Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PBRM1, SETD2 and BAP1 — the trinity of 3p in clear cell renal cell carcinoma

Abstract

Biallelic inactivation of the tumour suppressor gene Von Hippel–Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Chromatin-modifying activities of BAP1, BAF180 and SETD2.
Fig. 2: The role of 3p genes in DNA damage repair.
Fig. 3: The role of 3p genes in cell-cycle control.
Fig. 4: The role of 3p genes in programmed cell death.
Fig. 5: The role of 3p genes in transcription and splicing.
Fig. 6: The role of 3p genes in polycomb antagonism.

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Google Scholar 

  2. Bhatt, J. R. & Finelli, A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat. Rev. Urol. 11, 517–525 (2014).

    Google Scholar 

  3. Linehan, W. M. & Ricketts, C. J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    CAS  Google Scholar 

  4. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009 (2017).

    Google Scholar 

  5. Chen, Y.-B. B. et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat. Commun. 7, 13131 (2016).

    CAS  Google Scholar 

  6. Ljungberg, B. et al. EAU Guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    Google Scholar 

  7. Motzer, R. J. et al. Kidney cancer, version 3.2015. J. Natl Compr. Cancer Netw. 13, 151–159 (2015).

    Google Scholar 

  8. Speed, J. M., Trinh, Q.-D. D., Choueiri, T. K. & Sun, M. Recurrence in localized renal cell carcinoma: a systematic review of contemporary data. Curr. Urol. Rep. 18, 15 (2017).

    Google Scholar 

  9. Gupta, K., Miller, J. D., Li, J. Z., Russell, M. W. & Charbonneau, C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat. Rev. 34, 193–205 (2008).

    Google Scholar 

  10. Siegel, R. L., Miller, K. D. & Jemal, A., Society, A. C. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Google Scholar 

  11. Network, T. C. G. A. R. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  12. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    CAS  Google Scholar 

  13. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    CAS  Google Scholar 

  14. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  Google Scholar 

  15. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    CAS  Google Scholar 

  16. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 66, 2576 LP–2583 (2006).

    Google Scholar 

  17. Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat. Cell Biol. 10, 361–369 (2008).

    CAS  Google Scholar 

  18. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    CAS  Google Scholar 

  19. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–42 (2011).

    CAS  Google Scholar 

  20. Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Google Scholar 

  21. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    CAS  Google Scholar 

  22. Benusiglio, P. R. et al. A germline mutation in PBRM1 predisposes to renal cell carcinoma. J. Med. Genet. 52, 426 LP–430 (2015).

    Google Scholar 

  23. Rai, K., Pilarski, R., Cebulla, C. M. & Abdel-Rahman, M. H. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin. Genet. 89, 285–294 (2016).

    CAS  Google Scholar 

  24. Hakimi, A. A. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur. Urol. 63, 848–854 (2013).

    Google Scholar 

  25. Ricketts, C. J. et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e5 (2018).

    CAS  Google Scholar 

  26. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    CAS  Google Scholar 

  27. Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964–983.e31 (2019).

    CAS  Google Scholar 

  28. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).

    CAS  Google Scholar 

  29. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  Google Scholar 

  30. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    CAS  Google Scholar 

  31. Zhao, S., Allis, C. D. & Wang, G. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21, 413–430 (2021).

    Google Scholar 

  32. Horn, P. J., Peterson, C. L., J, H. P. & L, P. C. Chromatin higher order folding–wrapping up transcription. Science 297, 1824–1827 (2002).

    CAS  Google Scholar 

  33. Luger, K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    CAS  Google Scholar 

  34. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    CAS  Google Scholar 

  35. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  Google Scholar 

  36. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    CAS  Google Scholar 

  37. Wilson, B. G. & Roberts, C. W. M. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    CAS  Google Scholar 

  38. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    CAS  Google Scholar 

  39. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of FNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

    CAS  Google Scholar 

  40. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384 (2012).

    CAS  Google Scholar 

  41. Musselman, C. A., Lalonde, M.-E. E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    CAS  Google Scholar 

  42. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  Google Scholar 

  43. Biswas, S. & Rao, C. M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 837, 8–24 (2018).

    CAS  Google Scholar 

  44. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    CAS  Google Scholar 

  45. Brownlee, P. M. M., Chambers, A. L. L., Oliver, A. W. W. & Downs, J. A. A. Cancer and the bromodomains of BAF180. Biochem. Soc. Trans. 40, 364–369 (2012).

    CAS  Google Scholar 

  46. Nargund, A. M. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18, 2893–2906 (2017).

    CAS  Google Scholar 

  47. Wang, Z. et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 18, 3106–3116 (2004).

    CAS  Google Scholar 

  48. Gu, Y.-F. F. et al. Modeling renal cell carcinoma in mice: Bap1 and Pbrm1 inactivation drive tumor grade. Cancer Discov. 7, 900–917 (2017).

    CAS  Google Scholar 

  49. Porter, E. G. et al. PBRM1 regulates stress response in epithelial cells. iScience 15, 196–210 (2019).

    CAS  Google Scholar 

  50. Gao, W., Li, W., Xiao, T., Liu, X. S. & Kaelin, W. G. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL−/− clear cell renal carcinoma. Proc. Natl Acad. Sci. 114, 1027–1032 (2017).

    CAS  Google Scholar 

  51. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  Google Scholar 

  52. Faber, P. W. et al. Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474 (1998).

    CAS  Google Scholar 

  53. Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).

    CAS  Google Scholar 

  54. Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    CAS  Google Scholar 

  55. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153, 590–600 (2013).

    CAS  Google Scholar 

  56. Hacker, K. E. et al. Structure/function analysis of recurrent mutations in SETD2 protein reveals a critical and conserved role for a SET domain residue in maintaining protein stability and histone H3 Lys-36 trimethylation. J. Biol. Chem. 291, 21283–21295 (2016).

    CAS  Google Scholar 

  57. Li, M. et al. Solution structure of the Set2–Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc. Natl Acad. Sci. USA 102, 17636 LP–17641 (2005).

    Google Scholar 

  58. Li, J., Moazed, D. & Gygi, S. P. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383–49388 (2002).

    CAS  Google Scholar 

  59. Kobor, M. S. & Greenblatt, J. Regulation of transcription elongation by phosphorylation. Biochim. Biophys. Acta Gene Struct. Expr. 1577, 261–275 (2002).

    CAS  Google Scholar 

  60. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287 LP–4291 (2010).

    Google Scholar 

  61. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  Google Scholar 

  62. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    CAS  Google Scholar 

  63. Luscan, A. et al. Mutations in SETD2 cause a novel overgrowth condition. J. Med. Genet. 51, 512–517 (2014).

    CAS  Google Scholar 

  64. Chiang, Y.-C. C. et al. SETD2 haploinsufficiency for microtubule methylation is an early driver of genomic instability in renal cell carcinoma. Cancer Res. 78, 3135 LP–3146 (2018).

    Google Scholar 

  65. Hu, M. et al. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc. Natl Acad. Sci. USA 107, 2956 LP–2961 (2010).

    Google Scholar 

  66. Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A. & Ghazarian, D. BAP1: gene of the month. J. Clin. Pathol. 69, 750–753 (2016).

    CAS  Google Scholar 

  67. Jensen, D. E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097–1112 (1998).

    CAS  Google Scholar 

  68. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    CAS  Google Scholar 

  69. Ventii, K. H. et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 68, 6953 LP–6962 (2008).

    Google Scholar 

  70. Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392–406 (2014).

    CAS  Google Scholar 

  71. Duns, G. et al. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Hum. Mutat. 33, 1059–1062 (2012).

    CAS  Google Scholar 

  72. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013).

    CAS  Google Scholar 

  73. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012).

    CAS  Google Scholar 

  74. Wang, S.-S. S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl Acad. Sci. USA 111, 16538–16543 (2014).

    CAS  Google Scholar 

  75. Hanahan, D. & Weinberg, R. A. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  76. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  Google Scholar 

  77. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).

    CAS  Google Scholar 

  78. Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    CAS  Google Scholar 

  79. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  Google Scholar 

  80. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  Google Scholar 

  81. Nishikawa, H. et al. BRCA1-Associated Protein 1 Interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 69, 111 LP–119 (2009).

    Google Scholar 

  82. Yu, H. et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc. Natl Acad. Sci. USA 111, 285–290 (2014).

    CAS  Google Scholar 

  83. Ismail, I. H. et al. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 74, 4282 LP–4294 (2014).

    Google Scholar 

  84. Lord, C. J., Ashworth, A., J, L. C. & Alan, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    CAS  Google Scholar 

  85. Patel, P. S., Algouneh, A. & Hakem, R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 40, 3001–3014 (2021).

    CAS  Google Scholar 

  86. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    CAS  Google Scholar 

  87. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03786796 (2022).

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03207347 (2021).

  89. Niimi, A., Hopkins, S. R., Downs, J. A. & Masutani, C. The BAH domain of BAF180 is required for PCNA ubiquitination. Mutat. Res. Fundam. Mol. Mech. Mutagen. 779, 16–23 (2015).

    CAS  Google Scholar 

  90. Suzuki, H. et al. TLP-mediated global transcriptional repression after double-strand DNA breaks slows down DNA repair and induces apoptosis. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  91. Kakarougkas, A., Downs, J. A. & Jeggo, P. A. The PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks. Mol. Cell. Oncol. 2, 2–4 (2015).

    Google Scholar 

  92. Chabanon, R. M. et al. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81, 2888–2902 (2021).

    CAS  Google Scholar 

  93. Daugaard, M. et al. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat. Struct. Mol. Biol. 19, 803–810 (2012).

    CAS  Google Scholar 

  94. Fishel, R. Mismatch repair. J. Biol. Chem. 290, 26395–26403 (2015).

    CAS  Google Scholar 

  95. Pfister, S. X. et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7, 2006–2018 (2014).

    CAS  Google Scholar 

  96. Li, L. & Wang, Y. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. J. Biol. Chem. 292, 11951–11959 (2017).

    CAS  Google Scholar 

  97. Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557–568 (2015).

    CAS  Google Scholar 

  98. Watanabe, N., Broome, M. & Hunter, T. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 14, 1878–1891 (1995).

    CAS  Google Scholar 

  99. Tominaga, Y., Li, C., Wang, R.-H. H. & Deng, C.-X. X. Murine Wee1 plays a critical role in cell cycle regulation and pre-implantation stages of embryonic development. Int. J. Biol. Sci. 2, 161–170 (2006).

    CAS  Google Scholar 

  100. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03284385 (2022).

  101. Otto, T. & Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017).

    CAS  Google Scholar 

  102. Abbas, T. & Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414 (2009).

    CAS  Google Scholar 

  103. Xia, W. et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68, 1667–1674 (2008).

    CAS  Google Scholar 

  104. Cai, W. et al. PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth. Nat. Commun. 10, 1–15 (2019).

    Google Scholar 

  105. Burrows, A. E., Smogorzewska, A. & Elledge, S. J. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc. Natl Acad. Sci. USA 107, 14280–14285 (2010).

    CAS  Google Scholar 

  106. Brownlee, P. M. M., Chambers, A. L. L., Cloney, R., Bianchi, A. & Downs, J. A. A. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell Rep. 6, 973–981 (2014).

    CAS  Google Scholar 

  107. Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015 LP–13020 (2000).

    Google Scholar 

  108. Karki, M. et al. A cytoskeletal function for PBRM1 reading methylated microtubules. Sci. Adv. 7, eabf2866 (2021).

    CAS  Google Scholar 

  109. Park, I. Y. et al. Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166, 950–962 (2016).

    CAS  Google Scholar 

  110. Walczak, C. E. & Heald, R. Chapter three — mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    CAS  Google Scholar 

  111. Zarrizi, R., Menard, J. A., Belting, M. & Massoumi, R. Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 74, 6499–6508 (2014).

    CAS  Google Scholar 

  112. Xiao, J., Zhang, R., Peng, J. & Yang, Z. BAP1 maintains chromosome stability by stabilizing DIDO1 in renal cell carcinoma. Am. J. Cancer Res. 10, 1455–1466 (2020).

    CAS  Google Scholar 

  113. Machida, Y. J. Y., Machida, Y. J. Y., Vashisht, A. A., Wohlschlegel, J. A. & Dutta, A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J. Biol. Chem. 284, 34179–34188 (2009).

    CAS  Google Scholar 

  114. Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell 27, 107–119 (2007).

    CAS  Google Scholar 

  115. Pan, H. et al. BAP1 regulates cell cycle progression through E2F1 target genes and mediates transcriptional silencing via H2A monoubiquitination in uveal melanoma cells. Int. J. Biochem. Cell Biol. 60, 176–184 (2015).

    CAS  Google Scholar 

  116. Shahram, M. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol. Cell. Biol. 29, 2181–2192 (2009).

    Google Scholar 

  117. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS  Google Scholar 

  118. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).

    CAS  Google Scholar 

  119. Marchi, S. et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69, 62–72 (2018).

    CAS  Google Scholar 

  120. Sime, W. et al. BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis. 9, 458 (2018).

    Google Scholar 

  121. Nomura, M. et al. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J. Biol. Chem. 278, 2058–2065 (2003).

    CAS  Google Scholar 

  122. Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73, 2195–2209 (2016).

    CAS  Google Scholar 

  123. Miess, H. et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 37, 5435–5450 (2018).

    CAS  Google Scholar 

  124. Wettersten, H. I., Aboud, O. A., Lara, P. N. & Weiss, R. H. Metabolic reprogramming in clear cell renal cell carcinoma. Nat. Rev. Nephrol. 13, 410–419 (2017).

    CAS  Google Scholar 

  125. Saito, K. et al. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci. Rep. 6, 28932 (2016).

    CAS  Google Scholar 

  126. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Google Scholar 

  127. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    CAS  Google Scholar 

  128. Zhang, Y., Qian, J., Gu, C. & Yang, Y. Alternative splicing and cancer: a systematic review. Signal. Transduct. Target. Ther. 6, 78 (2021).

    CAS  Google Scholar 

  129. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    CAS  Google Scholar 

  130. Carvalho, S. et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 41, 2881–2893 (2013).

    CAS  Google Scholar 

  131. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    CAS  Google Scholar 

  132. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    CAS  Google Scholar 

  133. Dhayalan, A. et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    CAS  Google Scholar 

  134. Tiedemann, R. L. et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 7, 1927–1946 (2015).

    Google Scholar 

  135. Su, X. et al. NSD1 inactivation and SETD2 mutation drive a convergence toward loss of function of H3K36 writers in clear cell renal cell carcinomas. Cancer Res. 77, 4835–4845 (2017).

    CAS  Google Scholar 

  136. De Almeida, S. F. et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 18, 977–983 (2011).

    Google Scholar 

  137. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    CAS  Google Scholar 

  138. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  Google Scholar 

  139. Guo, R. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56, 298–310 (2014).

    CAS  Google Scholar 

  140. Sawicka, K., Bushell, M., Spriggs, K. A. & Willis, A. E. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641–647 (2008).

    CAS  Google Scholar 

  141. Simon, J. M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    CAS  Google Scholar 

  142. Ho, T. H. et al. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Oncogene 35, 1565–1574 (2016).

    CAS  Google Scholar 

  143. Lu, S. X. et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184, 4032–4047.e31 (2021).

    CAS  Google Scholar 

  144. Bowling, E. A. et al. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell 184, 384–403.e21 (2021).

    CAS  Google Scholar 

  145. Wu, Q. et al. PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01024-4 (2022).

    Google Scholar 

  146. Piunti, A. & Shilatifard, A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 22, 326–345 (2021).

    CAS  Google Scholar 

  147. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. 85, 8136 LP–8140 (1988).

    Google Scholar 

  148. Kennison, J. A. The polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29, 289–303 (1995).

    CAS  Google Scholar 

  149. Tamkun, J. W. et al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell 68, 561–572 (1992).

    CAS  Google Scholar 

  150. Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core polycomb repressive complex. Mol. Cell 8, 545–556 (2001).

    CAS  Google Scholar 

  151. Kadoch, C. et al. Dynamics of BAF-polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    CAS  Google Scholar 

  152. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    CAS  Google Scholar 

  153. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  Google Scholar 

  154. Huang, K. et al. A novel EZH2 inhibitor induces synthetic lethality and apoptosis in PBRM1-deficient cancer cells. Cell Cycle 19, 758–771 (2020).

    CAS  Google Scholar 

  155. Campagne, A. et al. BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat. Commun. 10, 348 (2019).

    CAS  Google Scholar 

  156. Wang, H. et al. Role of histone H2A ubiquitination in polycomb silencing. Nature 431, 873–878 (2004).

    CAS  Google Scholar 

  157. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    CAS  Google Scholar 

  158. Sun, C. et al. EZH2 Expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. J. Cancer 9, 3787–3796 (2018).

    CAS  Google Scholar 

  159. Zauderer, M. G. et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J. Clin. Oncol. 36, 8515 (2018).

    Google Scholar 

  160. Musselman, C. A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272 (2012).

    CAS  Google Scholar 

  161. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation*. J. Biol. Chem. 286, 7983–7989 (2011).

    CAS  Google Scholar 

  162. Brien, G. L. et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19, 1273–1281 (2012).

    CAS  Google Scholar 

  163. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  Google Scholar 

  164. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  Google Scholar 

  165. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  Google Scholar 

  166. Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019).

    CAS  Google Scholar 

  167. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    CAS  Google Scholar 

  168. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science 359, 770–775 (2018).

    CAS  Google Scholar 

  169. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  Google Scholar 

  170. Braun, D. A. et al. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol. 5, 2019–2021 (2020).

    Google Scholar 

  171. Liu, X.-D. De et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 11, 1–14 (2020).

    CAS  Google Scholar 

  172. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    CAS  Google Scholar 

  173. Hakimi, A. A. et al. A pan-cancer analysis of PBAF complex mutations and their association with immunotherapy response. Nat. Commun. 11, 4168 (2020).

    CAS  Google Scholar 

  174. Shrestha, R. et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 11, 8 (2019).

    Google Scholar 

  175. Gezgin, G. et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol. Immunother. 66, 903–912 (2017).

    CAS  Google Scholar 

  176. de Cubas, A. A. & Rathmell, W. K. Epigenetic modifiers: activities in renal cell carcinoma. Nat. Rev. Urol. 15, 599–614 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.W. researched data for the article. L.A., J.W. and K.L. contributed substantially to discussion of the content. L.A. and J.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Laurie Ailles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks G. Malouf, D. Kwiatkowski and C. Ricketts for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walton, J., Lawson, K., Prinos, P. et al. PBRM1, SETD2 and BAP1 — the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 20, 96–115 (2023). https://doi.org/10.1038/s41585-022-00659-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00659-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing