Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using PSMA imaging for prognostication in localized and advanced prostate cancer

Abstract

The use of prostate-specific membrane antigen (PSMA)-directed applications in modern prostate cancer management has evolved rapidly over the past few years, helping to establish new treatment pathways and provide further insights into prostate cancer biology. However, the prognostic implications of PSMA–PET have not been studied systematically, owing to rapid clinical implementation without long follow-up periods to determine intermediate-term and long-term oncological outcomes. Currently available data suggest that traditional prognostic factors and survival outcomes are associated with high PSMA expression (both according to immunohistochemistry and PET uptake) in men with localized and biochemically recurrent disease. Treatment with curative intent (primary and/or salvage) often fails when PSMA-positive metastases are present; however, the sensitivity of PSMA–PET in detecting all metastases is poor. Low PSMA–PET uptake in recurrent disease is a favourable prognostic factor; however, it can be associated with poor prognosis in conjunction with high 18F-fluorodeoxyglucose uptake in metastatic castration-resistant prostate cancer. Clinical trials embedding PSMA–PET for guiding management with reliable oncological outcomes are needed to support ongoing clinical use.

Key points

  • Prostate-specific membrane antigen (PSMA)–PET–CT is increasingly being used in clinical practice for prostate cancer staging and re-staging owing to improved accuracy and potential to change management. Improved oncological outcomes from improved accuracy are assumed, but yet to be conclusively proven.

  • PSMA is biologically associated with high-grade prostate cancer and advanced disease, and is altered by the use of systemic hormonal therapies. Higher PSMA expression according to immunohistochemistry has been associated with worse survival outcomes than patients with low PSMA expression.

  • Primary tumour PSMA ligand uptake on PET–CT has been associated with traditional prognostic factors, such as high Gleason scores or International Society of Uro-Pathology (ISUP) Grade Group and reduced progression-free survival after radical prostatectomy. PSMA–PET detection of index tumours also serves to improve accuracy of prostate biopsy and possibly enable safe omission of biopsy for men with suspected prostate cancer.

  • Detection of PSMA-positive lymph nodal metastases is associated with biochemical persistence and biochemical recurrence after surgery, as well as after salvage therapies (surgery and radiotherapy). However, small-sized lymph node metastases will be missed by PSMA–PET; thus, clinical factors remain an important consideration.

  • Biochemical recurrence prognostic factors, such as high Gleason score, high PSA levels and short PSA doubling time, are predictive of positive PSMA–PET results. Conversely, patients with post-prostatectomy biochemical recurrence and negative PSMA–PET might be a group of patients with the best oncological outcomes after salvage radiotherapy.

  • PSMA–PET has a high detection rate for metastasis in men with non-metastatic castration-resistant prostate cancer according to conventional imaging, enabling image-guided treatments (such as radiotherapy and radioligand therapy) in this context. High PSMA–PET radioligand uptake in men with castration-resistant prostate cancer does not necessarily confer a poor prognosis, with emerging data suggesting that low PSMA uptake with concurrent high 18F-fluorodeoxyglucose uptake might be the subgroup with a very poor prognosis, and least likely to benefit from radioligand therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The influence of PSMA activation on cell pathways.
Fig. 2: 68Ga-PSMA-11–PET–CT images of two patients.
Fig. 3: Locally recurrent prostate cancer after initial primary radiotherapy (brachytherapy) 13 years earlier, subsequently treated with stereotactic body radiation therapy.
Fig. 4: Response to PSMA RLT using 177Lu-PSMA maximum intensity projection and axial PET–CT images before and after RLT.
Fig. 5: Current and potential future role of PSMA–PET in risk assessment, tumour localization, diagnosis and management of prostate cancer.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  Google Scholar 

  2. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. EAU https://uroweb.org/guidelines/prostate-cancer (2020).

  3. Wallitt, K. L. et al. Clinical PET imaging in prostate cancer. RadioGraphics 37, 1512–1536 (2017).

    Article  Google Scholar 

  4. Jadvar, H. Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat. Rev. Urol. 6, 317–323 (2009).

    Article  CAS  Google Scholar 

  5. Jadvar, H. Is there use for FDG-PET in prostate cancer? Semin. Nucl. Med. 46, 502–506 (2016).

    Article  Google Scholar 

  6. Horoszewicz, J. S. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).

    CAS  Google Scholar 

  7. Horoszewicz, J. S., Kawinski, E. & Murphy, G. P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 7, 927–935 (1987).

    CAS  Google Scholar 

  8. Wynant, G. E. et al. Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate 18, 229–241 (1991).

    Article  CAS  Google Scholar 

  9. Robinson, M. B., Blakely, R. D., Couto, R. & Coyle, J. T. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J. Biol. Chem. 262, 14498–14506 (1987).

    Article  CAS  Google Scholar 

  10. Kozikowski, A. P. et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem. 44, 298–301 (2001).

    Article  CAS  Google Scholar 

  11. Maurer, T., Eiber, M., Schwaiger, M. & Gschwend, J. E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    Article  CAS  Google Scholar 

  12. Lawhn-Heath, C. et al. Prostate-specific membrane antigen PET in prostate cancer. Radiology 299, 248–260 (2021).

    Article  Google Scholar 

  13. Siva, S. et al. Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat. Rev. Urol. 17, 107–118 (2020).

    Article  Google Scholar 

  14. van Leeuwen, F. W. B. et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat. Rev. Urol. 16, 159–171 (2019).

    Article  Google Scholar 

  15. Wright, G. L. Jr, Haley, C., Beckett, M. L. & Schellhammer, P. F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1, 18–28 (1995).

    Article  Google Scholar 

  16. O’Keefe, D. S. et al. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim. Biophys. Acta 1443, 113–127 (1998).

    Article  Google Scholar 

  17. DeMarzo, A. M., Nelson, W. G., Isaacs, W. B. & Epstein, J. I. Pathological and molecular aspects of prostate cancer. Lancet 361, 955–964 (2003).

    Article  CAS  Google Scholar 

  18. Kinoshita, Y. et al. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 30, 628–636 (2006).

    Article  Google Scholar 

  19. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  Google Scholar 

  20. Ferreira, G., Iravani, A., Hofman, M. S. & Hicks, R. J. Intra-individual comparison of 68Ga-PSMA-11 and 18F-DCFPyL normal-organ biodistribution. Cancer Imaging 19, 23 (2019).

    Article  Google Scholar 

  21. Israeli, R. S., Powell, C. T., Fair, W. R. & Heston, W. D. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 53, 227–230 (1993).

    CAS  Google Scholar 

  22. Barinka, C. et al. Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng. Des. Sel. 29, 105–115 (2016).

    Article  CAS  Google Scholar 

  23. Pinto, J. T. et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res. 2, 1445–1451 (1996).

    CAS  Google Scholar 

  24. Paschalis, A. et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur. Urol. 76, 469–478 (2019).

    Article  CAS  Google Scholar 

  25. Bostwick, D. G., Pacelli, A., Blute, M., Roche, P. & Murphy, G. P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82, 2256–2261 (1998).

    Article  CAS  Google Scholar 

  26. Mannweiler, S. et al. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 15, 167–172 (2009).

    Article  CAS  Google Scholar 

  27. Kaittanis, C. et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J. Exp. Med. 215, 159–175 (2018).

    Article  CAS  Google Scholar 

  28. Caromile, L. A. & Shapiro, L. H. PSMA redirects MAPK to PI3K-AKT signaling to promote prostate cancer progression. Mol. Cell. Oncol. 4, e1321168 (2017).

    Article  Google Scholar 

  29. Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 21, 4507 (2020).

    Article  CAS  Google Scholar 

  30. Xu, L. et al. Screening and identification of significant genes related to tumor metastasis and PSMA in prostate cancer using microarray analysis. Oncol. Rep. 30, 1920–1928 (2013).

    Article  CAS  Google Scholar 

  31. Wu, J. et al. A novel fully human antibody targeting extracellular domain of PSMA inhibits tumor growth in prostate cancer. Mol. Cancer Ther. 18, 1289–1301 (2019).

    Article  CAS  Google Scholar 

  32. Su, Y. et al. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Cancer Lett. 338, 282–291 (2013).

    Article  CAS  Google Scholar 

  33. Kuroda, K. & Liu, H. The proteasome inhibitor, bortezomib, induces prostate cancer cell death by suppressing the expression of prostate-specific membrane antigen, as well as androgen receptor. Int. J. Oncol. 54, 1357–1366 (2019).

    CAS  Google Scholar 

  34. Weidle, U. H., Epp, A., Birzele, F. & Brinkmann, U. The functional role of prostate cancer metastasis-related Micro-RNAs. Cancer Genomics Proteom. 16, 1–19 (2019).

    Article  CAS  Google Scholar 

  35. Vummidi Giridhar, P., Williams, K., VonHandorf, A. P., Deford, P. L. & Kasper, S. Constant degradation of the androgen receptor by MDM2 conserves prostate cancer stem cell integrity. Cancer Res. 79, 1124–1137 (2019).

    Article  Google Scholar 

  36. Zhou, Y., Bolton, E. C. & Jones, J. O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 54, R15–R29 (2015).

    Article  CAS  Google Scholar 

  37. Shore, N. D., Abrahamsson, P. A., Anderson, J., Crawford, E. D. & Lange, P. New considerations for ADT in advanced prostate cancer and the emerging role of GnRH antagonists. Prostate Cancer Prostatic Dis. 16, 7–15 (2013).

    Article  CAS  Google Scholar 

  38. Bakht, M. K. et al. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: emerging opportunities and challenges. Nucl. Med. Mol. Imaging 51, 202–211 (2017).

    Article  CAS  Google Scholar 

  39. Vaz, S. et al. Influence of androgen deprivation therapy on PSMA expression and PSMA-ligand PET imaging of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 47, 9–15 (2020).

    Article  CAS  Google Scholar 

  40. Roy, J. et al. Monitoring PSMA responses to ADT in prostate cancer patient-derived xenograft mouse models using [18F]DCFPyL PET imaging. Mol. Imaging Biol. 23, 745–755 (2021).

    Article  CAS  Google Scholar 

  41. Hope, T. A. et al. 68Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. J. Nucl. Med. 58, 81–84 (2017).

    Article  CAS  Google Scholar 

  42. Mei, R. et al. Androgen deprivation therapy and its modulation of PSMA expression in prostate cancer: mini review and case series of patients studied with sequential [68Ga]-Ga-PSMA-11 PET/CT. Clin. Transl. Imaging 9, 215–220 (2021).

    Article  Google Scholar 

  43. Leitsmann, C. et al. Enhancing PSMA-uptake with androgen deprivation therapy — a new way to detect prostate cancer metastases? Int. Braz. J. Urol. 45, 459–467 (2019).

    Article  Google Scholar 

  44. Ettala, O. et al. Prospective study on the effect of short-term androgen deprivation therapy on PSMA uptake evaluated with 68Ga-PSMA-11 PET/MRI in men with treatment-naïve prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 47, 665–673 (2020).

    Article  CAS  Google Scholar 

  45. Liu, T., Wu, L. Y., Fulton, M. D., Johnson, J. M. & Berkman, C. E. Prolonged androgen deprivation leads to downregulation of androgen receptor and prostate-specific membrane antigen in prostate cancer cells. Int. J. Oncol. 41, 2087–2092 (2012).

    Article  CAS  Google Scholar 

  46. Afshar-Oromieh, A. et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 2045–2054 (2018).

    Article  CAS  Google Scholar 

  47. Hoberück, S. et al. [68Ga]Ga-PSMA-11 PET before and after initial long-term androgen deprivation in patients with newly diagnosed prostate cancer: a retrospective single-center study. EJNMMI Res. 10, 135 (2020).

    Article  Google Scholar 

  48. Wright, G. L. Jr et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48, 326–334 (1996).

    Article  Google Scholar 

  49. Chen, M. et al. Can 68Ga-PSMA-11 positron emission tomography/computerized tomography predict pathological response of primary prostate cancer to neoadjuvant androgen deprivation therapy? A pilot study. J. Urol. 205, 1082–1089 (2021).

    Article  Google Scholar 

  50. Murga, J. D. et al. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. Prostate 75, 242–254 (2015).

    Article  CAS  Google Scholar 

  51. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article  CAS  Google Scholar 

  52. Emmett, L. et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 60, 950–954 (2019).

    Article  CAS  Google Scholar 

  53. Minner, S. et al. High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 71, 281–288 (2011).

    Article  Google Scholar 

  54. Bakht, M. K. et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr. Relat. Cancer 26, 131–146 (2018).

    Article  Google Scholar 

  55. Ross, J. S. et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 9, 6357–6362 (2003).

    CAS  Google Scholar 

  56. Marchal, C. et al. Expression of prostate specific membrane antigen (PSMA) in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. Histol. Histopathol. 19, 715–718 (2004).

    CAS  Google Scholar 

  57. Kasperzyk, J. L. et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol. Biomark. Prev. 22, 2354–2363 (2013).

    Article  CAS  Google Scholar 

  58. McEwan, L. M., Wong, D. & Yaxley, J. Fluorodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative. J. Med. Imaging Radiat. Oncol. 61, 503–505 (2017).

    Article  Google Scholar 

  59. Shetty, D. et al. Non-prostate-specific membrane antigen-avid metastatic lung nodule from primary prostatic adenocarcinoma. Clin. Nucl. Med. 41, 776–778 (2016).

    Article  Google Scholar 

  60. Hupe, M. C. et al. Expression of prostate-specific membrane antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front. Oncol. 8, 623 (2018).

    Article  Google Scholar 

  61. Ferraro, D. A. et al. Immunohistochemical PSMA expression patterns of primary prostate cancer tissue are associated with the detection rate of biochemical recurrence with 68Ga-PSMA-11-PET. Theranostics 10, 6082–6094 (2020).

    Article  CAS  Google Scholar 

  62. Vlachostergios, P. J. et al. Prostate-specific membrane antigen uptake and survival in metastatic castration-resistant prostate cancer. Front. Oncol. 11, 630589 (2021).

    Article  Google Scholar 

  63. Kratochwil, C. et al. Patients resistant against PSMA-targeting α-radiation therapy often harbor mutations in DNA damage-repair–associated genes. J. Nucl. Med. 61, 683–688 (2020).

    Article  Google Scholar 

  64. Derlin, T. et al. Neuroendocrine differentiation and response to PSMA-targeted radioligand therapy in advanced metastatic castration-resistant prostate cancer: a single-center retrospective study. J. Nucl. Med. 61, 1602–1606 (2020).

    Article  CAS  Google Scholar 

  65. Farwell, M. D., Pryma, D. A. & Mankoff, D. A. PET/CT imaging in cancer: current applications and future directions. Cancer 120, 3433–3445 (2014).

    Article  CAS  Google Scholar 

  66. de Jong, I. J., Pruim, J., Elsinga, P. H., Vaalburg, W. & Mensink, H. J. A. 11C-Choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur. Urol. 44, 32–39 (2003).

    Article  Google Scholar 

  67. Nanni, C. et al. 18F-Fluciclovine PET/CT for the detection of prostate cancer relapse: a comparison to 11C-choline PET/CT. Clin. Nucl. Med. 40, e386–e391 (2015).

    Article  Google Scholar 

  68. Pomper, M. G. et al. 11C-MCG: synthesis, uptake selectivity, and primate PET of a probe for glutamate carboxypeptidase II (NAALADase). Mol. Imaging 1, 96–101 (2002).

    Article  CAS  Google Scholar 

  69. Mease, R. C. et al.N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin. Cancer Res. 14, 3036–3043 (2008).

    Article  CAS  Google Scholar 

  70. Tateishi, U. Prostate-specific membrane antigen (PSMA)-ligand positron emission tomography and radioligand therapy (RLT) of prostate cancer. Jpn. J. Clin. Oncol. 50, 349–356 (2020).

    Article  Google Scholar 

  71. Zippel, C., Ronski, S. C., Bohnet-Joschko, S., Giesel, F. L. & Kopka, K. Current status of PSMA-radiotracers for prostate cancer: data analysis of prospective trials listed on ClinicalTrials.gov. Pharmaceuticals 13, 12 (2020).

    Article  CAS  Google Scholar 

  72. Banerjee, S. R. et al. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J. Med. Chem. 53, 5333–5341 (2010).

    Article  CAS  Google Scholar 

  73. Eder, M. et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 23, 688–697 (2012).

    Article  CAS  Google Scholar 

  74. Afshar-Oromieh, A. et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging 40, 486–495 (2013).

    Article  CAS  Google Scholar 

  75. Morigi, J. J. et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J. Nucl. Med. 56, 1185–1190 (2015).

    Article  CAS  Google Scholar 

  76. Afshar-Oromieh, A., Haberkorn, U., Eder, M., Eisenhut, M. & Zechmann, C. M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging 39, 1085–1086 (2012).

    Article  CAS  Google Scholar 

  77. Giesel, F. L. et al. 18F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 43, 1929–1930 (2016).

    Article  CAS  Google Scholar 

  78. Cardinale, J. et al. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J. Nucl. Med. 58, 425–431 (2017).

    Article  CAS  Google Scholar 

  79. Szabo, Z. et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol. 17, 565–574 (2015).

    Article  CAS  Google Scholar 

  80. Kesch, C., Kratochwil, C., Mier, W., Kopka, K. & Giesel, F. L. 68Ga or 18F for prostate cancer imaging? J. Nucl. Med. 58, 687–688 (2017).

    Article  Google Scholar 

  81. Alberts, I. L. et al. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 48, 2978–2989 (2021).

    Article  CAS  Google Scholar 

  82. Evangelista, L. et al. [68Ga]Ga-PSMA versus [18F]PSMA positron emission tomography/computed tomography in the staging of primary and recurrent prostate cancer: a systematic review of the literature. Eur. Urol. Oncol. 5, 273–282 (2022).

    Article  Google Scholar 

  83. Emmett, L., Pattison, D. A. & Roberts, M. J. All prostate-specific membrane antigen peptides are equal, but some are more equal than others. Eur. Urol. Oncol. 5, 283–284 (2022).

    Article  Google Scholar 

  84. Afaq, A., Ell, P. J. & Bomanji, J. B. Is it time to fund routine NHS usage of PSMA PET-CT? Nucl. Med. Commun. 40, 975–979 (2019).

    Article  Google Scholar 

  85. de Feria Cardet, R. E. et al. Is prostate-specific membrane antigen positron emission tomography/computed tomography imaging cost-effective in prostate cancer: an analysis informed by the proPSMA trial. Eur. Urol. 79, 413–418 (2021).

    Article  Google Scholar 

  86. Gordon, L. G., Elliott, T. M., Joshi, A., Williams, E. D. & Vela, I. Exploratory cost-effectiveness analysis of 68Gallium-PSMA PET/MRI-based imaging in patients with biochemical recurrence of prostate cancer. Clin. Exp. Metastasis 37, 305–312 (2020).

    Article  Google Scholar 

  87. Schwenck, J. et al. Intention-to-treat analysis of 68Ga-PSMA and 11C-Choline PET/CT versus CT for prostate cancer recurrence after surgery. J. Nucl. Med. 60, 1359–1365 (2019).

    Article  CAS  Google Scholar 

  88. Shariat, S. F., Kattan, M. W., Vickers, A. J., Karakiewicz, P. I. & Scardino, P. T. Critical review of prostate cancer predictive tools. Fut. Oncol. 5, 1555–1584 (2009).

    Article  Google Scholar 

  89. Briganti, A. et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur. Urol. 61, 480–487 (2012).

    Article  Google Scholar 

  90. Gandaglia, G. et al. Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur. Urol. 72, 632–640 (2017).

    Article  Google Scholar 

  91. Eifler, J. B. et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 111, 22–29 (2013).

    Article  Google Scholar 

  92. Cimino, S. et al. Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis. Scand. J. Urol. 51, 345–350 (2017).

    Article  Google Scholar 

  93. Bandini, M. et al. First North American validation and head-to-head comparison of four preoperative nomograms for prediction of lymph node invasion before radical prostatectomy. BJU Int. 121, 592–599 (2018).

    Article  Google Scholar 

  94. Rayn, K. N. et al. Added value of multiparametric magnetic resonance imaging to clinical nomograms for predicting adverse pathology in prostate cancer. J. Urol. 200, 1041–1047 (2018).

    Article  Google Scholar 

  95. Gandaglia, G. et al. A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies. Eur. Urol. 75, 506–514 (2019).

    Article  Google Scholar 

  96. Eggener, S. E. et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J. Urol. 185, 869–875 (2011).

    Article  Google Scholar 

  97. Ost, P. et al. Prognostic factors influencing prostate cancer-specific survival in non-castrate patients with metastatic prostate cancer. Prostate 74, 297–305 (2014).

    Article  CAS  Google Scholar 

  98. Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. 77, 403–417 (2020).

    Article  Google Scholar 

  99. Yaxley, J. W. et al. Risk of metastatic disease on 68gallium-prostate-specific membrane antigen positron emission tomography/computed tomography scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int. 124, 401–407 (2019).

    Article  CAS  Google Scholar 

  100. Simsek, D. H., Sanli, Y., Engin, M. N., Erdem, S. & Sanli, O. Detection of metastases in newly diagnosed prostate cancer by using 68Ga-PSMA PET/CT and its relationship with modified D’Amico risk classification. Eur. J. Nucl. Med. Mol. Imaging 48, 1639–1649 (2021).

    Article  CAS  Google Scholar 

  101. Maurer, T. et al. Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

    Article  Google Scholar 

  102. Uprimny, C. et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur. J. Nucl. Med. Mol. Imaging 44, 941–949 (2017).

    Article  CAS  Google Scholar 

  103. Sathekge, M. et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate carcinoma: preliminary results on differences between black and white South-Africans. Eur. J. Nucl. Med. Mol. Imaging 45, 226–234 (2018).

    Article  Google Scholar 

  104. Roberts, M. J. et al. 68Ga-PSMA PET/CT tumour intensity pre-operatively predicts adverse pathological outcomes and progression-free survival in localised prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 48, 477–482 (2021).

    Article  CAS  Google Scholar 

  105. Jansen, B. H. E. et al. Pelvic lymph-node staging with 18F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer — the SALT trial. Eur. J. Nucl. Med. Mol. Imaging 48, 509–520 (2021).

    Article  CAS  Google Scholar 

  106. Lopci, E. et al. Prospective evaluation of 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography in primary prostate cancer diagnosis. Eur. Urol. Focus 7, 764–771 (2021).

    Article  Google Scholar 

  107. Bahler, C. D. et al. Prostate specific membrane antigen targeted positron emission tomography of primary prostate cancer: assessing accuracy with whole mount pathology. J. Urol. 203, 92–99 (2020).

    Article  Google Scholar 

  108. Scheltema, M. J. et al. Diagnostic accuracy of 68Ga-prostate-specific membrane antigen (PSMA) positron-emission tomography (PET) and multiparametric (mp)MRI to detect intermediate-grade intra-prostatic prostate cancer using whole-mount pathology: impact of the addition of 68Ga-PSMA PET to mpMRI. BJU Int. 124 (Suppl. 1), 42–49 (2019).

    Article  CAS  Google Scholar 

  109. Hicks, R. M. et al. Diagnostic accuracy of 68Ga-PSMA-11 PET/MRI compared with multiparametric MRI in the detection of prostate cancer. Radiology 289, 730–737 (2018).

    Article  Google Scholar 

  110. Koseoglu, E. et al. Diagnostic ability of Ga-68 PSMA PET to detect dominant and non-dominant tumors, upgrading and adverse pathology in patients with PIRADS 4–5 index lesions undergoing radical prostatectomy. Prostate Cancer Prostatic Dis. 24, 202–209 (2021).

    Article  CAS  Google Scholar 

  111. Knoedler, J. J. et al. The association of tumor volume with mortality following radical prostatectomy. Prostate Cancer Prostatic Dis. 17, 144–148 (2014).

    Article  CAS  Google Scholar 

  112. Donato, P. et al. Improved specificity with 68Ga PSMA PET/CT to detect clinically significant lesions “invisible” on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology. Eur. J. Nucl. Med. Mol. Imaging 46, 20–30 (2019).

    Article  Google Scholar 

  113. Eiber, M. et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur. Urol. 70, 829–836 (2016).

    Article  CAS  Google Scholar 

  114. Woo, S. et al. Prostate-specific membrane antigen positron emission tomography (PSMA-PET) for local staging of prostate cancer: a systematic review and meta-analysis. Eur. J. Hybrid. Imaging 4, 16 (2020).

    Article  Google Scholar 

  115. Zhang, Q. et al. Comparison of 68Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer. J. Transl. Med. 15, 230 (2017).

    Article  Google Scholar 

  116. Wang, H. et al. PSMA-ligand uptake can serve as a novel biomarker in primary prostate cancer to predict outcome after radical prostatectomy. EJNMMI Res 11, 76 (2021).

    Article  CAS  Google Scholar 

  117. Roberts, M. J. et al. Primary tumour PSMA intensity is an independent prognostic biomarker for biochemical recurrence-free survival following radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 49, 3289–3294 (2022).

    Article  CAS  Google Scholar 

  118. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    Article  Google Scholar 

  119. Donato, P. et al. Improved detection and reduced biopsies: the effect of a multiparametric magnetic resonance imaging-based triage prostate cancer pathway in a public teaching hospital. World J. Urol. 38, 371–379 (2020).

    Article  Google Scholar 

  120. Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

    Article  Google Scholar 

  121. van der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur. Urol. 75, 570–578 (2019).

    Article  Google Scholar 

  122. Zhang, L. L. et al. 68Ga-PSMA PET/CT targeted biopsy for the diagnosis of clinically significant prostate cancer compared with transrectal ultrasound guided biopsy: a prospective randomized single-centre study. Eur. J. Nucl. Med. Mol. Imaging 48, 483–492 (2021).

    Article  CAS  Google Scholar 

  123. Emmett, L. et al. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): a prospective multicentre study. Eur. Urol. 80, 682–689 (2021).

    Article  CAS  Google Scholar 

  124. Ptasznik, G. et al. High prostate-specific membrane antigen (PSMA) positron emission tomography (PET) maximum standardized uptake value in men with PI-RADS score 4 or 5 confers a high probability of significant prostate cancer. BJU Int. https://doi.org/10.1111/bju.15736 (2022).

    Article  Google Scholar 

  125. Fendler, W. P. et al. 68Ga-PSMA PET/CT detects the location and extent of primary prostate cancer. J. Nucl. Med. 57, 1720–1725 (2016).

    Article  CAS  Google Scholar 

  126. Grubmuller, B. et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin. Cancer Res. 24, 6300–6307 (2018).

    Article  Google Scholar 

  127. Öbek, C. et al. The accuracy of 68Ga-PSMA PET/CT in primary lymph node staging in high-risk prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 44, 1806–1812 (2017).

    Article  Google Scholar 

  128. Wong, H. S. et al. Comparative study between 68Ga-prostate-specific membrane antigen positron emission tomography and conventional imaging in the initial staging of prostate cancer. J. Med. Imaging Radiat. Oncol. 62, 816–822 (2018).

    Article  Google Scholar 

  129. Ranasinghe, W. et al. Optimizing the diagnosis and management of ductal prostate cancer. Nat. Rev. Urol. 18, 337–358 (2021).

    Article  Google Scholar 

  130. McEwan, L., McBean, R., Yaxley, J. & Wong, D. Unexpected significant findings non-related to prostate cancer identified using combined prostate-specific membrane antigen positron emission tomography/CT and diagnostic CT scan in primary staging for prostate cancer. J. Med. Imaging Radiat. Oncol. 63, 318–323 (2019).

    Article  Google Scholar 

  131. Lawrence, M. G. et al. Knowing what’s growing: why ductal and intraductal prostate cancer matter. Sci. Transl. Med. 12, eaaz0152 (2020).

    Article  Google Scholar 

  132. Aggarwal, R., Zhang, T., Small, E. J. & Armstrong, A. J. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J. Natl Compr. Canc. Netw. 12, 719–726 (2014).

    Article  Google Scholar 

  133. Thalgott, M. et al. One-stop-shop whole-body 68Ga-PSMA-11 PET/MRI compared with clinical nomograms for preoperative T and N staging of high-risk prostate cancer. J. Nucl. Med. 59, 1850–1856 (2018).

    Article  CAS  Google Scholar 

  134. Donato, P. et al. 68Ga-PSMA PET/CT better characterises localised prostate cancer after MRI and transperineal prostate biopsy: is 68Ga-PSMA PET/CT guided biopsy the future? Eur. J. Nucl. Med. Mol. Imaging 47, 1843–1851 (2020).

    Article  Google Scholar 

  135. Petersen, L. J. & Zacho, H. D. PSMA PET for primary lymph node staging of intermediate and high-risk prostate cancer: an expedited systematic review. Cancer Imaging 20, 10 (2020).

    Article  Google Scholar 

  136. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  CAS  Google Scholar 

  137. Hope, T. A. et al. Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. J. Nucl. Med. 60, 786–793 (2019).

    Article  CAS  Google Scholar 

  138. Rowe, S. et al. Results from the OSPREY trial: a prospective phase 2/3 multi-center study of 18F-DCFPyL PET/CT imaging in patients with prostate cancer — examination of diagnostic accuracy. J. Nucl. Med. 60, 586–586 (2019).

    Google Scholar 

  139. Hope, T. A. et al. Accuracy of 68Ga-PSMA-11 for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase III imaging study. J. Clin. Oncol. 38, 5502–5502 (2020).

    Article  Google Scholar 

  140. Ferraro, D. A. et al. 68Ga-PSMA-11 PET has the potential to improve patient selection for extended pelvic lymph node dissection in intermediate to high-risk prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 47, 147–159 (2020).

    Article  Google Scholar 

  141. van Leeuwen, P. J. et al. Gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography (PET)/computed tomography (CT) predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate- and high-risk prostate cancer. BJU Int. 124, 62–68 (2019).

    Article  Google Scholar 

  142. Meijer, D. et al. The predictive value of preoperative negative prostate specific membrane antigen positron emission tomography imaging for lymph node metastatic prostate cancer. J. Urol. 205, 1655–1662 (2021).

    Article  Google Scholar 

  143. Meijer, D. et al. External validation and addition of prostate-specific membrane antigen positron emission tomography to the most frequently used nomograms for the prediction of pelvic lymph-node metastases: an international multicenter study. Eur. Urol. 80, 234–242 (2021).

    Article  Google Scholar 

  144. Dekalo, S. et al. Preoperative 68Ga-PSMA PET/CT defines a subgroup of high-risk prostate cancer patients with favorable outcomes after radical prostatectomy and lymph node dissection. Prostate Cancer Prostatic Dis. 24, 910–916 (2021).

    Article  CAS  Google Scholar 

  145. Meijer, D. et al. Predicting early outcomes in patients with intermediate- and high-risk prostate cancer using prostate-specific membrane antigen positron emission tomography and magnetic resonance imaging. BJU Int. 129, 54–62 (2022).

    Article  CAS  Google Scholar 

  146. Amiel, T. et al. Regional lymph node metastasis on PSMA PET correlates with decreased BCR-free and therapy-free survival after radical prostatectomy: a retrospective single-center single-arm observational study. J. Urol. 205, 1663–1670 (2021).

    Article  Google Scholar 

  147. Wu, S. Y. et al. Impact of staging 68Ga-PSMA-11 PET scans on radiation treatment plans in patients with prostate cancer. Urology 125, 154–162 (2019).

    Article  Google Scholar 

  148. Calais, J. et al. Potential impact of 68Ga-PSMA-11 PET/CT on the planning of definitive radiation therapy for prostate cancer. J. Nucl. Med. 59, 1714–1721 (2018).

    Article  CAS  Google Scholar 

  149. Hruby, G. et al. 68Ga-PSMA-PET/CT staging prior to definitive radiation treatment for prostate cancer. Asia Pac. J. Clin. Oncol. 14, 343–346 (2018).

    Article  Google Scholar 

  150. Donswijk, M. L. et al. Clinical impact of PSMA PET/CT in primary prostate cancer compared to conventional nodal and distant staging: a retrospective single center study. BMC Cancer 20, 723 (2020).

    Article  Google Scholar 

  151. Gandaglia, G. et al. Prostate-specific membrane antigen imaging in clinical guidelines: European Association of Urology, National Comprehensive Cancer Network, and beyond. Eur. Urol. Focus. 7, 245–249 (2021).

    Article  Google Scholar 

  152. Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. 199, 683–690 (2018).

    Article  Google Scholar 

  153. Mason, B. R. et al. Current status of MRI and PET in the NCCN guidelines for prostate cancer. J. Natl Compr. Canc. Netw. 17, 506–513 (2019).

    Article  CAS  Google Scholar 

  154. Castro, E. et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 68, 186–193 (2015).

    Article  CAS  Google Scholar 

  155. Gerhauser, C. et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e8 (2018).

    Article  CAS  Google Scholar 

  156. Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One 8, e66855 (2013).

    Article  CAS  Google Scholar 

  157. Klein, E. A. et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur. Urol. 67, 778–786 (2015).

    Article  Google Scholar 

  158. Jairath, N. K. et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur. Urol. 79, 374–383 (2021).

    Article  CAS  Google Scholar 

  159. Taylor, A. S. et al. Correlation between cribriform/intraductal prostatic adenocarcinoma and percent Gleason pattern 4 to a 22-gene genomic classifier. Prostate 80, 146–152 (2020).

    Article  CAS  Google Scholar 

  160. Xu, M. J. et al. Genomic risk predicts molecular imaging-detected metastatic nodal disease in prostate cancer. Eur. Urol. Oncol. 2, 685–690 (2019).

    Article  Google Scholar 

  161. Chu, C. E. et al. Prostate-specific membrane antigen and fluciclovine transporter genes are associated with variable clinical features and molecular subtypes of primary prostate cancer. Eur. Urol. 79, 717–721 (2021).

    Article  CAS  Google Scholar 

  162. Kesch, C. et al. Correlation between genomic index lesions and mpMRI and 68Ga-PSMA-PET/CT imaging features in primary prostate cancer. Sci. Rep. 8, 16708 (2018).

    Article  Google Scholar 

  163. Kasivisvanathan, V. et al. Magnetic resonance imaging-targeted biopsy versus systematic biopsy in the detection of prostate cancer: a systematic review and meta-analysis. Eur. Urol. 76, 284–303 (2019).

    Article  Google Scholar 

  164. Van den Broeck, T. et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur. Urol. 75, 967–987 (2019).

    Article  Google Scholar 

  165. Saad, F., Olsson, C. & Schulman, C. C. Skeletal morbidity in men with prostate cancer: quality-of-life considerations throughout the continuum of care. Eur. Urol. 46, 731–739 (2004).

    Article  Google Scholar 

  166. Fendler, W. P. et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 5, 856–863 (2019).

    Article  Google Scholar 

  167. Calais, J. et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 9, 1286–1294 (2019).

    Article  Google Scholar 

  168. Lieng, H. et al. Radiotherapy for recurrent prostate cancer: 2018 recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary group. Radiother. Oncol. 129, 377–386 (2018).

    Article  Google Scholar 

  169. Gillessen, S. et al. Management of patients with advanced prostate cancer: report of the Advanced Prostate Cancer Consensus Conference 2019. Eur. Urol. 77, 508–547 (2020).

    Article  CAS  Google Scholar 

  170. Abramowitz, M. C. et al. The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer 112, 55–60 (2008).

    Article  Google Scholar 

  171. Ceci, F. et al. 68Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur. J. Nucl. Med. Mol. Imaging 46, 31–39 (2019).

    Article  CAS  Google Scholar 

  172. Preisser, F. et al. Persistent prostate-specific antigen after radical prostatectomy and its impact on oncologic outcomes. Eur. Urol. 76, 106–114 (2019).

    Article  CAS  Google Scholar 

  173. Deandreis, D. et al. 68Ga-PSMA-11 PET/CT in recurrent hormone-sensitive prostate cancer (HSPC): a prospective single-centre study in patients eligible for salvage therapy. Eur. J. Nucl. Med. Mol. Imaging 47, 2804–2815 (2020).

    Article  CAS  Google Scholar 

  174. Schmidt-Hegemann, N. S. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat. Oncol. 13, 37 (2018).

    Article  Google Scholar 

  175. Meijer, D. et al. Biochemical persistence of prostate-specific antigen after robot-assisted laparoscopic radical prostatectomy: tumor localizations using PSMA PET/CT imaging. J. Nucl. Med. 62, 961–967 (2021).

    Article  CAS  Google Scholar 

  176. Ceci, F. et al. Prediction nomogram for 68Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 47, 136–146 (2020).

    Article  CAS  Google Scholar 

  177. Ceci, F. et al. Event-free survival after 68Ga-PSMA-11 PET/CT in recurrent hormone-sensitive prostate cancer (HSPC) patients eligible for salvage therapy. Eur. J. Nucl. Med. Mol. Imaging 49, 3257–3268 (2022).

    Article  CAS  Google Scholar 

  178. Yilmaz, U., Komek, H., Can, C. & Altindag, S. The role of (68Ga)PSMA I&T in biochemical recurrence after radical prostatectomy: detection rate and the correlation between the level of PSA, Gleason score, and the SUVmax. Ann. Nucl. Med. 33, 545–553 (2019).

    Article  CAS  Google Scholar 

  179. Dong, L. et al. Prospective evaluation of 68Ga-PSMA-11 PET/CT in Chinese men with biochemical recurrence after radical prostatectomy for prostate cancer: relationships between location of recurrence, time after prostatectomy, and serum PSA level. Med. Oncol. 37, 89 (2020).

    Article  CAS  Google Scholar 

  180. Francolini, G. et al. Detection rate, pattern of relapse and influence on therapeutic decision of PSMA PET/CT in patients affected by biochemical recurrence after radical prostatectomy, a retrospective case series. Clin. Transl. Oncol. 23, 364–371 (2021).

    Article  CAS  Google Scholar 

  181. Sonni, I. et al. Impact of 68Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single-center study. J. Nucl. Med. 61, 1153–1160 (2020).

    Article  CAS  Google Scholar 

  182. Liu, W. et al. Utilization of salvage and systemic therapies for recurrent prostate cancer as a result of 18F-DCFPyL PET/CT restaging. Adv. Radiat. Oncol. 6, 100553 (2021).

    Article  Google Scholar 

  183. Emmett, L. et al. Treatment outcomes from 68Ga-PSMA PET/CT-informed salvage radiation treatment in men with rising PSA after radical prostatectomy: prognostic value of a negative PSMA PET. J. Nucl. Med. 58, 1972–1976 (2017).

    Article  CAS  Google Scholar 

  184. Emmett, L. et al. 3-Year freedom from progression after 68Ga-PSMA PET/CT-triaged management in men with biochemical recurrence after radical prostatectomy: results of a prospective multicenter trial. J. Nucl. Med. 61, 866–872 (2020).

    Article  CAS  Google Scholar 

  185. Emmett, L. et al. Prospective, multisite, international comparison of 18F-fluoromethylcholine PET/CT, multiparametric MRI, and 68Ga-HBED-CC PSMA-11 PET/CT in men with high-risk features and biochemical failure after radical prostatectomy: clinical performance and patient outcomes. J. Nucl. Med. 60, 794–800 (2019).

    Article  CAS  Google Scholar 

  186. Muller, J. et al. Clinical impact of 68Ga-PSMA-11 PET on patient management and outcome, including all patients referred for an increase in PSA level during the first year after its clinical introduction. Eur. J. Nucl. Med. Mol. Imaging 46, 889–900 (2019).

    Article  CAS  Google Scholar 

  187. Celli, M. et al. Clinical value of negative 68Ga-PSMA PET/CT in the management of biochemical recurrent prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 48, 87–94 (2021).

    Article  CAS  Google Scholar 

  188. Mjaess, G. et al. Is there a role for repeating PSMA PET/CT after a negative scan in biochemical recurrent prostate cancer. Acta Oncol. 59, 1397–1400 (2020).

    Article  CAS  Google Scholar 

  189. Thompson, I. M. et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J. Urol. 181, 956–962 (2009).

    Article  Google Scholar 

  190. Bolla, M. et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 380, 2018–2027 (2012).

    Article  Google Scholar 

  191. Wiegel, T. et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur. Urol. 66, 243–250 (2014).

    Article  Google Scholar 

  192. Hackman, G. et al. Randomised trial of adjuvant radiotherapy following radical prostatectomy versus radical prostatectomy alone in prostate cancer patients with positive margins or extracapsular extension. Eur. Urol. 76, 586–595 (2019).

    Article  Google Scholar 

  193. Vale, C. L. et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet 396, 1422–1431 (2020).

    Article  CAS  Google Scholar 

  194. Kneebone, A. et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 21, 1331–1340 (2020).

    Article  CAS  Google Scholar 

  195. Roberts, M. J. et al. Event-free survival after radical prostatectomy according to prostate-specific membrane antigen-positron emission tomography and European Association of Urology biochemical recurrence risk groups. BJU Int. https://doi.org/10.1111/bju.15762 (2022).

    Article  Google Scholar 

  196. Schmidt-Hegemann, N. S. et al. Outcome after PSMA PET/CT based salvage radiotherapy in patients with biochemical recurrence after radical prostatectomy: a bi-institutional retrospective analysis. J. Nucl. Med. 60, 227–233 (2019).

    Article  CAS  Google Scholar 

  197. Zamboglou, C. et al. Metastasis-free survival and patterns of distant metastatic disease after prostate-specific membrane antigen positron emission tomography (PSMA-PET)-guided salvage radiation therapy in recurrent or persistent prostate cancer after prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 113, 1015–1024 (2022).

    Article  Google Scholar 

  198. Calais, J., Czernin, J., Fendler, W. P., Elashoff, D. & Nickols, N. G. Randomized prospective phase III trial of 68Ga-PSMA-11 PET/CT molecular imaging for prostate cancer salvage radiotherapy planning [PSMA-SRT]. BMC Cancer 19, 18 (2019).

    Article  Google Scholar 

  199. Feng, F. Y. et al. Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: an ancillary study of the NRG/RTOG 9601 randomized clinical trial. JAMA Oncol. 7, 544–552 (2021).

    Article  Google Scholar 

  200. Hruby, G. et al. Delineating biochemical failure with 68Ga-PSMA-PET following definitive external beam radiation treatment for prostate cancer. Radiother. Oncol. 122, 99–102 (2017).

    Article  CAS  Google Scholar 

  201. Raveenthiran, S. et al. The use of 68Ga-PET/CT PSMA to determine patterns of disease for biochemically recurrent prostate cancer following primary radiotherapy. Prostate Cancer Prostatic Dis. 22, 385–390 (2019).

    Article  CAS  Google Scholar 

  202. Jansen, B. H. E. et al. Detection of recurrent prostate cancer using prostate-specific membrane antigen positron emission tomography in patients not meeting the phoenix criteria for biochemical recurrence after curative radiotherapy. Eur. Urol. Oncol. 5, 821–825 (2020).

    Google Scholar 

  203. Einspieler, I. et al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by phoenix criteria. J. Nucl. Med. 58, 1081–1087 (2017).

    Article  CAS  Google Scholar 

  204. Fendler, W. P. et al. False positive PSMA PET for tumor remnants in the irradiated prostate and other interpretation pitfalls in a prospective multi-center trial. Eur. J. Nucl. Med. Mol. Imaging 48, 501–508 (2021).

    Article  CAS  Google Scholar 

  205. Lamb, D. S. et al. Relapse patterns after low-dose-rate prostate brachytherapy. Brachytherapy 20, 291–295 (2020).

    Article  Google Scholar 

  206. Liu, W. et al. A prospective study of 18F-DCFPyL PSMA PET/CT restaging in recurrent prostate cancer following primary external beam radiotherapy or brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 106, 546–555 (2020).

    Article  Google Scholar 

  207. Hope, T. A. et al. Imaging prostate cancer with prostate-specific membrane antigen PET/CT and PET/MRI: current and future applications. AJR Am. J. Roentgenol. 211, 286–294 (2018).

    Article  Google Scholar 

  208. Trabulsi, E. J. et al. Optimum imaging strategies for advanced prostate cancer: ASCO guideline. J. Clin. Oncol. 38, 1963–1996 (2020).

    Article  CAS  Google Scholar 

  209. Aluwini, S. et al. M1a prostate cancer: results of a Dutch multidisciplinary consensus meeting. BJUI Compass 2, 159–168 (2021).

    Article  Google Scholar 

  210. National Comprehensive Cancer Network. NCCN Guidelines: prostate cancer. NCCN https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459 (2022).

  211. Anttinen, M. et al. A prospective comparison of 18F-prostate-specific membrane antigen-1007 positron emission tomography computed tomography, whole-body 1.5 T magnetic resonance imaging with diffusion-weighted imaging, and single-photon emission computed tomography/computed tomography with traditional imaging in primary distant metastasis staging of prostate cancer (PROSTAGE). Eur. Urol. Oncol. 4, 635–644 (2020).

    Article  Google Scholar 

  212. Lengana, T. et al. 68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli? Clin. Genitourin. Cancer 16, 392–401 (2018).

    Article  Google Scholar 

  213. Ekmekcioglu, Ö., Busstra, M., Klass, N. D. & Verzijlbergen, F. Bridging the imaging gap: PSMA PET/CT has a high impact on treatment planning in prostate cancer patients with biochemical recurrence — a narrative review of the literature. J. Nucl. Med. 60, 1394–1398 (2019).

    Article  CAS  Google Scholar 

  214. Han, S., Woo, S., Kim, Y. J. & Suh, C. H. Impact of 68Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur. Urol. 74, 179–190 (2018).

    Article  CAS  Google Scholar 

  215. Calais, J. et al. 68Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. J. Nucl. Med. 59, 230–237 (2018).

    Article  CAS  Google Scholar 

  216. De Bruycker, A. et al. Nodal oligorecurrent prostate cancer: anatomic pattern of possible treatment failure in relation to elective surgical and radiotherapy treatment templates. Eur. Urol. 75, 826–833 (2019).

    Article  Google Scholar 

  217. Schiller, K. et al. Patterns of failure after radical prostatectomy in prostate cancer — implications for radiation therapy planning after 68Ga-PSMA-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 44, 1656–1662 (2017).

    Article  CAS  Google Scholar 

  218. Supiot, S. et al. OLIGOPELVIS GETUG P07, a multicenter phase II trial of combined high-dose salvage radiotherapy and hormone therapy in oligorecurrent pelvic node relapses in prostate cancer. Eur. Urol. 4, 405–414 (2021).

    Article  Google Scholar 

  219. Hellman, S. & Weichselbaum, R. R. Oligometastases. J. Clin. Oncol. 13, 8–10 (1995).

    Article  CAS  Google Scholar 

  220. Tosoian, J. J. et al. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat. Rev. Urol. 14, 15–25 (2017).

    Article  CAS  Google Scholar 

  221. Ong, W. L. et al. Prostate-specific membrane antigen-positron emission tomography/computed tomography (PSMA-PET/CT)-guided stereotactic ablative body radiotherapy for oligometastatic prostate cancer: a single-institution experience and review of the published literature. BJU Int. 124 (Suppl. 1), 19–30 (2019).

    Article  CAS  Google Scholar 

  222. Bowden, P. et al. Fractionated stereotactic body radiotherapy for up to five prostate cancer oligometastases: interim outcomes of a prospective clinical trial. Int. J. Cancer 146, 161–168 (2020).

    Article  CAS  Google Scholar 

  223. Habl, G. et al. Oligometastases from prostate cancer: local treatment with stereotactic body radiotherapy (SBRT). BMC Cancer 17, 361 (2017).

    Article  Google Scholar 

  224. Kneebone, A. et al. Stereotactic body radiotherapy for oligometastatic prostate cancer detected via prostate-specific membrane antigen positron emission tomography. Eur. Urol. Oncol. 1, 531–537 (2018).

    Article  Google Scholar 

  225. Fanetti, G. et al. Stereotactic body radiotherapy for castration-sensitive prostate cancer bone oligometastases. Med. Oncol. 35, 75 (2018).

    Article  Google Scholar 

  226. Siva, S. et al. Stereotactic ablative body radiotherapy (SABR) for oligometastatic prostate cancer: a prospective clinical trial. Eur. Urol. 74, 455–462 (2018).

    Article  Google Scholar 

  227. Ost, P. et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J. Clin. Oncol. 36, 446–453 (2018).

    Article  CAS  Google Scholar 

  228. Phillips, R. et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 6, 650–659 (2020).

    Article  Google Scholar 

  229. Glicksman, R. M. et al. Curative-intent metastasis-directed therapies for molecularly-defined oligorecurrent prostate cancer: a prospective phase II trial testing the oligometastasis hypothesis. Eur. Urol. 3, 374–382 (2021).

    Article  Google Scholar 

  230. Deek, M. P. et al. Long-term outcomes and genetic predictors of response to metastasis-directed therapy versus observation in oligometastatic prostate cancer: analysis of STOMP and ORIOLE trials. J. Clin. Oncol. 29, 3377–3382 (2022).

    Article  Google Scholar 

  231. Zilli, T. et al. The multicenter, randomized, phase 2 PEACE V-STORM trial: defining the best salvage treatment for oligorecurrent nodal prostate cancer metastases. Eur. Urol. Focus. 7, 241–244 (2020).

    Article  Google Scholar 

  232. Bravi, C. A. et al. Long-term outcomes of salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy: not as good as previously thought. Eur. Urol. 78, 661–669 (2020).

    Article  CAS  Google Scholar 

  233. Afshar-Oromieh, A. et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 41, 11–20 (2014).

    Article  CAS  Google Scholar 

  234. Knipper, S. et al. Metastases-yield and prostate-specific antigen kinetics following salvage lymph node dissection for prostate cancer: a comparison between conventional surgical approach and prostate-specific membrane antigen-radioguided surgery. Eur. Urol. Focus. 5, 50–53 (2019).

    Article  Google Scholar 

  235. Farolfi, A. et al. Mapping prostate cancer lesions before and after unsuccessful salvage lymph node dissection using repeat PSMA PET. J. Nucl. Med. 61, 1037–1042 (2020).

    Article  CAS  Google Scholar 

  236. Maurer, T. et al. 99mTechnetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur. Urol. 75, 659–666 (2019).

    Article  Google Scholar 

  237. Horn, T. et al. Single lesion on prostate-specific membrane antigen-ligand positron emission tomography and low prostate-specific antigen are prognostic factors for a favorable biochemical response to prostate-specific membrane antigen-targeted radioguided surgery in recurrent prostate cancer. Eur. Urol. 76, 517–523 (2019).

    Article  CAS  Google Scholar 

  238. Knipper, S. et al. Cohort study of oligorecurrent prostate cancer patients: oncological outcomes of patients treated with salvage lymph node dissection via prostate-specific membrane antigen-radioguided surgery. Eur. Urol. https://doi.org/10.1016/j.eururo.2022.05.031 (2022).

    Article  Google Scholar 

  239. Seitz, A. K. et al. Preliminary results on response assessment using 68Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 45, 602–612 (2018).

    Article  CAS  Google Scholar 

  240. Schmidkonz, C. et al. 68Ga-PSMA-11 PET/CT derived quantitative volumetric tumor parameters for classification and evaluation of therapeutic response of bone metastases in prostate cancer patients. Ann. Nucl. Med. 33, 766–775 (2019).

    Article  CAS  Google Scholar 

  241. Scher, H. I. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 34, 1402–1418 (2016).

    Article  Google Scholar 

  242. Fendler, W. P. et al. Prostate-specific membrane antigen ligand positron emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin. Cancer Res. 25, 7448–7454 (2019).

    Article  CAS  Google Scholar 

  243. Farolfi, A. et al. PSMA-PET identifies PCWG3 target populations with superior accuracy and reproducibility when compared to conventional imaging: a multicenter retrospective study. J. Nucl. Med. 62, 675–678 (2020).

    Article  Google Scholar 

  244. Wang, B. et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin. Cancer Res. 26, 4551–4558 (2020).

    Article  CAS  Google Scholar 

  245. Weber, M. et al. PSMA-ligand PET for early castration-resistant prostate cancer: a retrospective single-center study. J. Nucl. Med. 62, 88–91 (2021).

    Article  CAS  Google Scholar 

  246. Deek, M. P. et al. Metastasis-directed therapy prolongs efficacy of systemic therapy and improves clinical outcomes in oligoprogressive castration-resistant prostate cancer. Eur. Urol. Oncol. 4, 447–455 (2021).

    Article  Google Scholar 

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04631601 (2022).

  248. Afshar, M., Evison, F., James, N. D. & Patel, P. Shifting paradigms in the estimation of survival for castration-resistant prostate cancer: a tertiary academic center experience. Urol. Oncol. 33, 338.e1–7 (2015).

    Article  Google Scholar 

  249. Staniszewska, M. et al. Drug and molecular radiotherapy combinations for metastatic castration resistant prostate cancer. Nucl. Med. Biol. 96–97, 101–111 (2021).

    Article  Google Scholar 

  250. Plouznikoff, N. et al. Evaluation of PSMA expression changes on PET/CT before and after initiation of novel antiandrogen drugs (enzalutamide or abiraterone) in metastatic castration-resistant prostate cancer patients. Ann. Nucl. Med. 33, 945–954 (2019).

    Article  CAS  Google Scholar 

  251. Grubmuller, B. et al. Response assessment using [68Ga]Ga-PSMA ligand PET in patients undergoing systemic therapy for metastatic castration-resistant prostate cancer. Prostate 80, 74–82 (2020).

    Article  Google Scholar 

  252. Komek, H., Can, C., Yilmaz, U. & Altindag, S. Prognostic value of 68Ga PSMA I&T PET/CT SUV parameters on survival outcome in advanced prostate cancer. Ann. Nucl. Med. 32, 542–552 (2018).

    Article  Google Scholar 

  253. Hofman, M. S. et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 19, 825–833 (2018).

    Article  CAS  Google Scholar 

  254. Thang, S. P. et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur. Urol. Oncol. 2, 670–676 (2019).

    Article  Google Scholar 

  255. Ferdinandus, J. et al. Prognostic biomarkers in men with metastatic castration-resistant prostate cancer receiving [177Lu]-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 47, 2322–2327 (2020).

    Article  CAS  Google Scholar 

  256. Buteau, J. P. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 23, 1389–1397 (2022).

    Article  CAS  Google Scholar 

  257. Chen, R. et al. The added value of 18F-FDG PET/CT compared with 68Ga-PSMA PET/CT in patients with castration-resistant prostate cancer. J. Nucl. Med. 63, 69–75 (2022).

    Article  Google Scholar 

  258. Khreish, F. et al. Value of combined PET imaging with [18F]FDG and [68Ga]Ga-PSMA-11 in mCRPC patients with worsening disease during [177Lu]Lu-PSMA-617 RLT. Cancers 13, 4134 (2021).

    Article  CAS  Google Scholar 

  259. Chen, R. et al. Diagnostic value of 18F-FDG PET/CT in patients with biochemical recurrent prostate cancer and negative 68Ga-PSMA PET/CT. Eur. J. Nucl. Med. Mol. Imaging 48, 2970–2977 (2021).

    Article  Google Scholar 

  260. Shen, K. et al. The evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancer. Front. Oncol. 11, 683793 (2021).

    Article  Google Scholar 

  261. McGeorge, S. et al. Dual-tracer positron-emission tomography using prostate-specific membrane antigen and fluorodeoxyglucose for staging of prostate cancer: a systematic review. Adv. Urol. 2021, 1544208 (2021).

    Article  Google Scholar 

  262. Hofman, M. S. & Emmett, L. Tumour heterogeneity and resistance to therapy in prostate cancer: a fundamental limitation of prostate-specific membrane antigen theranostics or a key strength? Eur. Urol. 76, 479–481 (2019).

    Article  Google Scholar 

  263. Emmett, L. et al. ENZA-p trial protocol: a randomised phase II trial using PSMA as a therapeutic target and prognostic indicator in men with metastatic castration-resistant prostate cancer treated with enzalutamide (ANZUP 1901). BJU Int. 128, 642–651 (2021).

    Article  CAS  Google Scholar 

  264. Dhiantravan, N. et al. UpFrontPSMA: a randomized phase 2 study of sequential 177Lu-PSMA-617 and docetaxel vs docetaxel in metastatic hormone-naïve prostate cancer (clinical trial protocol). BJU Int. 128, 331–342 (2021).

    Article  CAS  Google Scholar 

  265. Pouliot, F. et al. The triple-tracer strategy against metastatic prostate cancer (3TMPO) study protocol. BJU Int. 130, 314–322 (2022).

    Article  CAS  Google Scholar 

  266. Bander, N. H. et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170, 1717–1721 (2003).

    Article  CAS  Google Scholar 

  267. Benešová, M. et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 56, 914–920 (2015).

    Article  Google Scholar 

  268. Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016).

    Article  CAS  Google Scholar 

  269. Morris, M. J. et al. Radium-223 mechanism of action: implications for use in treatment combinations. Nat. Rev. Urol. 16, 745–756 (2019).

    Article  CAS  Google Scholar 

  270. Zechmann, C. M. et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 41, 1280–1292 (2014).

    Article  CAS  Google Scholar 

  271. Ahmadzadehfar, H. et al. 68Ga-PSMA-11 PET as a gatekeeper for the treatment of metastatic prostate cancer with 223Ra: proof of concept. J. Nucl. Med 58, 438–444 (2017).

    Article  CAS  Google Scholar 

  272. Gafita, A. et al. Nomograms to predict outcome after LuPSMA radionuclide therapy in men with metastatic castration-resistant prostate cancer: an international multicenter retrospective study. Lancet Oncol. 22, 1115–1125 (2021).

    Article  CAS  Google Scholar 

  273. Emmett, L. et al. Results of a prospective phase 2 pilot trial of 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer including imaging predictors of treatment response and patterns of progression. Clin. Genitourin. Cancer 17, 15–22 (2019).

    Article  Google Scholar 

  274. Sartor, O. et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  Google Scholar 

  275. Fang, M., Nakazawa, M., Antonarakis, E. S. & Li, C. Efficacy of abiraterone and enzalutamide in pre- and postdocetaxel castration-resistant prostate cancer: a trial-level meta-analysis. Prostate Cancer 2017, 8560827 (2017).

    Article  Google Scholar 

  276. Hofman, M. S. et al. TheraP: 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic castration-resistant prostate cancer (mCRPC) progressing after docetaxel — overall survival after median follow-up of 3 years (ANZUP 1603). J. Clin. Oncol. 40, 5000–5000 (2022).

    Article  Google Scholar 

  277. Haffner, M. C. et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 18, 79–92 (2021).

    Article  Google Scholar 

  278. Gafita, A. et al. Interim PSMA PET/CT for response evaluation during LuPSMA treatment in mCRPC (INTERIM PET): an explorative, multicenter study. J. Clin. Oncol. 39, 5066–5066 (2021).

    Article  Google Scholar 

  279. Gafita, A. et al. Novel framework for treatment response evaluation using PSMA-PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP 1.0): an international multicenter study. J. Nucl. Med. 63, 1651–1658 (2022).

    CAS  Google Scholar 

  280. Gafita, A. et al. Measuring response in metastatic castration-resistant prostate cancer using PSMA PET/CT: comparison of RECIST 1.1, aPCWG3, aPERCIST, PPP, and RECIP 1.0 criteria. Eur. J. Nucl. Med. Mol. Imaging 49, 4271–428 (2022).

    Article  CAS  Google Scholar 

  281. Pathmanandavel, S. et al. The prognostic value of post-treatment PSMA and FDG PET/CT in metastatic, castration-resistant prostate cancer treated with 177LuPSMA-617 and NOX66 in a phase I/II trial (LuPIN). J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264104 (2022).

    Article  Google Scholar 

  282. Deegen, P. et al. The PSMA-targeting half-life extended BiTE Therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 27, 2928–2937 (2021).

    Article  CAS  Google Scholar 

  283. Subudhi, S. K. et al. Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 39, TPS5088–TPS5088 (2021).

    Article  Google Scholar 

  284. Wolf, P., Alzubi, J., Gratzke, C. & Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 18, 556–571 (2021).

    Article  Google Scholar 

  285. Venkatachalam, S., McFarland, T. R., Agarwal, N. & Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers 13, 2187 (2021).

    Article  CAS  Google Scholar 

  286. Wang, F., Li, Z., Feng, X., Yang, D. & Lin, M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 25, 11–26 (2022).

    Article  CAS  Google Scholar 

  287. Abufaraj, M. et al. Prospective evaluation of the performance of [68Ga]Ga-PSMA-11 PET/CT(MRI) for lymph node staging in patients undergoing superextended salvage lymph node dissection after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 46, 2169–2177 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.J.R., T.M., M.P., S.S. and W.P.F. researched data for the article. All authors contributed substantially to discussion of the content. M.J.R., T.M., M.P., S.S., L.E. and W.P.F. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthew J. Roberts.

Ethics declarations

Competing interests

M.J.R. is supported by a Clinician Research Fellowship from the Metro North Office of Research, Queensland Health, and a Doctor in Training Research Scholarship from Avant Mutual Group Pty Ltd. W.P.F. received financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, grant FE1573/3-1 / 659216), IFORES (D/107-81260, D/107-30240) and Wiedenfeld-Stiftung/Stiftung Krebsforschung Duisburg. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Hossein Jadvar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Decipher: https://decipherbio.com

Memorial Sloan Kettering Cancer Centre: https://www.mskcc.org/nomograms/prostate/pre_op

OncotypeDX: https://precisiononcology.exactsciences.com/healthcare-providers/treatment-determination/prostatecancer/oncotype-dx-genomic-prostate-score

Prolaris: https://prolaris.com

Supplementary information

Glossary

Index lesion or tumour

Tumour focus displaying the highest International Society of Uro-Pathology (ISUP) Grade Group, or largest diameter for the same ISUP Grade Group, according to radical prostatectomy histopathology.

Partial volume effect

A concept in cross-sectional imaging in which limited imaging resolution is unable to detect small structures or tissues.

PI3K–AKT–mTOR pathway

Key signalling pathway that is central to cell growth and survival in both physiological and pathological conditions.

PSA doubling time

(PSADT). A unit of measurement (ng/ml/year) that estimates the rate of change for a PSA level to increase twofold from the original measurement.

Response Evaluation Criteria in Solid Tumors

(RECIST). Guidelines for evaluation of the efficacy of cancer treatments according to change in tumour burden detected by imaging.

Standardized uptake value

(SUV). A semiquantitative measure of tracer uptake in a region of interest that normalizes the lesion activity to the injected activity and a measure of the volume of distribution.

Stereotactic

Used in techniques for precise treatment, usually radiotherapy, to targets that are localized with 3D imaging.

Stereotactic ablative radiotherapy

(SABR). A radiotherapy technique that delivers high doses with high accuracy, enabling high-dose delivery with fewer effects on surrounding tissues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, M.J., Maurer, T., Perera, M. et al. Using PSMA imaging for prognostication in localized and advanced prostate cancer. Nat Rev Urol 20, 23–47 (2023). https://doi.org/10.1038/s41585-022-00670-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00670-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer