Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The future of PSMA PET and WB MRI as next-generation imaging tools in prostate cancer

Abstract

Radiolabelled prostate-specific membrane antigen (PSMA)-based PET–CT has been shown in numerous studies to be superior to conventional imaging in the detection of nodal or distant metastatic lesions. 68Ga-PSMA PET–CT is now recommended by many guidelines for the detection of biochemically relapsed disease after radical local therapy. PSMA radioligands can also function as radiotheranostics, and Lu-PSMA has been shown to be a potential new line of treatment for metastatic castration-resistant prostate cancer. Whole-body (WB) MRI has been shown to have a high diagnostic performance in the detection and monitoring of metastatic bone disease. Prospective, randomized, multicentre studies comparing 68Ga-PSMA PET–CT and WB MRI for pelvic nodal and metastatic disease detection are yet to be performed. Challenges for interpretation of PSMA include tracer trapping in non-target tissues and also urinary excretion of tracers, which confounds image interpretation at the vesicoureteral junction. Additionally, studies have shown how long-term androgen deprivation therapy (ADT) affects PSMA expression and could, therefore, reduce tracer uptake and visibility of PSMA+ lesions. Furthermore, ADT of short duration might increase PSMA expression, leading to the PSMA flare phenomenon, which makes the accurate monitoring of treatment response to ADT with PSMA PET challenging. Scan duration, detection of incidentalomas and presence of metallic implants are some of the major challenges with WB MRI. Emerging data support the wider adoption of PSMA PET and WB MRI for diagnosis, staging, disease burden evaluation and response monitoring, although their relative roles in the standard-of-care management of patients are yet to be fully defined.

Key points

  • Next-generation imaging techniques have been found to affect prostate cancer disease state classifications as their increased sensitivity can result in stage migration.

  • Prostate-specific membrane antigen (PSMA) PET has been shown to have higher sensitivity and specificity in detecting nodal and metastatic lesions than conventional imaging. PSMA-derived tumour volume and total lesion PSMA are experimental quantitative volumetric measures for whole-body (WB) tumour burden with good prognostic value for progression-free survival and can be used in treatment response assessment.

  • 177Lu-labelled PSMA is a potential new line of therapy in patients with metastatic castration-resistant prostate cancer who have progressed on at least one line of chemotherapy.

  • WB MRI is showing increasing promise as an ‘all-in-one’ modality for cancer diagnosis and staging without the need for radiation exposure. WB MRI-derived markers include apparent diffusion coefficient (ADC), signal fat fraction (sFF) and proton density fat fraction (PDFF). ADC values are especially useful for assessing bone metastases; PDFF and sFF are emerging quantitative imaging biomarkers that might be useful in assessing nodal and bone marrow metastases.

  • Limitations of PSMA PET include tracer trapping in non-target tissue, PSMA flare phenomenon, limited availability and radiation exposure related to radiotracers. Limitations of WB MRI include long acquisition time, metal-related and motion-related artefacts, fat–water swapping, incidentalomas, differential diagnoses of findings and limited availability.

  • Well-designed, powered, randomized multicentre studies are needed to assess the value of PSMA PET, WB MRI and standard imaging for disease detection, disease burden evaluation and survival across different prostate cancer disease states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical case demonstrating use of alternative PSMA tracers and PET–MRI to identify disease recurrence in the vesicourethral junction region.
Fig. 2: Clinical case demonstrating the use of alternative PSMA tracers and multiparametric MRI to identify disease recurrence in the vesicourethral junction region.
Fig. 3: Clinical case demonstrating PSMA uptake in prostate cancer metastases and physiological variant uptake in ganglia.
Fig. 4: Motion artefact and image distortion around a metallic hip implant on WB MRI.
Fig. 5: Fat–water swap artefacts in Dixon sequence on WB MRI.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer Today (International Agency for Research on Cancer, 2018).

  2. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  PubMed  Google Scholar 

  3. van Leeuwen, F. W. B. & van der Poel, H. G. Oligometastases: the art of providing metastases-directed therapy in prostate cancer. Nat. Rev. Urol. 19, 259–260 (2022).

    Article  PubMed  Google Scholar 

  4. Schatzl, G. et al. High-grade prostate cancer is associated with low serum testosterone levels. Prostate 47, 52–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Carceles-Cordon, M. et al. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat. Rev. Urol. 17, 292–307 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Artibani, W., Porcaro, A. B., De Marco, V., Cerruto, M. A. & Siracusano, S. Management of biochemical recurrence after primary curative treatment for prostate cancer: a review. Urol. Int. 100, 251–262 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Conteduca, V. et al. Flare phenomenon in prostate cancer: recent evidence on new drugs and next generation imaging. Ther. Adv. Med. Oncol. https://doi.org/10.1177/1758835920987654 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taylor, S. A. et al. Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed non-small-cell lung cancer: the prospective Streamline L trial. Lancet Respir. Med. 7, 523–532 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Taylor, S. A. et al. Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed colorectal cancer: the prospective Streamline C trial. Lancet Gastroenterol. Hepatol. 4, 529–537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messiou, C. et al. Prospective evaluation of whole-body MRI versus FDG PET/CT for lesion detection in participants with myeloma. Radiol. Imaging Cancer 3, e210048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tikkinen, K. A. O. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ 362, k3581 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kohestani, K., Chilov, M. & Carlsson, S. V. Prostate cancer screening-when to start and how to screen? Transl. Androl. Urol. 7, 34–45 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Sullivan, J. M., Norman, A. R., Cook, G. J., Fisher, C. & Dearnaley, D. P. Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital. BJU Int. 92, 685–689 (2003).

    Article  PubMed  Google Scholar 

  14. Trabulsi, E. J. et al. Optimum imaging strategies for advanced prostate cancer: ASCO guideline. J. Clin. Oncol. 38, 1963–1996 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ceci, F. et al. (68)Ga-PSMA PET/CT for restaging recurrent prostate cancer: which factors are associated with PET/CT detection rate? Eur. J. Nucl. Med. Mol. Imaging 42, 1284–1294 (2015).

  17. Peng, L. et al. Can 68Ga-prostate specific membrane antigen positron emission tomography/computerized tomography provide an accurate lymph node staging for patients with medium/high risk prostate cancer? A diagnostic meta-analysis. Radiat. Oncol. 15, 227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petersen, L. J. & Zacho, H. D. PSMA PET for primary lymph node staging of intermediate and high-risk prostate cancer: an expedited systematic review. Cancer Imaging 20, 10 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rahman, L. A. et al. High negative predictive value of 68Ga PSMA PET-CT for local lymph node metastases in high risk primary prostate cancer with histopathological correlation. Cancer Imaging 19, 86 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johnston, E. W. et al. Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging. Eur. Radiol. 29, 3159–3169 (2019).

    Article  PubMed  Google Scholar 

  21. Lecouvet, F. E. et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur. Urol. 62, 68–75 (2012).

    Article  PubMed  Google Scholar 

  22. Kesch, C., Kratochwil, C., Mier, W., Kopka, K. & Giesel, F. L. 68Ga or 18F for prostate cancer imaging? J. Nucl. Med. 58, 687–688 (2017).

    Article  PubMed  Google Scholar 

  23. Raveenthiran, S. et al. The use of 68Ga-PET/CT PSMA to determine patterns of disease for biochemically recurrent prostate cancer following primary radiotherapy. Prostate Cancer Prostatic Dis. 22, 385–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Bluemel, C. et al. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin. Nucl. Med. 41, 515–521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sawicki, L. M. et al. Prospective comparison of whole-body MRI and 68Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 46, 1542–1550 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Adeleke, S. et al. Localising occult prostate cancer metastasis with advanced imaging techniques (LOCATE trial): a prospective cohort, observational diagnostic accuracy trial investigating whole-body magnetic resonance imaging in radio-recurrent prostate cancer. BMC Med. Imaging 19, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palma, D. A. et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J. Clin. Oncol. 38, 2830–2838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ost, P. et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J. Clin. Oncol. 36, 446–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Chalkidou, A. et al. Stereotactic ablative body radiotherapy in patients with oligometastatic cancers: a prospective, registry-based, single-arm, observational, evaluation study. Lancet Oncol. 22, 98–106 (2021).

    Article  PubMed  Google Scholar 

  30. Phillips, R. et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 6, 650–659 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guckenberger, M. et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 21, e18–e28 (2020).

    Article  PubMed  Google Scholar 

  32. Lievens, Y. et al. Defining oligometastatic disease from a radiation oncology perspective: an ESTRO-ASTRO consensus document. Radiother. Oncol. 148, 157–166 (2020).

    Article  PubMed  Google Scholar 

  33. Foster, C. C., Pitroda, S. P. & Weichselbaum, R. R. Definition, biology, and history of oligometastatic and oligoprogressive disease. Cancer J. 26, 96–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lecouvet, F. E. et al. Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC Imaging Group. Lancet Oncol. 19, e534–e545 (2018).

    Article  PubMed  Google Scholar 

  36. Gillessen, S. et al. Management of patients with advanced prostate cancer: report of the Advanced Prostate Cancer Consensus Conference 2019. Eur. Urol. 77, 508–547 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Aggarwal, R. et al. Clinical and genomic characterization of low PSA secretors: a unique subset of metastatic castration resistant prostate cancer. Prostate Cancer Prostatic Dis. 24, 81–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Scher, H. I. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 34, 1402–1418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Seitz, A. K. et al. Preliminary results on response assessment using 68Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 45, 602–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Blackledge, M. D. et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS ONE 9, e91779 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Turpin, A. et al. Imaging for metastasis in prostate cancer: a review of the literature. Front. Oncol. 10, 55 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Messiou, C. et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 291, 5–13 (2019).

    Article  PubMed  Google Scholar 

  44. Maurer, T., Eiber, M., Schwaiger, M. & Gschwend, J. E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. van der Sar, E. C. A., van Kalmthout, L. M. & Lam, M. G. E. H. PSMA PET/CT in primary prostate cancer diagnostics: an overview of the literature. Tijdschr. Urol. 10, 101–108 (2020).

    Article  Google Scholar 

  46. Eder, M. et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals 7, 779–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Afshar-Oromieh, A. et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging 40, 486–495 (2013); erratum 40, 797–798 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Andaglia, G. et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74, 210–216 (2014).

    Article  Google Scholar 

  49. Kamaleshwaran, K. K. et al. Predictive value of serum prostate specific antigen in detecting bone metastasis in prostate cancer patients using bone scintigraphy. Indian. J. Nucl. Med. 27, 81–84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guo, Y., Wang, L., Hu, J., Feng, D. & Xu, L. Diagnostic performance of choline PET/CT for the detection of bone metastasis in prostate cancer: a systematic review and meta-analysis. PLoS ONE 13, e0203400 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lengana, T. et al. 68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli? Clin. Genitourin. Cancer 16, 392–401 (2018).

    Article  PubMed  Google Scholar 

  52. von Eyben, F. E., Picchio, M., von Eyben, R., Rhee, H. & Bauman, G. 68Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: a systematic review and meta-analysis. Eur. Urol. Focus 4, 686–693 (2018).

    Article  Google Scholar 

  53. Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. 77, 403–417 (2020).

    Article  PubMed  Google Scholar 

  54. Afshar-Oromieh, A. et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 41, 11–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Morigi, J. J. et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J. Nucl. Med. 56, 1185–1190 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Glicksman, R. M. et al. [18F]DCFPyL PET-MRI/CT for unveiling a molecularly defined oligorecurrent prostate cancer state amenable for curative-intent ablative therapy: study protocol for a phase II trial. BMJ Open 10, e035959 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT04742361?view=record (2021).

  58. Aksu, A. et al. Evaluation of 68Ga-PSMA PET/CT with volumetric parameters for staging of prostate cancer patients. Nucl. Med. Commun. 42, 503–509 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Zou, Q. et al. Semi-automatic evaluation of baseline whole-body tumor burden as an imaging biomarker of 68Ga-PSMA-11 PET/CT in newly diagnosed prostate cancer. Abdom. Radiol. 45, 4202–4213 (2020).

    Article  Google Scholar 

  60. Karyagar, S. S., Karyagar, S. & Guven, O. Correlations of the 68Ga-PSMA PET/CT derived primary prostate tumor PSMA expression parameters and metastatic patterns in patients with Gleason score >7 prostate cancer. Hell. J. Nucl. Med. 23, 120–124 (2020).

    PubMed  Google Scholar 

  61. Yildirim, Ö. A. et al. Correlations between whole body volumetric parameters of 68Ga-PSMA PET/CT and biochemical-histopathological parameters in castration-naive and resistant prostate cancer patients. Ann. Nucl. Med 35, 540–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Acar, E. et al. The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival. Ann. Nucl. Med. 33, 681–688 (2019).

    Article  PubMed  Google Scholar 

  63. Schmidkonz, C. et al. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 1862–1872 (2018).

    Article  PubMed  Google Scholar 

  64. Michalski, K., Mix, M., Meyer, P. T. & Ruf, J. Determination of whole-body tumour burden on [68Ga]PSMA-11 PET/CT for response assessment of [177Lu]PSMA-617 radioligand therapy: a retrospective analysis of serum PSA level and imaging derived parameters before and after two cycles of therapy. Nuklearmedizin 58, 443–450 (2019).

    Article  PubMed  Google Scholar 

  65. Has Simsek, D. et al. Can PSMA-based tumor burden predict response to docetaxel treatment in metastatic castration-resistant prostate cancer? Ann. Nucl. Med. 35, 680–690 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50 (Suppl. 1), 122S–150S (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Gupta, M., Choudhury, P. S., Rawal, S., Goel, H. C. & Rao, S. A. Evaluation of RECIST, PERCIST, EORTC, and MDA criteria for assessing treatment response with Ga68-PSMA PET-CT in metastatic prostate cancer patient with biochemical progression: a comparative study. Nucl. Med. Mol. Imaging 52, 420–429 (2018); erratum 54, 267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lawhn-Heath, C. et al. Prostate-specific membrane antigen PET in prostate cancer. Radiology 299, 248–260 (2021).

    Article  PubMed  Google Scholar 

  69. Ceci, F. et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging 48, 1626–1638 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vierasu, I. et al. Clinical experience with 18F-JK-PSMA-7 when using a digital PET/CT. Eur. J. Hybrid Imaging 6, 6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bodar, Y. J. L. et al. Prospective analysis of clinically significant prostate cancer detection with [18F]DCFPyL PET/MRI compared to multiparametric MRI: a comparison with the histopathology in the radical prostatectomy specimen, the ProStaPET study. Eur. J. Nucl. Med. Mol. Imaging 49, 1731–1742 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Krohn, T. et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur. J. Nucl. Med. Mol. Imaging 42, 210–214 (2015).

    Article  PubMed  Google Scholar 

  73. Bialek, E. J. & Malkowski, B. Celiac ganglia: can they be misinterpreted on multimodal 68Ga-PSMA-11 PET/MR? Nucl. Med. Commun. 40, 175–184 (2019).

    Article  PubMed  Google Scholar 

  74. de Galiza Barbosa, F. et al. Nonprostatic diseases on PSMA PET imaging: a spectrum of benign and malignant findings. Cancer Imaging 20, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gykiere, P., Goethals, L. & Everaert, H. Healing sacral fracture masquerading as metastatic bone disease on a 68Ga-PSMA PET/CT. Clin. Nucl. Med. 41, e346–e347 (2016).

    Article  PubMed  Google Scholar 

  76. Kanthan, G. L. et al. Follicular thyroid adenoma showing avid uptake on 68Ga PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 41, 331–332 (2016).

    Article  PubMed  Google Scholar 

  77. Radzina, M. et al. Accuracy of 68Ga-PSMA-11 PET/CT and multiparametric MRI for the detection of local tumor and lymph node metastases in early biochemical recurrence of prostate cancer. Am. J. Nucl. Med. Mol. Imaging 10, 106–118 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Iravani, A. et al. 68Ga PSMA-11 PET with CT urography protocol in the initial staging and biochemical relapse of prostate cancer. Cancer Imaging 17, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kroenke, M. et al. Matched-pair comparison of 68Ga-PSMA-11 and 18F-rhPSMA-7 PET/CT in patients with primary and biochemical recurrence of prostate cancer: frequency of non-tumor-related uptake and tumor positivity. J. Nucl. Med. 62, 1082–1088 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Dietlein, F. et al. Intraindividual comparison of 18F-PSMA-1007 with renally excreted PSMA ligands for PSMA PET imaging in patients with relapsed prostate cancer. J. Nucl. Med. 61, 729–734 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Ghadanfer, L., Usmani, S., Marafi, F., Al-Kandari, F. & Rasheed, R. Incremental value of post diuretic 68Ga-PSMA-11 PET-CT in characterization of indeterminate lesions in prostate cancer. Asian Pac. J. Cancer Prev. 21, 3719–3723 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morawitz, J. et al. Is there a diagnostic benefit of late-phase abdomino-pelvic PET/CT after urination as part of whole-body 68Ga-PSMA-11 PET/CT for restaging patients with biochemical recurrence of prostate cancer after radical prostatectomy? EJNMMI Res. 12, 12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Afshar-Oromieh, A. et al. The clinical impact of additional late PET/CT imaging with 68Ga-PSMA-11 (HBED-CC) in the diagnosis of prostate cancer. J. Nucl. Med. 58, 750–755 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Hoffmann, M. A. et al. Dual-time point [68Ga]Ga-PSMA-11 PET/CT hybrid imaging for staging and restaging of prostate cancer. Cancers 12, 2788 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  85. Perveen, G. et al. Role of early dynamic positron emission tomography/computed tomography with 68Ga-prostate-specific membrane antigen-HBED-CC in patients with adenocarcinoma prostate: initial results. Indian. J. Nucl. Med. 33, 112–117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Uprimny, C. et al. Early dynamic imaging in 68Ga-PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur. J. Nucl. Med. Mol. Imaging 44, 765–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Freitag, M. T. et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in 68Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 44, 776–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Burger, I. A. et al. 68Ga-PSMA-11 PET/MR detects local recurrence occult on mpMRI in prostate cancer patients after HIFU. J. Nucl. Med. 60, 1118–1123 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Wright, G. L. Jr et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48, 326–334 (1996).

    Article  PubMed  Google Scholar 

  90. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hope, T. A. et al. 68Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. J. Nucl. Med. 58, 81–84 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murga, J. D. et al. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. Prostate 75, 242–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Afshar-Oromieh, A. et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 2045–2054 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Afshar-Oromieh, A. et al. Diagnostic performance of (68)Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging 44, 1258–1268 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Emmett, L. et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 60, 950–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Plouznikoff, N. et al. Evaluation of PSMA expression changes on PET/CT before and after initiation of novel antiandrogen drugs (enzalutamide or abiraterone) in metastatic castration-resistant prostate cancer patients. Ann. Nucl. Med. 33, 945–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03876912 (2021).

  98. Hofman, M. S., Hicks, R. J., Maurer, T. & Eiber, M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 38, 200–217 (2018).

    Article  PubMed  Google Scholar 

  99. Rischpler, C. et al. 68Ga-PSMA-HBED-CC uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J. Nucl. Med. 59, 1406–1411 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. UK Health Security Agency. Radiation Protection Services. UKHSA https://www.phe-protectionservices.org.uk/radiationandyou/ (2022).

  101. Siva, S. et al. Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat. Rev. Urol. 17, 107–118 (2020).

    Article  PubMed  Google Scholar 

  102. Hofman, M. S. et al. TheraP trial investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2107322 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. O’ Connor, M. Transformative prostate cancer therapy ‘should not be accepted’ without PET imaging. HealthImaging https://www.healthimaging.com/topics/medical-imaging/molecular-imaging/prostate-cancer-therapy-not-be-accepted-without-pet (2021).

  105. Ormond Filho, A. G. et al. Whole-body imaging of multiple myeloma: diagnostic criteria. Radiographics 39, 1077–1097 (2019).

    Article  PubMed  Google Scholar 

  106. Pasoglou, V., Michoux, N., Tombal, B. & Lecouvet, F. Optimising TNM staging of patients with prostate cancer using WB-MRI. J. Belg. Soc. Radiol. 100, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Van Damme, J. et al. Comparison of 68Ga-prostate specific membrane antigen (PSMA) positron emission tomography computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) with diffusion sequences (DWI) in the staging of advanced prostate cancer. Cancers 13, 5286 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lecouvet, F. E. et al. Shortening the acquisition time of whole-body MRI: 3D T1 gradient echo Dixon vs fast spin echo for metastatic screening in prostate cancer. Eur. Radiol. 30, 3083–3093 (2020).

    Article  PubMed  Google Scholar 

  109. Bitar, R. et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 26, 513–537 (2006).

    Article  PubMed  Google Scholar 

  110. Padhani, A. R. et al. METastasis Reporting and Sata System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur. Urol. 71, 81–92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pricolo, P. et al. Whole-body magnetic resonance imaging (WB-MRI) reporting with the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P): inter-observer agreement between readers of different expertise levels. Cancer Imaging 20, 77 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Harisinghani, M. G. et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am. J. Roentgenol. 186, 144–148 (2006).

    Article  PubMed  Google Scholar 

  113. Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Thoeny, H. C. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 55, 761–769 (2009).

    Article  PubMed  Google Scholar 

  115. Heesakkers, R. A. et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology 251, 408–414 (2009).

    Article  PubMed  Google Scholar 

  116. Meijer et al. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 82, 1405–1410 (2012).

    Article  PubMed  Google Scholar 

  117. Fortuin, A. S. et al. Value of PET/CT and MR lymphography in treatment of prostate cancer patients with lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 84, 712–718 (2012).

    Article  PubMed  Google Scholar 

  118. Schilham, M. G. M. et al. Head-to-head comparison of 68Ga-prostate-specific membrane antigen PET/CT and ferumoxtran-10-enhanced MRI for the diagnosis of lymph node metastases in prostate cancer patients. J. Nucl. Med. 62, 1258–1263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Daldrup-Link, H. E. Ten things you might not know about iron oxide nanoparticles. Radiology 284, 616–629 (2017).

    Article  PubMed  Google Scholar 

  120. Li, C. S. et al. Enhancement characteristics of ultrasmall superparamagnetic iron oxide particle within the prostate gland in patients with primary prostate cancer. J. Comput. Assist. Tomogr. 32, 523–528 (2008).

    Article  PubMed  Google Scholar 

  121. Fukuda, Y. et al. Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn. Reson. Med. Sci. 5, 191–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Padhani, A. R. et al. Rationale for modernising imaging in advanced prostate cancer. Eur. Urol. Focus 3, 223–239 (2017).

    Article  PubMed  Google Scholar 

  123. Patterson, D. M., Padhani, A. R. & Collins, D. J. Technology insight: water diffusion MRI–a potential new biomarker of response to cancer therapy. Nat. Clin. Pract. Oncol. 5, 220–233 (2008).

    Article  PubMed  Google Scholar 

  124. Padhani, A. R. et al. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J. Magn. Reson. Imaging 39, 1049–1078 (2014).

    Article  PubMed  Google Scholar 

  125. Perez-Lopez, R. et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology 283, 168–177 (2017).

    Article  PubMed  Google Scholar 

  126. Reischauer, C. et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps–initial observations. Radiology 257, 523–531 (2010).

    Article  PubMed  Google Scholar 

  127. Jacobs, M. A. et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad. Radiol. 25, 1405–1414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Dong, H. et al. Prediction of early treatment response in multiple myeloma using MY-RADS total burden score, ADC, and fat fraction from whole-body MRI: impact of anemia on predictive performance. AJR Am. J. Roentgenol. 218, 310–319 (2022).

    Article  PubMed  Google Scholar 

  129. Gross, B. H., Glazer, G. M., Orringer, M. B., Spizarny, D. L. & Flint, A. Bronchogenic carcinoma metastatic to normal-sized lymph nodes: frequency and significance. Radiology 166, 71–74 (1988).

    Article  CAS  PubMed  Google Scholar 

  130. Ganeshalingam, S. & Koh, D. M. Nodal staging. Cancer Imaging 9, 104–111 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Adeleke S. et al. Fat-fraction provides classification and treatment response assessment of metastatic lymph nodes for patients with radio-recurrent prostate cancer [abstract]. UCL https://discovery.ucl.ac.uk/id/eprint/10078201/1/Fat%20fraction%20abstract-Montreal%202019.pdf (2019).

  132. Appayya, M. B. et al. Quantitative mDixon fat fraction can differentiate metastatic nodes from benign nodes in prostate cancer patients. Proc. Int. Soc. Mag. Reson. Med. 26, 0721 (2018).

    Google Scholar 

  133. Cho, S. Y. et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med. 53, 1883–1891 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Kwack, K. S., Lee, H. D., Jeon, S. W., Lee, H. Y. & Park, S. Comparison of proton density fat fraction, simultaneous R2*, and apparent diffusion coefficient for assessment of focal vertebral bone marrow lesions. Clin. Radiol. 75, 123–130 (2020).

    Article  PubMed  Google Scholar 

  135. Food and Drug Administration. Understanding MRI safety labeling. FDA https://www.fda.gov/media/101221/download (2020).

  136. Evans, R. E. C. et al. Patient deprivation and perceived scan burden negatively impact the quality of whole-body MRI. Clin. Radiol. 75, 308–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Cancer Research UK & UCL Cancer Trials Centre. Whole-body MRI can save money and stress, according to CTC study. CRUK https://www.ctc.ucl.ac.uk/ViewNews.aspx?Item=73 (2019).

  138. Cieszanowski, A. et al. Non-contrast-enhanced whole-body magnetic resonance imaging in the general population: the incidence of abnormal findings in patients 50 years old and younger compared to older subjects. PLoS ONE 9, e107840 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Tarnoki, D. L. et al. Clinical value of whole-body magnetic resonance imaging in health screening of general adult population. Radiol. Oncol. 49, 10–16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hegenscheid, K. et al. Potentially relevant incidental findings on research whole-body MRI in the general adult population: frequencies and management. Eur. Radiol. 23, 816–826 (2013).

    Article  PubMed  Google Scholar 

  141. Poustchi-Amin, M., Mirowitz, S. A., Brown, J. J., McKinstry, R. C. & Li, T. Principles and applications of echo-planar imaging: a review for the general radiologist. Radiographics 21, 767–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Schallmo, M. P., Weldon, K. B., Burton, P. C., Sponheim, S. R. & Olman, C. A. Assessing methods for geometric distortion compensation in 7T gradient echo functional MRI data. Hum. Brain Mapp. 42, 4205–4223 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Donato, F. Jr et al. Geometric distortion in diffusion-weighted MR imaging of the prostate–contributing factors and strategies for improvement. Acad. Radiol. 21, 817–823 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dixon, W. T. Simple proton spectroscopic imaging. Radiology 153, 189–194 (1984).

    Article  CAS  PubMed  Google Scholar 

  145. Glocker, B. et al. in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Lecture Notes in Computer Science Vol. 9902 (eds Ourselin, S., Joskowicz, L., Sabuncu,M., Unal, G. & Wells, W.) 536–543 (Springer, 2016).

  146. Kirchgesner, T. et al. Two-point Dixon fat-water swapping artifact: lesion mimicker at musculoskeletal T2-weighted MRI. Skelet. Radiol. 49, 2081–2086 (2020).

    Article  Google Scholar 

  147. Ladefoged, C. N. et al. Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion. EJNMMI Phys. 1, 101 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bray, T. J. P., Chouhan, M. D., Punwani, S., Bainbridge, A. & Hall-Craggs, M. A. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br. J. Radiol. 90, 20170344 (2017).

    Article  Google Scholar 

  149. Sciarra, A. et al. Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest. 28, 424–432 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Cheng, Y., Zhang, X., Ji, Q. & Shen, W. Xanthogranulomatous prostatitis: multiparametric MRI appearances. Clin. Imaging 38, 755–757 (2014).

    Article  PubMed  Google Scholar 

  151. Suditu, N. & Negru, D. Bacillus Calmette-Guérin therapy-associated granulomatous prostatitis mimicking prostate cancer on MRI: a case report and literature review. Mol. Clin. Oncol. 3, 249–251 (2015).

    Article  PubMed  Google Scholar 

  152. Lecouvet, F. E. et al. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur. J. Cancer 50, 2519–2531 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Małkiewicz, A. & Dziedzic, M. Bone marrow reconversion–imaging of physiological changes in bone marrow. Pol. J. Radiol. 77, 45–50 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yu, Y. S. et al. False-positive diagnosis of disease progression by magnetic resonance imaging for response assessment in prostate cancer with bone metastases: a case report and review of the pitfalls of images in the literature. Oncol. Lett. 10, 3585–3590 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tanaka, T. et al. A case of focal bone marrow reconversion mimicking bone metastasis: the value of 111indium chloride. Acta Med. Okayama 70, 285–289 (2016).

    PubMed  Google Scholar 

  156. Mottet, N. et al. EAU–EANM–ESTRO–ESUR–ISUP–SIOG guidelines on prostate cancer 2022. EAU https://uroweb.org/guidelines/prostate-cancer (2022).

  157. Sundahl, N., Gillessen, S., Sweeney, C. & Ost, P. When what you see is not always what you get: raising the bar of evidence for new diagnostic imaging modalities. Eur. Urol. 79, 565–567 (2021).

    Article  PubMed  Google Scholar 

  158. Rodnick, M. E. et al. Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target. EJNMMI Radiopharm. Chem. 5, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Block Imaging. PET/CT price guide. Block Imaging https://info.blockimaging.com/bid/68875/how-much-does-a-pet-ct-scanner-cost (2021).

  160. LBN Medical. How much does an MRI scanner cost: a complete overview. LBN Medical https://lbnmedical.com/how-much-does-an-mri-machine-cost/ (2021).

  161. Qin, C. et al. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur. Heart J. Cardiovasc. Imaging https://doi.org/10.1093/ehjci/jeab286 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. NHS. National cost collection for the NHS. NHS https://www.england.nhs.uk/national-cost-collection/ (2020).

  163. de Feria Cardet, R. E. et al. Is prostate-specific membrane antigen positron emission tomography/computed tomography imaging cost-effective in prostate cancer: an analysis informed by the proPSMA trial. Eur. Urol. 79, 413–418 (2021).

    Article  PubMed  CAS  Google Scholar 

  164. Farolfi, A. et al. Positron emission tomography and whole-body magnetic resonance imaging for metastasis-directed therapy in hormone-sensitive oligometastatic prostate cancer after primary radical treatment: a systematic review. Eur. Urol. Oncol. 4, 714–730 (2021).

    Article  PubMed  Google Scholar 

  165. Dyrberg, E. et al. 68Ga-PSMA-PET/CT in comparison with 18F-fluoride-PET/CT and whole-body MRI for the detection of bone metastases in patients with prostate cancer: a prospective diagnostic accuracy study. Eur. Radiol. 29, 1221–1230 (2019).

    Article  PubMed  Google Scholar 

  166. Stecco, A. et al. Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics 8, 45 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  167. Giesel, F. L. et al. PSMA PET/CT with glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 1794–1800 (2015).

  168. Pernthaler, B. et al. A prospective head-to-head comparison of 18F-fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer in PET/CT. Clin. Nucl. Med. 44, e566–e573 (2019).

    Article  PubMed  Google Scholar 

  169. Emmett, L. et al. Prospective, multisite, international comparison of 18F-fluoromethylcholine PET/CT, multiparametric MRI, and 68Ga-HBED-CC PSMA-11 PET/CT in men with high-risk features and biochemical failure after radical prostatectomy: clinical performance and patient outcomes. J. Nucl. Med. 60, 794–800 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Calais, J. et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 20, 1286–1294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schwenck, J. et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging 44, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Dietlein, M. et al. Comparison of [(18)F]DCFPyL and [(68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol. Imaging Biol. 17, 575–584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Szabo, Z. et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol. 17, 565–574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pienta, K. J. et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206, 52–61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Morris, M. J. et al. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin. Cancer Res. 27, 3674–3682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Behr, S. C. et al. Phase I study of CTT1057, an 18F-labeled imaging agent with phosphoramidate core targeting prostate-specific membrane antigen in prostate cancer. J. Nucl. Med. 60, 910–916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Turkbey, B. et al. 18F-DCFBC prostate-specific membrane antigen-targeted PET/CT imaging in localized prostate cancer: correlation with multiparametric MRI and histopathology. Clin. Nucl. Med. 42, 735–740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Harmon, S. A. et al. A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J. Nucl. Med. 59, 1665–1671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mena, E. et al. Clinical impact of PSMA-based 18F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur. J. Nucl. Med. Mol. Imaging 45, 4–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Rowe, S. P. et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J. Nucl. Med. 56, 1003–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Hoberück, S. et al. Dual-time-point 64Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J. Labelled Comp. Radiopharm. 62, 523–532 (2019).

    Article  PubMed  CAS  Google Scholar 

  182. Cantiello, F. et al. Comparison between 64Cu-PSMA-617 PET/CT and 18F-choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clin. Genitourin. Cancer 16, 385–391 (2018).

    Article  PubMed  Google Scholar 

  183. Giesel, F. L. et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med. 60, 362–368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Malaspina, S. et al. Prospective comparison of 18F-PSMA-1007 PET/CT, whole-body MRI and CT in primary nodal staging of unfavourable intermediate- and high-risk prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 49, 2670–2671 (2021).

    Google Scholar 

  185. Alberts, I. et al. Comparing the clinical performance and cost efficacy of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 in the diagnosis of recurrent prostate cancer: a Markov chain decision analysis. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-021-05620-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Witkowska-Patena, E., Giżewska, A., Miśko, J. & Dziuk, M. 18F-prostate-specific membrane antigen 1007 and 18F-FCH PET/CT in local recurrence of prostate cancer. Clin. Nucl. Med. 44, e401–e403 (2019).

    Article  PubMed  Google Scholar 

  187. Derlin, T. et al. PSA-stratified detection rates for [68Ga]THP-PSMA, a novel probe for rapid kit-based 68Ga-labeling and PET imaging, in patients with biochemical recurrence after primary therapy for prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 913–922 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Afaq, A. et al. A Phase II, open-label study to assess safety and management change using 68Ga-THP PSMA PET/CT in patients with high risk primary prostate cancer or biochemical recurrence after radical treatment: the PRONOUNCED study. J. Nucl. Med. 62, 1727–1734 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  189. Kulkarni, M. et al. The management impact of 68gallium-tris(hydroxypyridinone) prostate-specific membrane antigen (68Ga-THP-PSMA) PET-CT imaging for high-risk and biochemically recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 47, 674–686 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Schmuck et al. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer. Clin. Nucl. Med. 42, e286–e293 (2017).

    Article  PubMed  Google Scholar 

  191. Asokendaran, M. E., Meyrick, D. P., Skelly, L. A., Lenzo, N. P. & Henderson, A. Gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography compared with diagnostic computed tomography in relapsed prostate cancer. World J. Nucl. Med. 18, 232–237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Oh, S. W. et al. Quantitative and qualitative analyses of biodistribution and PET image quality of a novel radiohybrid PSMA, 18F-rhPSMA-7, in patients with prostate cancer. J. Nucl. Med. 61, 702–709 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hohberg, M. et al. Biodistribution and radiation dosimetry of [18F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res. 9, 66 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Dietlein, F. et al. [18F]-JK-PSMA-7 PET/CT under androgen deprivation therapy in advanced prostate cancer. Mol. Imaging Biol. 23, 277–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Piron, S. et al. Radiation dosimetry and biodistribution of 18F-PSMA-11 for PET imaging of prostate cancer. J. Nucl. Med. 60, 1736–1742 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Piron, S. et al. Optimization of PET protocol and interrater reliability of 18F-PSMA-11 imaging of prostate cancer. EJNMMI Res. 10, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Schottelius, M. et al. Synthesis and preclinical characterization of the PSMA-targeted hybrid tracer PSMA-I&F for nuclear and fluorescence imaging of prostate cancer. J. Nucl. Med. 60, 71–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Depardon, E. et al. FDG PET/CT for prognostic stratification of patients with metastatic breast cancer treated with first line systemic therapy: comparison of EORTC criteria and PERCIST. PLoS ONE 13, e0199529 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.W., J.R.G., S.W. and S.A. researched data for the article. All authors contributed substantially to discussion of the content. Y.W., J.R.G., S.A. and V.K. wrote the article. Y.W., J.R.G., A.H., S.W., H.P., S.A. and V.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Yishen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Echo-planar imaging

(EPI). An MRI pulse sequence in which data for the entire image is collected following a single radiofrequency excitation. It has the advantage of rapid image acquisition but with poor resolution.

B0

The B0 in MRI refers to the main static magnetic field (scanner magnetic field) used to polarize spins and is measured in teslas. The majority of MRI systems in clinical use are 1.5 T or 3 T.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Galante, J.R., Haroon, A. et al. The future of PSMA PET and WB MRI as next-generation imaging tools in prostate cancer. Nat Rev Urol 19, 475–493 (2022). https://doi.org/10.1038/s41585-022-00618-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00618-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing