancer with sustained androgen receptor signaling. Cells 11, 3632 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. de Morrée, E. S. et al. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br. J. Cancer 115, 674–681 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ewing, C. M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mo, F. et al. Stromal gene expression is predictive for metastatic primary prostate cancer. Eur. Urol. 73, 524–532 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Mahal, B. A. et al. Racial differences in genomic profiling of prostate cancer. N. Engl. J. Med. 383, 1083–1085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jaratlerdsiri, W. et al. Whole-genome sequencing reveals elevated tumor mutational burden and initiating driver mutations in African men with treatment-naïve, high-risk prostate cancer. Cancer Res. 78, 6736–6746 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Rebello, R. J. et al. The dual inhibition of RNA Pol I transcription and PIM Kinase as a new therapeutic approach to treat advanced prostate cancer. Clin. Cancer Res. 22, 5539–5552 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Lawrence, M. G. et al. CX-5461 sensitizes DNA damage repair-proficient castrate-resistant prostate cancer to PARP inhibition. Mol. Cancer Ther. 20, 2140–2150 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. de Bono, J. et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382, 2091–2102 (2020).

    Article  PubMed  Google Scholar 

  137. Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA1 alteration. J. Clin. Oncol. 38, 3763–3772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nombela, P. et al. BRCA2 and other DDR genes in prostate cancer. Cancers 11, 352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Evrard, Y. A. et al. Systematic establishment of robustness and standards in patient-derived xenograft experiments and analysis. Cancer Res. 80, 2286–2297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kluin, R. J. C. et al. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics 19, 366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wakefield, L. M. Xenomapper: mapping reads in a mixed species context. J. Open Source Softw. 1, 18 (2016).

    Article  Google Scholar 

  142. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  143. Porter, L. H. et al. Establishing a cryopreservation protocol for patient-derived xenografts of prostate cancer. Prostate 79, 1326–1337 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Wang, Y. et al. Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation 91, 15–19 (2016).

    Article  PubMed  Google Scholar 

  145. El-Hoss, J. et al. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts. Oncotarget 7, 60475–60490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tutty, E., Horsley, P., Forbes Shepherd, R. & Forrest, L. E. The art and science of recruitment to a cancer rapid autopsy programme: a qualitative study exploring patient and clinician experiences. Palliat. Med. 35, 437–446 (2021).

    Article  PubMed  Google Scholar 

  147. Thompson-Iritani, S. & Schmechel, S. C. in Patient Derived Tumor Xenograft Models (eds Uthamanthil, R. & Tinkey, P.) 93–108 (Academic Press, 2017).

  148. Cassidy, J. W., Caldas, C. & Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75, 2963–2968 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meraz, I. M. et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol. Res. 7, 1267–1279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Choi, Y. et al. Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp. Mol. Med. 50, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bray, L. J., Hutmacher, D. W. & Bock, N. Addressing patient specificity in the engineering of tumor models. Front. Bioeng. Biotechnol. 7, 217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb. Perspect. Med. 8, a030510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Karkampouna, S. et al. Stroma transcriptomic and proteomic profile of prostate cancer metastasis xenograft models reveals prognostic value of stroma signatures. Cancers 12, 3786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pienta, K. J. et al. The current state of preclinical prostate cancer animal models. Prostate 68, 629–639 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  155. van Weerden, W. M. et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am. J. Pathol. 149, 1055–1062 (1996).

    PubMed  PubMed Central  Google Scholar 

  156. Hao, J. et al. Patient-derived hormone-naive prostate cancer xenograft models reveal growth factor receptor bound protein 10 as an androgen receptor-repressed gene driving the development of castration-resistant prostate cancer. Eur. Urol. 73, 949–960 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the participants of the Virtual Prostate Cancer PDX Symposium series for sharing their views. They acknowledge the patients, clinical co-ordinators, clinicians and scientists who contribute to the establishment and maintenance of each of the collections of prostate cancer PDXs discussed in this Perspective. Authors from Monash University and the Peter MacCallum Cancer Centre thank members of the Melbourne Urological Research Alliance, kConFab, and CASCADE. Authors from the University of Washington/Fred Hutchinson Cancer Research Center would like to thank the patients who generously donated the tissue that made this research possible. The authors also thank J. Conner, M. Dalos, D. Sondheim and the Comparative Medicine Animal Caregivers for assistance with the LuCaP xenograft work. Additionally, they thank P. Lange, R. Vessella, F. Vakar-Lopez, M. Roudier, X. Zhang, B. Nghiem and the rapid autopsy teams and physicians in the Urology and Medical Oncology Departments at the University of Washington. The authors receive funding from the Movember Foundation Global Action Plan 1 PDX Project; US Department of Defense through the Prostate Cancer Research Program (W81XWH1810347, W81XWH1810348 and W81XWH1810349; opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense); the Movember Foundation (Global Action Plan 1); the Victorian Cancer Agency (MCRF15023, MCRF18017 and MCRF17005; CAPTIV Program); the National Health and Medical Research Council, Australia (1102752, 1138242, 1140222, 1156570, 1185616, 2011033 and 2011391); the Rotary Club of Manningham; RULE Prostate Cancer and the EJ Whitten Foundation; the Peter and Lyndy White Foundation; TissuPath Pathology; the Peter MacCallum Cancer Foundation; the Pacific Northwest Prostate Cancer SPORE (P50CA97186); the Department of Defense Prostate Cancer Biorepository Network (W81XWH-14-2-0183); CDMRP award W81XWH-21-1-0264; National Institute of Health/National Cancer Institute (P01 CA163227, R01CA234715, U01 CA224044-03, U54 CA233223, SBIR Phase I HHSN26120700015C); the Baylor College of Medicine, Minority PDX Development and Trial Center: Baylor College of Medicine and MD Anderson Cancer Center Collaboration on Mechanistic Studies to Dissect and Combat Health Disparities in Cancer, SBIR Phase II/Mimetas US, Inc); the Prostate Cancer Foundation; the Institute for Prostate Cancer Research; the Richard M. Lucas Foundation; the Craig Watjen Memorial Fund; Fond’Action contre le cancer (Young Investigator Award 2020); the Department of Surgery of the University Hospital Basel; the David H. Koch Center for Applied Research in Genitourinary Cancers at MD Anderson; the Canadian Institutes of Health Research (141635, 144159, 153081 and 173338); the Terry Fox Research Institute (1062); the Mitacs Accelerate Program (IT10125, IT06414, IT12387 and IT14958); and the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (721746; ‘TRANSPOT’).

Author information

Authors and Affiliations

Authors

Contributions

G.P.R., R.A.T. and M.G.L. researched data for the article, made a substantial contribution to discussion of content and wrote the article. G.B.C. wrote the article and made a substantial contribution to discussion of content. E.C., J.T.I. and P.S.N. made a substantial contribution to discussion of content. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Mitchell G. Lawrence or Gail P. Risbridger.

Ethics declarations

Competing interests

G.P.R., R.A.T. and M.G.L. have been involved in research collaborations with AstraZeneca and Pfizer. W.M.v.W. has been involved in research collaborations with Bayer. E.C. has received research funding under institutional sponsored research agreements from AbbVie, Bayer Pharmaceuticals, Forma Pharmaceutics Foghorn, Gilead, GSK, Janssen Research and Development, KronosBio, MacroGenics and Sanofi. P.S.N. has been a paid consultant to Astellas, Bristol Myers Squibb, Janssen and Pfizer for work unrelated to the present study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Gabri van der Pluijm, Alastair Lamb and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Jackson Laboratory: https://www.jax.org

Living Tumour Laboratory: http://www.livingtumorlab.com

Patient-Derived Models Repository: https://pdmr.cancer.gov

PDXFinder: https://www.pdxfinder.org

PDXNet: https://www.pdxnetwork.org

Supplementary information

Glossary

3D scaffolds

Support structures made from natural or synthetic materials used for in vitro cell culture, aiming to mimic the architecture and/or biomechanical features of tissue.

Conditionally reprogrammed cells

In vitro cultures of normal or tumour epithelial cells grown on a feeder layer of irradiated feeder cells (typically mouse 3T3 cells).

Ex vivo slice cultures

Chopped, minced or sliced pieces of tissue submerged in culture media or grown on top of sponges or mesh inserts. Also referred to as explants.

Hydrogels

Synthetic or naturally occurring materials that form 3D matrices to support the growth of cells, including organoids, typically having a more defined composition than Matrigel.

Matrigel

A solution of extracellular matrix proteins secreted by mouse Engelbreth–Holm–Swarm sarcoma cells often used to grow organoid cultures.

Microwells

Arrays of small wells (approximately 150 per cm2) fabricated from silicon or other materials, used to grow separate clusters of cells within a larger tissue culture plate.

Organoids

Clusters of cells grown in suspension or embedded in a matrix, rather than cultured in two dimensions (typically monocultures of tumour cells for prostate cancer).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, M.G., Taylor, R.A., Cuffe, G.B. et al. The future of patient-derived xenografts in prostate cancer research. Nat Rev Urol 20, 371–384 (2023). https://doi.org/10.1038/s41585-022-00706-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00706-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer