Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets

Abstract

Lipid droplet formation is a defining histological feature in clear-cell renal cell carcinoma (ccRCC) but the underlying mechanisms and importance of this biological behaviour have remained enigmatic. De novo fatty acid (FA) synthesis, uptake and suppression of FA oxidation have all been shown to contribute to lipid storage, which is a necessary tumour adaptation rather than a bystander effect. Clinical studies and mechanistic investigations into the roles of different enzymes in FA metabolism pathways have revealed new metabolic vulnerabilities that hold promise for clinical effect. Several metabolic alterations are associated with worse clinical outcomes in patients with ccRCC, as lipogenic genes drive tumorigenesis. Enzymes involved in the intrinsic FA metabolism pathway include FA synthase, acetyl-CoA carboxylase, ATP citrate lyase, stearoyl-CoA desaturase 1, cluster of differentiation 36, carnitine palmitoyltransferase 1A and the perilipin family, and each might be potential therapeutic targets in ccRCC owing to the link between lipid deposition and ccRCC risk. Adipokines and lipid species are potential biomarkers for diagnosis and treatment monitoring in patients with ccRCC. FA metabolism could potentially be targeted for therapeutic intervention in ccRCC as small-molecule inhibitors targeting the pathway have shown promising results in preclinical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H&E staining of ccRCC and normal adjacent kidney tissues.
Fig. 2: VHL and HIF pathway regulation in ccRCC.
Fig. 3: Fatty acid metabolism pathways in clear-cell renal cell carcinoma and potential therapeutic targets.

Similar content being viewed by others

References

  1. Linehan, W. M. et al. The metabolic basis of kidney cancer. Cancer Discov. 9, 1006–1021 (2019).

    Article  CAS  Google Scholar 

  2. Cairns, P. Renal cell carcinoma. Cancer Biomark. 9, 461–473 (2010).

    Article  Google Scholar 

  3. Tugnoli, V., Trinchero, A. & Tosi, M. R. Evaluation of the lipid composition of human healthy and neoplastic renal tissues. Ital. J. Biochem. 53, 169–182 (2004).

    CAS  Google Scholar 

  4. Kaelin, W. G. Jr The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin. Cancer Res. 13, 680s–684s (2007).

    Article  CAS  Google Scholar 

  5. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  7. Schito, L. & Semenza, G. L. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2, 758–770 (2016).

    Article  Google Scholar 

  8. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    Article  CAS  Google Scholar 

  9. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    Article  CAS  Google Scholar 

  10. Du, W. et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat. Commun. 8, 1769 (2017).

    Article  Google Scholar 

  11. Qiu, B. et al. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 5, 652–667 (2015).

    Article  CAS  Google Scholar 

  12. Tan, S. K. et al. Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to confer ferroptosis resistance. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-20-1453 (2021).

    Article  Google Scholar 

  13. Du, Y. et al. Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J. Exp. Clin. Cancer Res. 36, 66 (2017).

    Article  Google Scholar 

  14. Sok, M., Šentjurc, M., Schara, M., Stare, J. & Rott, T. Cell membrane fluidity and prognosis of lung cancer. Ann. Thorac. Surg. 73, 1567–1571 (2002).

    Article  Google Scholar 

  15. Campanella, R. Membrane lipids modifications in human gliomas of different degree of malignancy. J. Neurosurg. Sci. 36, 11–25 (1992).

    CAS  Google Scholar 

  16. Xie, H. et al. Glycogen metabolism is dispensable for tumour progression in clear cell renal cell carcinoma. Nat. Metab. 3, 327–336 (2021).

    Article  CAS  Google Scholar 

  17. Xu, H. et al. Fatty acid metabolism reprogramming in advanced prostate cancer. Metabolites https://doi.org/10.3390/metabo11110765 (2021).

    Article  Google Scholar 

  18. Monaco, M. E. Fatty acid metabolism in breast cancer subtypes. Oncotarget 8, 29487–29500 (2017).

    Article  Google Scholar 

  19. Svensson, R. U. & Shaw, R. J. Lipid synthesis is a metabolic liability of non-small cell lung cancer. Cold Spring Harb. Symp. Quant. Biol. 81, 93–103 (2016).

    Article  Google Scholar 

  20. Pizer, E. S. et al. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47, 102–110 (2001).

    Article  CAS  Google Scholar 

  21. Davis, A. L. & Kridel, S. J. Trimming the fat in non-small cell lung cancer: a new small molecule inhibitor of acetyl-CoA carboxylase to target fatty acid synthesis. Transl. Cancer Res. 5(S7), S1449–S1452 (2016).

    Article  CAS  Google Scholar 

  22. Falchook, G. et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 34, 100797 (2021).

    Article  Google Scholar 

  23. Menendez, J. A. & Lupu, R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 6, e299 (2017).

    Article  CAS  Google Scholar 

  24. Tan, S. K. & Welford, S. M. Lipid in renal carcinoma: queen bee to target. Trends Cancer https://doi.org/10.1016/j.trecan.2020.02.017 (2020).

    Article  Google Scholar 

  25. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  Google Scholar 

  26. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005).

    Article  CAS  Google Scholar 

  27. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

    Article  CAS  Google Scholar 

  28. Ookhtens, M., Kannan, R., Lyon, I. & Baker, N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. 247, R146–R153 (1984).

    CAS  Google Scholar 

  29. Pinthus, J. H., Whelan, K. F., Gallino, D., Lu, J. P. & Rothschild, N. Metabolic features of clear-cell renal cell carcinoma: mechanisms and clinical implications. Can. Urol. Assoc. J. 5, 274–282 (2011).

    Article  Google Scholar 

  30. Medes, G., Thomas, A. & Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 13, 27–29 (1953).

    CAS  Google Scholar 

  31. Butler, L. M. et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 159, 245–293 (2020).

    Article  CAS  Google Scholar 

  32. Khan, S. et al. Kidney proximal tubule lipoapoptosis is regulated by fatty acid transporter-2 (FATP2). J. Am. Soc. Nephrol. 29, 81–91 (2018).

    Article  CAS  Google Scholar 

  33. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  Google Scholar 

  34. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  Google Scholar 

  35. Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021).

    Article  CAS  Google Scholar 

  36. Yuan, Y. et al. Expression and prognostic significance of fatty acid synthase in clear cell renal cell carcinoma. Pathol. Res. Pract. 216, 153227 (2020).

    Article  CAS  Google Scholar 

  37. Fujita, Y., Matsuoka, H. & Hirooka, K. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66, 829–839 (2007).

    Article  CAS  Google Scholar 

  38. Peck, B. et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4, 6 (2016).

    Article  Google Scholar 

  39. von Roemeling, C. A. et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin. Cancer Res. 19, 2368–2380 (2013).

    Article  Google Scholar 

  40. Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727 (2020).

    Article  CAS  Google Scholar 

  41. Zaidi, N., Swinnen, J. V. & Smans, K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709 (2012).

    Article  CAS  Google Scholar 

  42. Watson, J. A., Fang, M. & Lowenstein, J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch. Biochem. Biophys. 135, 209–217 (1969).

    Article  CAS  Google Scholar 

  43. Sun, T., Hayakawa, K., Bateman, K. S. & Fraser, M. E. Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography. J. Biol. Chem. 285, 27418–27428 (2010).

    Article  CAS  Google Scholar 

  44. Noh, K. H. et al. Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression. Metabolism 110, 154302 (2020).

    Article  CAS  Google Scholar 

  45. Guo, H. et al. The PI3K/AKT pathway and renal cell carcinoma. J. Genet. Genomics 42, 343–353 (2015).

    Article  Google Scholar 

  46. Migita, T. et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547–8554 (2008).

    Article  CAS  Google Scholar 

  47. Wang, S. et al. Novel molecular subtypes and related score based on histone acetylation modification in renal clear cell carcinoma. Front. Cell Dev. Biol. 9, 668810 (2021).

    Article  Google Scholar 

  48. Carrer, A. et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9, 416–435 (2019).

    Article  CAS  Google Scholar 

  49. Teng, L. et al. Overexpression of ATP citrate lyase in renal cell carcinoma tissues and its effect on the human renal carcinoma cells in vitro. Oncol. Lett. 15, 6967–6974 (2018).

    Google Scholar 

  50. Zhao, Z. et al. The mRNA expression signature and prognostic analysis of multiple fatty acid metabolic enzymes in clear cell renal cell carcinoma. J. Cancer 10, 6599–6607 (2019).

    Article  CAS  Google Scholar 

  51. Qi, X., Li, Q., Che, X., Wang, Q. & Wu, G. The uniqueness of clear cell renal cell carcinoma: summary of the process and abnormality of glucose metabolism and lipid metabolism in ccRCC. Front. Oncol. https://doi.org/10.3389/fonc.2021.727778 (2021).

    Article  Google Scholar 

  52. Wang, X., Luo, S., Gan, X., He, C. & Huang, R. Safety and efficacy of ETC-1002 in hypercholesterolaemic patients: a meta-analysis of randomised controlled trials. Kardiol. Pol. 77, 207–216 (2019).

    Article  Google Scholar 

  53. Chuah, L. O., Yeap, S. K., Ho, W. Y., Beh, B. K. & Alitheen, N. B. In vitro and in vivo toxicity of garcinia or hydroxycitric acid: a review. Evid. Based Complement. Altern. Med. 2012, 197920 (2012).

    Article  Google Scholar 

  54. Berkhout, T. A., Havekes, L. M., Pearce, N. J. & Groot, P. H. The effect of (−)-hydroxycitrate on the activity of the low-density-lipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2. Biochem. J. 272, 181–186 (1990).

    Article  CAS  Google Scholar 

  55. Burke, A. C. et al. Bempedoic acid lowers low-density lipoprotein cholesterol and attenuates atherosclerosis in low-density lipoprotein receptor-deficient (LDLR+/− and LDLR−/−) Yucatan Miniature Pigs. Arterioscler. Thromb. Vasc. Biol. 38, 1178–1190 (2018).

    Article  CAS  Google Scholar 

  56. Wang, C., Rajput, S., Watabe, K., Liao, D. F. & Cao, D. Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front. Biosci. 2, 515–526 (2010).

    Google Scholar 

  57. Bianchi, A. et al. Identification of an isozymic form of acetyl-CoA carboxylase. J. Biol. Chem. 265, 1502–1509 (1990).

    Article  CAS  Google Scholar 

  58. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  59. Luo, J. et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett. 384, 39–49 (2017).

    Article  CAS  Google Scholar 

  60. Qu, Y. Y. et al. Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res. 80, 319–333 (2020).

    Article  CAS  Google Scholar 

  61. He, D., Sun, X., Yang, H., Li, X. & Yang, D. TOFA induces cell cycle arrest and apoptosis in ACHN and 786-O cells through inhibiting PI3K/Akt/mTOR pathway. J. Cancer 9, 2734–2742 (2018).

    Article  Google Scholar 

  62. Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    Article  CAS  Google Scholar 

  63. Song, A., Zhang, C. & Meng, X. Mechanism and application of metformin in kidney diseases: an update. Biomed. Pharmacother. 138, 111454 (2021).

    Article  CAS  Google Scholar 

  64. Liu, J. et al. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol. Oncol. 31, 264–270 (2013).

    Article  CAS  Google Scholar 

  65. Fang, Z., Xu, X., Zhou, Z., Xu, Z. & Liu, Z. Effect of metformin on apoptosis, cell cycle arrest migration and invasion of A498 cells. Mol. Med. Rep. 9, 2251–2256 (2014).

    Article  CAS  Google Scholar 

  66. Liu, Y., Li, J., Song, M., Qi, G. & Meng, L. High-concentration metformin reduces oxidative stress injury and inhibits the growth and migration of clear cell renal cell carcinoma. Comput. Math. Methods Med. 2022, 1466991 (2022).

    Google Scholar 

  67. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  Google Scholar 

  68. Psutka, S. P. et al. The association between metformin use and oncologic outcomes among surgically treated diabetic patients with localized renal cell carcinoma. Urol. Oncol. 33, e15–e23 (2015).

    Article  Google Scholar 

  69. Li, Y., Hu, L., Xia, Q., Yuan, Y. & Mi, Y. The impact of metformin use on survival in kidney cancer patients with diabetes: a meta-analysis. Int. Urol. Nephrol. 49, 975–981 (2017).

    Article  Google Scholar 

  70. Takahiro, T., Shinichi, K. & Toshimitsu, S. Expression of fatty acid synthase as a prognostic indicator in soft tissue sarcomas. Clin. Cancer Res. 9, 2204–2212 (2003).

    CAS  Google Scholar 

  71. Notarnicola, M. et al. Serum levels of fatty acid synthase in colorectal cancer patients are associated with tumor stage. J. Gastrointest. Cancer 43, 508–511 (2012).

    Article  CAS  Google Scholar 

  72. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    Article  CAS  Google Scholar 

  73. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 A resolution. Science 311, 1258–1262 (2006).

    Article  CAS  Google Scholar 

  74. Asturias, F. J. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol. 12, 225–232 (2005).

    Article  CAS  Google Scholar 

  75. Menendez, J. A. et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc. Natl Acad. Sci. USA 101, 10715–10720 (2004).

    Article  CAS  Google Scholar 

  76. Horiguchi, A. et al. Fatty acid synthase over expression is an indicator of tumor aggressiveness and poor prognosis in renal cell carcinoma. J. Urol. 180, 1137–1140 (2008).

    Article  CAS  Google Scholar 

  77. Hakimi, A. A. et al. An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J. Natl Cancer Inst. 105, 1862–1870 (2013).

    Article  CAS  Google Scholar 

  78. Albiges, L. et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J. Clin. Oncol. 34, 3655–3663 (2016).

    Article  CAS  Google Scholar 

  79. Chang, L. et al. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids Health Dis. 18, 118 (2019).

    Article  Google Scholar 

  80. Schroeder, B. et al. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis. 12, 977 (2021).

    Article  CAS  Google Scholar 

  81. Swinnen, J. V. et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 302, 898–903 (2003).

    Article  CAS  Google Scholar 

  82. Kuchiba, A. et al. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the nurses’ health study. J. Natl Cancer Inst. 104, 415–420 (2012).

    Article  CAS  Google Scholar 

  83. Horiguchi, A. et al. Pharmacological inhibitor of fatty acid synthase suppresses growth and invasiveness of renal cancer cells. J. Urol. 180, 729–736 (2008).

    Article  CAS  Google Scholar 

  84. Pizer, E. S. et al. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 60, 213–218 (2000).

    CAS  Google Scholar 

  85. Sadowski, M. C. et al. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 5, 9362–9381 (2014).

    Article  Google Scholar 

  86. van der Mijn, J. C., Panka, D. J., Geissler, A. K., Verheul, H. M. & Mier, J. W. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab. 4, 14 (2016).

    Article  Google Scholar 

  87. Shimokawa, T., Kumar, M. V. & Lane, M. D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl Acad. Sci. USA 99, 66–71 (2002).

    Article  CAS  Google Scholar 

  88. Vargas, T. et al. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget 6, 7348–7363 (2015).

    Article  Google Scholar 

  89. Takahashi, H. et al. Macrophage migration inhibitory factor and stearoyl-CoA desaturase 1: potential prognostic markers for soft tissue sarcomas based on bioinformatics analyses. PLoS One 8, e78250 (2013).

    Article  CAS  Google Scholar 

  90. Holder, A. M. et al. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res. Treat. 137, 319–327 (2013).

    Article  CAS  Google Scholar 

  91. Huang, J. et al. SCD1 is associated with tumor promotion, late stage and poor survival in lung adenocarcinoma. Oncotarget 7, 39970–39979 (2016).

    Article  Google Scholar 

  92. Jeffords, E. et al. Y-box binding protein 1 acts as a negative regulator of stearoyl CoA desaturase 1 in clear cell renal cell carcinoma. Oncol. Lett. 20, 165 (2020).

    Article  CAS  Google Scholar 

  93. Wang, J. et al. High expression of stearoyl-CoA desaturase 1 predicts poor prognosis in patients with clear-cell renal cell carcinoma. PLoS One 11, e0166231 (2016).

    Article  Google Scholar 

  94. Castro, B. B. A., Foresto-Neto, O., Saraiva-Camara, N. O. & Sanders-Pinheiro, H. Renal lipotoxicity: insights from experimental models. Clin. Exp. Pharmacol. Physiol. 48, 1579–1588 (2021).

    Article  CAS  Google Scholar 

  95. Zhang, Y. et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2103240118 (2021).

    Article  Google Scholar 

  96. Iwai, T. et al. Stearoyl-CoA desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17111868 (2016).

    Article  Google Scholar 

  97. Li, J. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314 e305 (2017).

    Article  CAS  Google Scholar 

  98. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e315 (2018).

    Article  CAS  Google Scholar 

  99. Tracz-Gaszewska, Z. & Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers https://doi.org/10.3390/cancers11070948 (2019).

    Article  Google Scholar 

  100. Yang, P. et al. Formation and antiproliferative effect of prostaglandin E3 from eicosapentaenoic acid in human lung cancer cells. J. Lipid Res. 45, 1030–1039 (2004).

    Article  CAS  Google Scholar 

  101. Sapieha, P. et al. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci. Transl. Med. 3, 69ra12 (2011).

    Article  Google Scholar 

  102. Iwamoto, H. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 28, 104–117.e105 (2018).

    Article  CAS  Google Scholar 

  103. Zhang, Y., Wang, H., Zhang, J., Lv, J. & Huang, Y. Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci. 104, 416–422 (2013).

    Article  CAS  Google Scholar 

  104. von Roemeling, C. A. et al. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. Oncotarget 9, 3–20 (2017).

    Article  Google Scholar 

  105. Imamura, K. et al. Discovery of novel and potent stearoyl coenzyme A desaturase 1 (SCD1) inhibitors as anticancer agents. Bioorg. Med. Chem. 25, 3768–3779 (2017).

    Article  CAS  Google Scholar 

  106. Oballa, R. M. et al. Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J. Med. Chem. 54, 5082–5096 (2011).

    Article  CAS  Google Scholar 

  107. Bhattacharya, D. et al. Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. JHEP Rep. 3, 100237–100237 (2021).

    Article  Google Scholar 

  108. Wang, J. & Li, Y. CD36 tango in cancer: signaling pathways and functions. Theranostics 9, 4893–4908 (2019).

    Article  CAS  Google Scholar 

  109. Abumrad, N. A., el-Maghrabi, M. R., Amri, E. Z., Lopez, E. & Grimaldi, P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268, 17665–17668 (1993).

    Article  CAS  Google Scholar 

  110. Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).

    Article  CAS  Google Scholar 

  111. Coburn, C. T. et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275, 32523–32529 (2000).

    Article  CAS  Google Scholar 

  112. Zaoui, M. et al. Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers https://doi.org/10.3390/cancers11122012 (2019).

    Article  Google Scholar 

  113. Watt, M. J. et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aau5758 (2019).

    Article  Google Scholar 

  114. Jiang, M. et al. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics 9, 5359–5373 (2019).

    Article  CAS  Google Scholar 

  115. Hale, J. S. et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cell 32, 1746–1758 (2014).

    Article  CAS  Google Scholar 

  116. Kim, Y. S. et al. High membranous expression of fatty acid transport protein 4 is associated with tumorigenesis and tumor progression in clear cell renal cell carcinoma. Dis. Markers 2019, 5702026 (2019).

    Article  Google Scholar 

  117. Xu, W. H. et al. Elevated CD36 expression correlates with increased visceral adipose tissue and predicts poor prognosis in ccRCC patients. J. Cancer 10, 4522–4531 (2019).

    Article  Google Scholar 

  118. Mwaikambo, B. R., Yang, C., Chemtob, S. & Hardy, P. Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J. Biol. Chem. 284, 26695–26707 (2009).

    Article  CAS  Google Scholar 

  119. Yang, P. et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 438, 76–85 (2018).

    Article  CAS  Google Scholar 

  120. Pan, J. et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3beta/beta-catenin pathway. J. Exp. Clin. Cancer Res. 38, 52 (2019).

    Article  Google Scholar 

  121. Li, J. et al. TCPA: a resource for cancer functional proteomics data. Nat. Methods 10, 1046–1047 (2013).

    Article  CAS  Google Scholar 

  122. Bocharov, A. V. et al. Synthetic amphipathic helical peptides targeting CD36 attenuate lipopolysaccharide-induced inflammation and acute lung injury. J. Immunol. 197, 611–619 (2016).

    Article  CAS  Google Scholar 

  123. Wang, S. et al. Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci. Transl. Med. 8, 329ra334 (2016).

    Article  Google Scholar 

  124. Coronella, J. et al. Selective activity against proliferating tumor endothelial cells by CVX-22, a thrombospondin-1 mimetic CovX-Body. Anticancer. Res. 29, 2243–2252 (2009).

    CAS  Google Scholar 

  125. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  Google Scholar 

  126. Pascual, G. et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599, 485–490 (2021).

    Article  CAS  Google Scholar 

  127. Lee, K., Kerner, J. & Hoppel, C. L. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 286, 25655–25662 (2011).

    Article  CAS  Google Scholar 

  128. McGarry, J. D., Mannaerts, G. P. & Foster, D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Investig. 60, 265–270 (1977).

    Article  CAS  Google Scholar 

  129. Rasmussen, B. B. et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J. Clin. Invest. 110, 1687–1693 (2002).

    Article  CAS  Google Scholar 

  130. Xu, Y. et al. Identification of CPT1A as a prognostic biomarker and potential therapeutic target for kidney renal clear cell carcinoma and establishment of a risk signature of CPT1A-related genes. Int. J. Genomics 2020, 9493256 (2020).

    Google Scholar 

  131. Lopaschuk, G. D., Wall, S. R., Olley, P. M. & Davies, N. J. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ. Res. 63, 1036–1043 (1988).

    Article  CAS  Google Scholar 

  132. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on cell death 2018. Cell death Differ. 25, 486–541 (2018).

    Article  Google Scholar 

  133. Hornsveld, M. & Dansen, T. B. The hallmarks of cancer from a redox perspective. Antioxid. Redox Signal. 25, 300–325 (2016).

    Article  CAS  Google Scholar 

  134. Gius, D. & Spitz, D. R. Redox signaling in cancer biology. Antioxid. Redox Signal. 8, 1249–1252 (2006).

    Article  CAS  Google Scholar 

  135. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  Google Scholar 

  136. Miess, H. et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 37, 5435–5450 (2018).

    Article  CAS  Google Scholar 

  137. Itabe, H., Yamaguchi, T., Nimura, S. & Sasabe, N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 16, 83 (2017).

    Article  Google Scholar 

  138. Brasaemle, D. L. et al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J. Biol. Chem. 275, 38486–38493 (2000).

    Article  CAS  Google Scholar 

  139. Blanchette-Mackie, E. J. et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36, 1211–1226 (1995).

    Article  CAS  Google Scholar 

  140. Wolins, N. E. et al. Adipocyte protein S3-12 coats nascent lipid droplets. J. Biol. Chem. 278, 37713–37721 (2003).

    Article  CAS  Google Scholar 

  141. Brasaemle, D. L. et al. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J. Lipid Res. 38, 2249–2263 (1997).

    Article  CAS  Google Scholar 

  142. Lu, X. et al. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm. Genome 12, 741–749 (2001).

    Article  CAS  Google Scholar 

  143. Zheng, P. et al. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci. Rep. 7, 42574 (2017).

    Article  CAS  Google Scholar 

  144. Cao, Q. et al. Overexpression of PLIN2 is a prognostic marker and attenuates tumor progression in clear cell renal cell carcinoma. Int. J. Oncol. 53, 137–147 (2018).

    CAS  Google Scholar 

  145. Wang, K. et al. PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urol. Oncol. 36, 343.e349–343.e319 (2018).

    Article  Google Scholar 

  146. Xu, G. et al. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 280, 42841–42847 (2005).

    Article  CAS  Google Scholar 

  147. Bayat Mokhtari, R. et al. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J. Cell Commun. Signal. 12, 91–101 (2018).

    Article  Google Scholar 

  148. Tian, S. et al. Targeting PLIN2/PLIN5-PPARγ: sulforaphane disturbs the maturation of lipid droplets. Mol. Nutr. Food Res. 63, e1900183 (2019).

    Article  Google Scholar 

  149. Xiao, Y., Bi, M., Guo, H. & Li, M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine 79, 104001 (2022).

    Article  CAS  Google Scholar 

  150. Graham, J. et al. Cytoreductive nephrectomy in metastatic papillary renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC). J. Clin. Oncol. 36, 581–581 (2018).

    Article  Google Scholar 

  151. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  Google Scholar 

  152. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).

    Article  CAS  Google Scholar 

  153. Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).

    Article  CAS  Google Scholar 

  154. Matsuzawa, Y., Funahashi, T., Kihara, S. & Shimomura, I. Adiponectin and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 24, 29–33 (2004).

    Article  CAS  Google Scholar 

  155. Miyoshi, Y. et al. Association of serum adiponectin levels with breast cancer risk. Clin. Cancer Res. 9, 5699–5704 (2003).

    CAS  Google Scholar 

  156. Wei, E. K., Giovannucci, E., Fuchs, C. S., Willett, W. C. & Mantzoros, C. S. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J. Natl Cancer Inst. 97, 1688–1694 (2005).

    Article  CAS  Google Scholar 

  157. Goktas, S. et al. Prostate cancer and adiponectin. Urology 65, 1168–1172 (2005).

    Article  Google Scholar 

  158. Bråkenhielm, E. et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl Acad. Sci. USA 101, 2476–2481 (2004).

    Article  Google Scholar 

  159. Spyridopoulos, T. N. et al. Low adiponectin levels are associated with renal cell carcinoma: a case-control study. Int. J. Cancer 120, 1573–1578 (2007).

    Article  CAS  Google Scholar 

  160. Liao, L. M. et al. Prediagnostic circulating adipokine concentrations and risk of renal cell carcinoma in male smokers. Carcinogenesis 34, 109–112 (2013).

    Article  Google Scholar 

  161. Choi, S. H., Chun, S. Y., Kim, T. H. & Kwon, T. G. Identifying the emerging role of adipokine as a diagnostic and prognostic biomarker of renal cell carcinoma. Urol. Oncol. 34, 259.e215–259 (2016).

    Article  Google Scholar 

  162. Pinthus, J. H. et al. Lower plasma adiponectin levels are associated with larger tumor size and metastasis in clear-cell carcinoma of the kidney. Eur. Urol. 54, 866–873 (2008).

    Article  CAS  Google Scholar 

  163. Yap, N. Y., Yap, F. N., Perumal, K. & Rajandram, R. Circulating adiponectin as a biomarker in renal cell carcinoma: a systematic review and meta-analysis. Biomarkers 24, 607–614 (2019).

    Article  CAS  Google Scholar 

  164. de Martino, M. et al. Serum adiponectin predicts cancer-specific survival of patients with renal cell carcinoma. Eur. Urol. Focus. 2, 197–203 (2016).

    Article  Google Scholar 

  165. Ito, R. et al. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma: a potential mechanism for the “obesity paradox”. PLoS One 12, e0171615 (2017).

    Article  Google Scholar 

  166. Sun, G. et al. The adiponectin-AdipoR1 axis mediates tumor progression and tyrosine kinase inhibitor resistance in metastatic renal cell carcinoma. Neoplasia 21, 921–931 (2019).

    Article  CAS  Google Scholar 

  167. Rajandram, R., Perumal, K. & Yap, N. Y. Prognostic biomarkers in renal cell carcinoma: is there a relationship with obesity. Transl. Androl. Urol. 8, S138–S146 (2019).

    Article  Google Scholar 

  168. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  169. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    Article  CAS  Google Scholar 

  170. Kumar, R. et al. Association of leptin with obesity and insulin resistance. Cureus 12, e12178 (2020).

    Google Scholar 

  171. Housa, D., Housova, J., Vernerova, Z. & Haluzik, M. Adipocytokines and cancer. Physiol. Res. 55, 233–244 (2006).

    Article  CAS  Google Scholar 

  172. Sánchez-Jiménez, F., Pérez-Pérez, A., de la Cruz-Merino, L. & Sánchez-Margalet, V. Obesity and breast cancer: role of leptin. Front. Oncol. https://doi.org/10.3389/fonc.2019.00596 (2019).

    Article  Google Scholar 

  173. Perumal, K. et al. Role of leptin as a biomarker for early detection of renal cell carcinoma? No evidence from a systematic review and meta-analysis. Med. Hypotheses 129, 109239 (2019).

    Article  CAS  Google Scholar 

  174. Spyridopoulos, T. N. et al. Inverse association of leptin levels with renal cell carcinoma: results from a case-control study. Hormones 8, 39–46 (2009).

    Article  Google Scholar 

  175. Zhu, H., Li, W., Mao, S. & Wang, L. Association between leptin level and renal cell carcinoma susceptibility and progression: a meta-analysis. J. Cancer Res. Ther. 14, 873–880 (2018).

    Article  CAS  Google Scholar 

  176. Goralski, K. B. et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282, 28175–28188 (2007).

    Article  CAS  Google Scholar 

  177. Wittamer, V. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977–985 (2003).

    Article  CAS  Google Scholar 

  178. Lehrke, M. et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161, 339–344 (2009).

    Article  CAS  Google Scholar 

  179. Yoo, W. et al. HIF-1α expression as a protective strategy of HepG2 cells against fatty acid-induced toxicity. J. Cell Biochem. 115, 1147–1158 (2014).

    Article  CAS  Google Scholar 

  180. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  Google Scholar 

  181. Lin, E. et al. Roles of the dynamic tumor immune microenvironment in the individualized treatment of advanced clear cell renal cell carcinoma. Front. Immunol. 12, 653358 (2021).

    Article  CAS  Google Scholar 

  182. Manzi, M. et al. Coupled mass-spectrometry-based lipidomics machine learning approach for early detection of clear cell renal cell carcinoma. J. Proteome Res. 20, 841–857 (2021).

    Article  CAS  Google Scholar 

  183. Mock, A. et al. Serum very long-chain fatty acid-containing lipids predict response to immune checkpoint inhibitors in urological cancers. Cancer Immunol. Immunother. 68, 2005–2014 (2019).

    Article  CAS  Google Scholar 

  184. Parisi, L. R., Li, N. & Atilla-Gokcumen, G. E. Very long chain fatty acids are functionally involved in necroptosis. Cell Chem. Biol. 24, 1445–1454.e1448 (2017).

    Article  CAS  Google Scholar 

  185. Tamura, K., Horikawa, M., Sato, S., Miyake, H. & Setou, M. Discovery of lipid biomarkers correlated with disease progression in clear cell renal cell carcinoma using desorption electrospray ionization imaging mass spectrometry. Oncotarget 10, 1688–1703 (2019).

    Article  Google Scholar 

  186. Lucarelli, G. et al. Integration of lipidomics and transcriptomics reveals reprogramming of the lipid metabolism and composition in clear cell renal cell carcinoma. Metabolites https://doi.org/10.3390/metabo10120509 (2020).

    Article  Google Scholar 

  187. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  Google Scholar 

  188. Peck, B. & Schulze, A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 5, 693–703 (2019).

    Article  CAS  Google Scholar 

  189. Lien, E. C. & Vander Heiden, M. G. A framework for examining how diet impacts tumour metabolism. Nat. Rev. Cancer 19, 651–661 (2019).

    Article  CAS  Google Scholar 

  190. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article  Google Scholar 

  191. Pischon, T. et al. Body size and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and nutrition (EPIC). Int. J. Cancer 118, 728–738 (2006).

    Article  CAS  Google Scholar 

  192. Chow, W. H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7, 245–257 (2010).

    Article  Google Scholar 

  193. Chow, W. H., Gridley, G., Fraumeni, J. F. Jr & Jarvholm, B. Obesity, hypertension, and the risk of kidney cancer in men. N. Engl. J. Med. 343, 1305–1311 (2000).

    Article  CAS  Google Scholar 

  194. Keaney, J. F. Jr et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 23, 434–439 (2003).

    Article  CAS  Google Scholar 

  195. Wang, Q. et al. Circulating obesity-driven biomarkers are associated with risk of clear cell renal cell carcinoma: a two-stage, case-control study. Carcinogenesis 40, 1191–1197 (2019).

    Article  CAS  Google Scholar 

  196. Bertrand, L. A. et al. Obesity as defined by waist circumference but not body mass index is associated with higher renal mass complexity. Urol. Oncol. 35, 661.e661–661.e666 (2017).

    Article  Google Scholar 

  197. Gan, C. L. & Heng, D. Y. C. New insights into the obesity paradox in renal cell carcinoma. Nat. Rev. Nephrol. 16, 253–254 (2020).

    Article  Google Scholar 

  198. Seon, D. Y., Kwak, C., Kim, H. H., Ku, J. H. & Kim, H. S. Prognostic implication of body mass index on survival outcomes in surgically treated nonmetastatic renal cell carcinoma: a single-institutional retrospective analysis of a large cohort. Ann. Surg. Oncol. 27, 2459–2467 (2020).

    Article  Google Scholar 

  199. Choi, Y. et al. Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int. J. Cancer 132, 625–634 (2013).

    Article  CAS  Google Scholar 

  200. Lalani, A.-K. A. et al. Assessment of immune checkpoint inhibitors and genomic alterations by body mass index in advanced renal cell carcinoma. JAMA Oncol. 7, 773–775 (2021).

    Article  Google Scholar 

  201. Sanchez, A. et al. Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study. Lancet Oncol. 21, 283–293 (2020).

    Article  CAS  Google Scholar 

  202. Zhang, C. et al. Association of dyslipidemia with renal cell carcinoma: a 12 matched case-control study. PLoS One 8, e59796 (2013).

    Article  CAS  Google Scholar 

  203. Wang, H. & Peng, D. Q. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis. 10, 176 (2011).

    Article  CAS  Google Scholar 

  204. Hao, B. et al. Preoperative serum high-density lipoprotein cholesterol as a predictor of poor survival in patients with clear cell renal cell cancer. Int. J. Biol. Markers 34, 168–175 (2019).

    Article  CAS  Google Scholar 

  205. van der Mijn, J. C. et al. Combined metabolomics and genome-wide transcriptomics analyses show multiple HIF1α-induced changes in lipid metabolism in early stage clear cell renal cell carcinoma. Transl. Oncol. 13, 177–185 (2020).

    Article  Google Scholar 

  206. Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 16–24 (2006).

    Article  CAS  Google Scholar 

  207. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    Article  CAS  Google Scholar 

  208. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

    Article  CAS  Google Scholar 

  209. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  Google Scholar 

  210. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  Google Scholar 

  211. Gordan, J. D., Bertout, J. A., Hu, C.-J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  Google Scholar 

  212. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell Biol. 25, 5675–5686 (2005).

    Article  CAS  Google Scholar 

  213. Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institutes of Health R01CA254409 to S.M.W.

Author information

Authors and Affiliations

Authors

Contributions

S.K.T., H.Y.H., M.L.G. and S.M.W. researched data for the article. All authors, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Scott M. Welford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Kimryn Rathmell, who co-reviewed with Dakim Gaines, Barrie Peck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S.K., Hougen, H.Y., Merchan, J.R. et al. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nat Rev Urol 20, 48–60 (2023). https://doi.org/10.1038/s41585-022-00654-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00654-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer