Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Race and prostate cancer: genomic landscape

Abstract

In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of genomic alterations in patients with primary prostate cancer stratified according to self-reported race.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  2. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  3. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rencsok, E. M. et al. Diversity of enrollment in prostate cancer clinical trials: current status and future directions. Cancer Epidemiol. Biomark. Prev. 29, 1374–1380 (2020).

    Article  Google Scholar 

  6. Hooker, S. E. et al. Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines. Cancer Epidemiol. Biomark. Prev. 28, 1003–1009 (2019).

    Article  CAS  Google Scholar 

  7. Mersha, T. B. & Abebe, T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum. Genomics 9, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics 200, 1285–1295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stopsack, K. H. et al. Differences in prostate cancer genomes by self-reported race: contributions of genetic ancestry, modifiable cancer risk factors, and clinical factors. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-2577 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sivakumar, S. et al. Ancestral characterization of the genomic landscape, comprehensive genomic profiling utilization, and treatment patterns may inform disparities in advanced prostate cancer: a large-scale analysis. J. Clin. Oncol. 39, 5003–5003 (2021).

    Article  Google Scholar 

  11. Li, J. et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature 580, 93–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Koga, Y. et al. Genomic profiling of prostate cancers from men with African and European ancestry. Clin. Cancer Res. 26, 4651–4660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shoag, J. & Barbieri, C. Clinical variability and molecular heterogeneity in prostate cancer. Asian J. Androl. 18, 543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Brenner, J. C., Chinnaiyan, A. M. & Tomlins, S. A. ETS Fusion Genes in Prostate Cancer. Prostate Cancer: Biochemistry, Molecular Biology and Genetics (Springer New York, 2013).

  16. Tomlins, S. A. et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur. Urol. 56, 275–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Mehra, R. et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 68, 3584–3590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Perner, S. et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Pettersson, A. et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol. Biomark. Prev. 21, 1497–1509 (2012).

    Article  Google Scholar 

  21. Tomlins, S. A. et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66, 3396–3400 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Helgeson, B. E. et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68, 73–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Paulo, P. et al. FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 51, 2430–249 (2012).

    Article  CAS  Google Scholar 

  24. Magi-Galluzzi, C. et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71, 489–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Minner, S. et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin. Cancer Res. 17, 5878–5888 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Park, K. et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12, 590–IN21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumacher, F. R. et al. Race and genetic alterations in prostate cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00324 (2021).

    Article  PubMed  Google Scholar 

  28. Park, K. et al. TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J. Clin. Oncol. 32, 206–211 (2014).

    Article  PubMed  Google Scholar 

  29. Taneja, S. S. et al. Prostate cancer diagnosis among men with isolated high-grade intraepithelial neoplasia enrolled onto a 3-year prospective phase III clinical trial of oral toremifene. J. Clin. Oncol. 31, 523–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Demichelis, F. et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26, 4596–4599 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Attard, G. et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27, 253–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Gopalan, A. et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 69, 1400–1406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swanson, T. A. et al. TMPRSS2/ERG fusion gene expression alters chemo- and radio-responsiveness in cell culture models of androgen independent prostate cancer. Prostate 71, 1548–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Mani, R.-S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230–1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dal Pra, A. et al. TMPRSS2-ERG status is not prognostic following prostate cancer radiotherapy: implications for fusion status and DSB repair. Clin. Cancer Res. 19, 5202–5209 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Song, C. & Chen, H. Predictive significance of TMRPSS2-ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int. 18, 177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khani, F. et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin. Cancer Res. 20, 4925–4934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahal, B. A. et al. Racial differences in genomic profiling of prostate cancer. N. Engl. J. Med. 383, 1083–1085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Petrovics, G. et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24, 3847–3852 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Rosen, P. et al. Differences in frequency of ERG oncoprotein expression between index tumors of Caucasian and African American patients with prostate cancer. Urology 80, 749–753 (2012).

    Article  PubMed  Google Scholar 

  41. Farrell, J. et al. Predominance of ERG-negative high-grade prostate cancers in African American men. Mol. Clin. Oncol. 2, 982–986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Faisal, F. A. et al. Racial variations in prostate cancer molecular subtypes and androgen receptor signaling reflect anatomic tumor location. Eur. Urol. 70, 14–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Sedarsky, J., Degon, M., Srivastava, S. & Dobi, A. Ethnicity and ERG frequency in prostate cancer. Nat. Rev. Urol. 15, 125–131 (2018).

    Article  PubMed  Google Scholar 

  44. Zhu, Y. et al. Epidemiology and genomics of prostate cancer in Asian men. Nat. Rev. Urol. https://doi.org/10.1038/s41585-021-00442-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu, C. et al. Detection of TMPRSS2-ERG and TMPRSS2-EGR1 gene fusion in prostate cancer from a Chinese population. Egypt. J. Med. Hum. Genet. 21, 53 (2020).

    Article  Google Scholar 

  46. Miyagi, Y. et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod. Pathol. 23, 1492–1498 (2010).

    Article  PubMed  Google Scholar 

  47. Tomlins, S. A. et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13, 519–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tiwari, R. et al. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat. Commun. 11, 384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, X. et al. The association between SPINK1 and clinical outcomes in patients with prostate cancer: a systematic review and meta-analysis. OncoTargets Ther. 10, 3123–3130 (2017).

    Article  Google Scholar 

  50. Pan, X. et al. The expression profile and prognostic value of SPINK1 in initially diagnosed bone metastatic prostate cancer. Prostate 76, 823–833 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, C. et al. Serine protease inhibitor Kazal type 1 promotes epithelial mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate 74, 689–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Koide, H. et al. Comparison of ERG and SPINK1 expression among incidental and metastatic prostate cancer in Japanese men. Prostate 79, 3–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blattner, M. et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 16, 14–W10 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Boysen, G. et al. SPOP mutation leads to genomic instability in prostate cancer. Elife 4, 1–18 (2015).

    Article  Google Scholar 

  56. Geng, C. et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl Acad. Sci. USA 110, 6997–7002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, P. et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum. Mutat. 35, 1142–1151 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, D. et al. Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis 35, 1691–1697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shoag, J. et al. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG. J. Clin. Investig. 128, 381–386 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gan, W. et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59, 917–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. An, J. et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Duan, S. & Pagano, M. SPOP mutations or ERG rearrangements result in enhanced levels of ERG to promote cell invasion in prostate cancer. Mol. Cell 59, 883–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bernasocchi, T. et al. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer. Nat. Commun. 12, 734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, D. et al. Impact of the SPOP mutant subtype on the interpretation of clinical parameters in prostate cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tewari, A. K. et al. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep. 36, 109665 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Shoag, J. et al. Prognostic value of the SPOP mutant genomic subclass in prostate cancer. Urol. Oncol. Semin. Orig. Investig. 38, 418–422 (2020).

    CAS  Google Scholar 

  67. Parolia, A. et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 571, 413–418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541, 359–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Adams, E. J. et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 571, 408–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sahu, B. et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 30, 3962–3976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lindquist, K. J. et al. Mutational landscape of aggressive prostate tumors in African American men. Cancer Res. 76, 1860–1868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan, J. et al. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet. 16, e1008641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qian, J., Jenkins, R. B. & Bostwick, D. G. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Mod. Pathol. 10, 1113–1119 (1997).

    CAS  PubMed  Google Scholar 

  74. Sun, J. et al. DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67, 692–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez-Sola, D. & Gautier, J. MYC and the control of DNA replication. Cold Spring Harb. Perspect. Med. 4, a014423–a014423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gil, J. et al. Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res. 65, 2179–2185 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Qiu, X. et al. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat. Commun. 13, 2559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hawksworth, D. et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis. 13, 311–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Sato, K. et al. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J. Natl Cancer Inst. 91, 1574–1580 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Bai, S. et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 38, 4977–4989 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rebello, R., Pearson, R., Hannan, R. & Furic, L. Therapeutic approaches targeting MYC-driven prostate cancer. Genes 8, 71 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  82. Leinonen, K. A. et al. Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol. Biomark. Prev. 22, 2333–2344 (2013).

    Article  CAS  Google Scholar 

  83. Jamaspishvili, T. et al. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 15, 222–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshimoto, M. et al. PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications. Genes Chromosomes Cancer 51, 149–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Papa & Pandolfi The PTEN–PI3K axis in cancer. Biomolecules 9, 153 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  86. Krohn, A. et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am. J. Pathol. 181, 401–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Ahearn, T. U. et al. A prospective investigation of PTEN loss and ERG expression in lethal prostate cancer. J. Natl Cancer Inst. 108, djv346 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tosoian, J. J. et al. Prevalence and prognostic significance of PTEN loss in African-American and European-American men undergoing radical prostatectomy. Eur. Urol. 71, 697–700 (2017).

    Article  PubMed  Google Scholar 

  89. Huang, F. W. et al. Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov. 7, 973–983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoffman, R. M. et al. Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J. Natl Cancer Inst. 93, 388–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Dess, R. T. et al. Association of Black race with prostate cancer-specific and other-cause mortality. JAMA Oncol. 5, 975 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sundi, D. et al. Pathological examination of radical prostatectomy specimens in men with very low risk disease at biopsy reveals distinct zonal distribution of cancer in Black American men. J. Urol. 191, 60–67 (2014).

    Article  PubMed  Google Scholar 

  93. Awasthi, S. et al. Comparative genomics reveals distinct immune-oncologic pathways in African American men with prostate cancer. Clin. Cancer Res. 27, 320–329 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Abida, W. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00029 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bose, R. et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546, 671–675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Troutman, S. M. et al. Racial disparities in the association between variants on 8q24 and prostate cancer: a systematic review and meta-analysis. Oncologist 17, 312–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cairns, P. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57, 4997–5000 (1997).

    CAS  PubMed  Google Scholar 

  98. Choucair, K. et al. PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity. BMC Cancer 12, 543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Petrovics, G. et al. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine 2, 1957–1964 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Carracedo, A. & Pandolfi, P. P. The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. de Bono, J. et al. IPATential150: phase III study of ipatasertib (ipat) plus abiraterone (abi) vs placebo (pbo) plus abi in metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 31, S1153–S1154 (2020).

    Article  Google Scholar 

  102. Rotimi, S. O., Rotimi, O. A. & Salhia, B. A review of cancer genetics and genomics studies in Africa. Front. Oncol. 10, 606400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cook, M. B. et al. A genome-wide association study of prostate cancer in West African men. Hum. Genet. 133, 509–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Petersen, D. C. et al. African KhoeSan ancestry linked to high-risk prostate cancer. BMC Med. Genomics 12, 82 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mallick, S., Blanchet, P. & Multigner, L. Prostate cancer incidence in Guadeloupe, a French Caribbean archipelago. Eur. Urol. 47, 769–772 (2005).

    Article  PubMed  Google Scholar 

  106. Tonon, L. et al. Mutational profile of aggressive, localised prostate cancer from African Caribbean men versus European Ancestry men. Eur. Urol. 75, 11–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Jaratlerdsiri, W. et al. Whole-genome sequencing reveals elevated tumor mutational burden and initiating driver mutations in African men with treatment-naïve, high-risk prostate cancer. Cancer Res. 78, 6736–6746 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Tabei, T. et al. Does screening for prostate cancer improve cancer-specific mortality in Asian men? Real-world data in Yokosuka City 15 years after introducing PSA-based population screening. Prostate 80, 824–830 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Kimura, T. & Egawa, S. Epidemiology of prostate cancer in Asian countries. Int. J. Urol. 25, 524–531 (2018).

    Article  PubMed  Google Scholar 

  110. Zhang, J., Dhakal, I. B., Zhao, Z. & Li, L. Trends in mortality from cancers of the breast, colon, prostate, esophagus, and stomach in East Asia. Eur. J. Cancer Prev. 21, 480–489 (2012).

    Article  PubMed  Google Scholar 

  111. Shi, Z. et al. Biomarker analysis of the phase III IPATential150 trial of first-line ipatasertib (Ipat) plus abiraterone (Abi) in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 38, 182–182 (2020).

    Article  Google Scholar 

  112. Ren, S. et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur. Urol. 73, 322–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. American Cancer Society. Cancer Facts & Figures for Hispanics/Latinos 2021–2023. Atlanta: American Cancer Society, Inc. https://www.cancer.org/research/cancer-facts-statistics/hispanics-latinos-facts-figures.html (2018).

  114. Aldaco-Sarvide, F. et al. Mortalidad por Cáncer en México: actualización 2015. Gac. Mex. de. Oncol. https://doi.org/10.24875/j.gamo.M18000105 (2019).

    Article  Google Scholar 

  115. Bravo, L. E. & Muñoz, N. Epidemiology of cancer in Colombia. Colomb. Médica 49, 9–12 (2018).

    Article  Google Scholar 

  116. Lora, D. et al. Tendencia de la mortalidad por cáncer en Argentina, Cuba y Uruguay en un período de. 15 años. Rev. Cub. Salud Pública 36, 115–125 (2010).

    Article  Google Scholar 

  117. González Burchard, E. et al. Latino populations: a unique opportunity for the study of race, genetics, and social environment in epidemiological research. Am. J. Public. Health 95, 2161–2168 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pinheiro, P. S. et al. Cancer mortality in Hispanic ethnic groups. Cancer Epidemiol. Biomark. Prev. 26, 376–382 (2017).

    Article  Google Scholar 

  119. Spratt, D. E. et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2, 1070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Du, Z. et al. A genome-wide association study of prostate cancer in Latinos. Int. J. Cancer 146, 1819–1826 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Sugiura, M. et al. Epigenetic modifications in prostate cancer. Int. J. Urol. 28, 140–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Kron, K. J. et al. TMPRSS2–ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat. Genet. 49, 1336–1345 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Grbesa, I. et al. Reshaping of the androgen-driven chromatin landscape in normal prostate cells by early cancer drivers and effect on therapeutic sensitivity. Cell Rep. 36, 109625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, R. & Liu, X. Epigenetic regulation of prostate cancer. Genes Dis. 7, 606–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 664–673 (2017).

    Article  CAS  Google Scholar 

  126. Nelson, W. G., de Marzo, A. M. & Yegnasubramanian, S. Minireview: epigenetic alterations in human prostate cancers. Endocrinology 150, 3991–4002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Santric, V. et al. GSTP1 rs1138272 polymorphism affects prostate cancer risk. Medicina 56, 128 (2020).

    Article  PubMed Central  Google Scholar 

  128. Parray, A. et al. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int. J. Cancer 135, 2493–2506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kwabi-Addo, B. et al. Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin. Cancer Res. 16, 3539–3547 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Yegnasubramanian, S. et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68, 8954–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhao, S. G. et al. The DNA methylation landscape of advanced prostate cancer. Nat. Genet. 52, 778–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Edwards, S. M. et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br. J. Cancer 103, 918–924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taylor, R. A. et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat. Commun. 8, 13671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Edwards, S. M. et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am. J. Hum. Genet. 72, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Devaney, J. et al. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 10, 319–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sharda, D. R. et al. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J. Immunol. 187, 2181–2192 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Barrow, T. M. et al. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Int. J. Cancer 137, 537–547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bedford, M. T. & van Helden, P. D. Hypomethylation of DNA in pathological conditions of the human prostate1. Cancer Res. 47, 5274–5276 (1987).

    CAS  PubMed  Google Scholar 

  139. Schulz, W. A. et al. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35, 58–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Santourlidis, S., Florl, A., Ackermann, R., Wirtz, H.-C. & Schulz, W. A. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39, 166–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Desai, M. M. et al. Trends in incidence of metastatic prostate cancer in the US. JAMA Netw. Open 5, e222246 (2022).

    Article  PubMed  Google Scholar 

  142. Grossman, D. C. et al. Screening for prostate cancer. JAMA 319, 1901 (2018).

    Article  PubMed  Google Scholar 

  143. Carter, H. B. et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190, 419–426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    Article  PubMed  Google Scholar 

  145. Carroll, P. R. et al. NCCN Guidelines for Prostate Cancer Early Detection V.1.2021. https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf (2020).

  146. Basourakos, S. P. et al. Harm-to-benefit of three decades of prostate cancer screening in Black men. NEJM Evid. https://doi.org/10.1056/evidoa2200031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Shoag, J. E., Nyame, Y. A., Gulati, R., Etzioni, R. & Hu, J. C. Reconsidering the trade-offs of prostate cancer screening. N. Engl. J. Med. 382, 2465–2468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Black, M. H. et al. Validation of a prostate cancer polygenic risk score. Prostate 80, 1314–1321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sipeky, C. et al. Prostate cancer risk prediction using a polygenic risk score. Sci. Rep. 10, 17075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Plym, A. et al. Evaluation of a multiethnic polygenic risk score model for prostate cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djab058 (2021).

    Article  PubMed Central  Google Scholar 

  151. Huynh-Le, M.-P. et al. Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nat. Commun. 12, 1236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Song, S. H. & Byun, S.-S. Polygenic risk score for genetic evaluation of prostate cancer risk in Asian populations: a narrative review. Investig. Clin. Urol. 62, 256–266 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Seibert, T. M. et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ https://doi.org/10.1136/bmj.j5757 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. NIH. National Institutes of Health Policy and Guidelines on the Inclusion of Women and Minorities as Subjects in Clinical Research. https://grants.nih.gov/policy/inclusion/women-and-minorities/guidelines.htm (2017).

  155. Witham, M. D. et al. Developing a roadmap to improve trial delivery for under-served groups: results from a UK multi-stakeholder process. Trials 21, 694 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Polite, B. N. et al. Charting the future of cancer health disparities research: a position statement from the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute. Cancer Res. 77, 4548–4555 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Mohler, J. L. & Antonarakis, E. S. NCCN guidelines updates: management of prostate cancer. J. Natl Compr. Canc Netw. 17, 583–586 (2019).

    PubMed  CAS  Google Scholar 

  158. Bancroft, E. K. et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol. 22, 1618–1631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Castro, E. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 31, 1748–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cheng, H. H., Pritchard, C. C., Montgomery, B., Lin, D. W. & Nelson, P. S. Prostate cancer screening in a new era of genetics. Clin. Genitourin. Cancer 15, 625–628 (2017).

    Article  PubMed  Google Scholar 

  161. Das, S. et al. Bringing prostate cancer germline genetics into clinical practice. J. Urol. 202, 223–230 (2019).

    Article  PubMed  Google Scholar 

  162. Giri, V. N. et al. Role of genetic testing for inherited prostate cancer risk: Philadelphia Prostate Cancer Consensus Conference 2017. J. Clin. Oncol. 36, 414–424 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Leongamornlert, D. et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br. J. Cancer 110, 1663–1672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Maia, S. et al. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Fam. Cancer 15, 111–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. McNevin, C. S. et al. Pathogenic BRCA variants as biomarkers for risk in prostate cancer. Cancers 13, 5697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nicolosi, P. et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 5, 523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pomerantz, M. M. et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 123, 3532–3539 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shah, S. et al. BRCA mutations in prostate cancer: assessment, implications and treatment considerations. Int. J. Mol. Sci. 22, 12628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Telvizian, T. & Mukherji, D. Germline mutations and prostate cancer: is it time to change treatment algorithms? Chin. Clin. Oncol. 9, 65–65 (2020).

    Article  PubMed  Google Scholar 

  171. Zhen, J. T. et al. Genetic testing for hereditary prostate cancer: current status and limitations. Cancer 124, 3105–3117 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stenson, P. D. et al. The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136, 665–677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Fullerton, S. M., Knerr, S. & Burke, W. Finding a place for genomics in health disparities research. Public Health Genomics 15, 156–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Telfah, M., Holzbeierlein, J. M., Shen, X., Wulff-Burchfield, E. M. & Parikh, R. A. Abiraterone acetate in comparison to enzalutamide in African American patients with metastatic castrate-resistant prostate cancer: a single-center retrospective study. J. Clin. Oncol. 37(suppl_15), e16547 (2019).

    Article  Google Scholar 

  177. George, D. J. et al. Survival by race in men with chemotherapy-naive enzalutamide- or abiraterone-treated metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-021-00463-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. George, D. J. et al. A prospective trial of abiraterone acetate plus prednisone in Black and white men with metastatic castrate-resistant prostate cancer. Cancer 127, 2954–2965 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Bernard, B. et al. Impact of ethnicity on the outcome of men with metastatic, hormone-sensitive prostate cancer. Cancer 123, 1536–1544 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Oni-Orisan, A., Mavura, Y., Banda, Y., Thornton, T. A. & Sebro, R. Embracing genetic diversity to improve Black health. N. Engl. J. Med. https://doi.org/10.1056/NEJMms2031080 (2021).

    Article  PubMed  Google Scholar 

  181. Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Minas, T. Z., Kiely, M., Ajao, A. & Ambs, S. An overview of cancer health disparities: new approaches and insights and why they matter. Carcinogenesis https://doi.org/10.1093/carcin/bgaa121 (2020).

    Article  PubMed Central  Google Scholar 

  183. Na, R. et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur. Urol. 71, 740–747 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.A.G., J.O., I.W., P.L., S.P.B., B.A.H.A.A., F.R.S., D.E.S., C.B. and J.E.S. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jonathan E. Shoag.

Ethics declarations

Competing interests

D.E.S. reports personal fees from Boston Scientific, AstraZeneca, Janssen, and Blue Earth. J.E.S. is supported by the Frederick J. and Theresa Dow Foundation of the New York Community Trust, Vinney Scholars Award and a Damon Runyon Cancer Research Foundation Physician-Scientist Training Award. F.R.S. is supported by NCI CA2333216, CA043703, CA241956 and CA254566. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks S. Chanock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Flatiron Health: https://flatiron.com/

Foundation Medicine, Inc: https://www.foundationmedicine.com/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas-Gallo, C., Owiredu, J., Weinstein, I. et al. Race and prostate cancer: genomic landscape. Nat Rev Urol 19, 547–561 (2022). https://doi.org/10.1038/s41585-022-00622-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00622-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer