Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bladder cancer, inflammageing and microbiomes

Abstract

Ageing is correlated with elevated bladder cancer incidence, morbidity and mortality. Advanced age is also associated with elevated markers of chronic inflammation and perturbations in gut and urinary tract microbiota. One reason for the increased incidence and mortality of bladder cancer in the elderly might be that age-associated changes in multiple microbiomes induce systemic metabolic changes that contribute to immune dysregulation with potentially tumorigenic effects. The gut and urinary microbiomes could be dysregulated in bladder cancer, although the effect of these changes is poorly understood. Each of these domains — the immune system, gut microbiome and urinary microbiome — might also influence the response of patients with bladder cancer to treatment. Improved understanding of age-related alterations to the immune system and gut and urinary microbiomes could provide possible insight into the risk of bladder cancer development and progression in the elderly. In patients with bladder cancer, improved understanding of microbiota might also provide potential targets for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbiomes in bladder cancer and their potential connections to inflammation.
Fig. 2: Proposed mechanisms of age-associated dysbiosis and effect on systemic markers of inflammation.
Fig. 3: Hypothetical links between systemic inflammation, urothelial proliferation and bladder cancer.

Similar content being viewed by others

References

  1. National Cancer Institute. Cancer stat facts: bladder cancer. SEER https://seer.cancer.gov/statfacts/html/urinb.html (2020).

  2. Taylor, J. A. III & Kuchel, G. A. Bladder cancer in the elderly: clinical outcomes, basic mechanisms, and future research direction. Nat. Clin. Pract. Urol. 6, 135–144 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Babjuk, M. Bladder cancer in the elderly. Eur. Urol. 73, 51–52 (2018).

    Article  PubMed  Google Scholar 

  4. Feng, H., Zhang, W., Li, J. & Lu, X. Different patterns in the prognostic value of age for bladder cancer-specific survival depending on tumor stages. Am. J. Cancer Res. 5, 2090–2097 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Shariat, S. F. et al. The effect of age and gender on bladder cancer: a critical review of the literature. BJU Int. 105, 300–308 (2010).

    Article  PubMed  Google Scholar 

  6. Luzzago, S. et al. Effect of age on cancer-specific mortality in patients with urothelial carcinoma of the urinary bladder: a population-based competing-risks analysis across disease stages. Am. J. Clin. Oncol. 43, 880–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Stanton, M. L., Xiao, L., Czerniak, B. A. & Guo, C. C. Urothelial tumors of the urinary bladder in young patients: a clinicopathologic study of 59 cases. Arch. Pathol. Lab. Med. 137, 1337–1341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, Q. H. et al. Clinicopathologic comparison of urothelial bladder carcinoma in young and elder patients. Pathol. Oncol. Res. 22, 67–70 (2016).

    Article  PubMed  Google Scholar 

  9. Wang, Z. H. et al. Does urothelial cancer of bladder behave differently in young patients? Chin. Med. J. 125, 2643–2648 (2012).

    PubMed  Google Scholar 

  10. Konety, B. R. & Joslyn, S. A. Factors influencing aggressive therapy for bladder cancer: an analysis of data from the SEER program. J. Urol. 170, 1765–1771 (2003). Crucial analysis of the SEER database demonstrating differences in ageing and bladder cancer.

    Article  PubMed  Google Scholar 

  11. Briggs, N. C., Young, T. B., Gilchrist, K. W., Vaillancourt, A. M. & Messing, E. M. Age as a predictor of an aggressive clinical course for superficial bladder cancer in men. Cancer 69, 1445–1451 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Tan, T. Z., Rouanne, M., Tan, K. T., Huang, R. Y. & Thiery, J. P. Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur. Urol. 75, 423–432 (2019). Robust analysis of tumour subtyping and how it relates to bladder cancer outcomes. Early molecular subtyping data showing differences in tumours derived from young and old patients.

    Article  CAS  PubMed  Google Scholar 

  13. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Pietzak, E. J. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72, 952–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sung, J. Y. et al. FGFR3 overexpression is prognostic of adverse outcome for muscle-invasive bladder carcinoma treated with adjuvant chemotherapy. Urol. Oncol. 32, 49.e23–31 (2014).

    Article  CAS  Google Scholar 

  16. Kacew, A. & Sweis, R. F. FGFR3 alterations in the era of immunotherapy for urothelial bladder cancer. Front. Immunol. 11, 575258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chappidi, M. R. et al. Frailty as a marker of adverse outcomes in patients with bladder cancer undergoing radical cystectomy. Urol. Oncol. 34, 256.e1–6 (2016).

    PubMed  Google Scholar 

  18. Palumbo, C. et al. Patient frailty predicts worse perioperative outcomes and higher cost after radical cystectomy. Surg. Oncol. 32, 8–13 (2020).

    Article  PubMed  Google Scholar 

  19. Sathianathen, N. J., Jarosek, S., Lawrentschuk, N., Bolton, D. & Konety, B. R. A simplified frailty index to predict outcomes after radical cystectomy. Eur. Urol. Focus. 5, 658–663 (2019).

    Article  PubMed  Google Scholar 

  20. Horovitz, D. et al. Does patient age affect survival after radical cystectomy? BJU Int. 110, E486–E493 (2012).

    Article  PubMed  Google Scholar 

  21. Gray, P. J. et al. Use of potentially curative therapies for muscle-invasive bladder cancer in the United States: results from the national cancer data base. Eur. Urol. 63, 823–829 (2013).

    Article  PubMed  Google Scholar 

  22. Resorlu, B., Beduk, Y., Baltaci, S., Ergun, G. & Talas, H. The prognostic significance of advanced age in patients with bladder cancer treated with radical cystectomy. BJU Int. 103, 480–483 (2009).

    Article  PubMed  Google Scholar 

  23. Franceschi, C. & Bonafe, M. Centenarians as a model for healthy aging. Biochem. Soc. Trans. 31, 457–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Guedj, A. et al. Gut microbiota shape ‘inflamm-ageing’ cytokines and account for age-dependent decline in DNA damage repair. Gut 69, 1064–1075 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Guedj, A. et al. Early age decline in DNA repair capacity in the liver: in depth profile of differential gene expression. Aging 8, 3131–3146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biragyn, A. & Ferrucci, L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 19, e295–e304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghosh, T. S., Das, M., Jeffery, I. B. & O’Toole, P. W. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife 9, e50240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021). Report demonstrating early clinical efficacy of faecal microbiota transplant.

    Article  CAS  PubMed  Google Scholar 

  34. Aso, Y. et al. Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. Eur. Urol. 27, 104–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Aso, Y. & Akazan, H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. BLP Study Group. Urol. Int. 49, 125–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. He, C. et al. Sulforaphane normalizes intestinal flora and enhances gut barrier in mice with BBN-induced bladder cancer. Mol. Nutr. Food Res. 62, e1800427 (2018). First analysis of gut microbiome in patients with bladder cancer.

    Article  PubMed  CAS  Google Scholar 

  37. Naito, S. et al. Prevention of recurrence with epirubicin and lactobacillus casei after transurethral resection of bladder cancer. J. Urol. 179, 485–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol. 102, 977–988 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Fulop, T. et al. Immunosenescence and cancer. Crit. Rev. Oncog. 18, 489–513 (2013).

    Article  PubMed  Google Scholar 

  41. Albayrak, S. et al. Can the neutrophil-to-lymphocyte ratio be used to predict recurrence and progression of non-muscle-invasive bladder cancer? Kaohsiung J. Med. Sci. 32, 327–333 (2016).

    Article  PubMed  Google Scholar 

  42. Gondo, T. et al. Prognostic value of neutrophil-to-lymphocyte ratio and establishment of novel preoperative risk stratification model in bladder cancer patients treated with radical cystectomy. Urology 79, 1085–1091 (2012).

    Article  PubMed  Google Scholar 

  43. Hermanns, T. et al. Pre-treatment neutrophil-to-lymphocyte ratio as predictor of adverse outcomes in patients undergoing radical cystectomy for urothelial carcinoma of the bladder. Br. J. Cancer 111, 444–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, J. & Bae, J. S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediat. Inflamm. 2016, 6058147 (2016).

    Google Scholar 

  45. Liu, K., Zhao, K., Wang, L. & Sun, E. The prognostic values of tumor-infiltrating neutrophils, lymphocytes and neutrophil/lymphocyte rates in bladder urothelial cancer. Pathol. Res. Pract. 214, 1074–1080 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Mbeutcha, A. et al. Prognostic significance of markers of systemic inflammatory response in patients with non-muscle-invasive bladder cancer. Urol. Oncol. 34, 483 e417–483 e424 (2016).

    Article  CAS  Google Scholar 

  47. Zhou, L. et al. Tumor-infiltrating neutrophils predict benefit from adjuvant chemotherapy in patients with muscle invasive bladder cancer. Oncoimmunology 6, e1293211 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sadighi Akha, A. A. Aging and the immune system: an overview. J. Immunol. Methods 463, 21–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rock, K. L. & Kono, H. The inflammatory response to cell death. Annu. Rev. Pathol. 3, 99–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leidal, A. M., Levine, B. & Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 20, 1338–1348 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Ershler, W. B. et al. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 12, 225–230 (1993).

    CAS  PubMed  Google Scholar 

  55. Sharma, B., Nannuru, K. C., Varney, M. L. & Singh, R. K. Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin. Exp. Metastasis 32, 65–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Sharma, B., Nawandar, D. M., Nannuru, K. C., Varney, M. L. & Singh, R. K. Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol. Cancer Ther. 12, 799–808 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Sjödahl, G. et al. Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol. Oncol. 32, 791–797 (2014).

    Article  PubMed  Google Scholar 

  59. Wu, S. Q., Xu, R., Li, X. F., Zhao, X. K. & Qian, B. Z. Prognostic roles of tumor associated macrophages in bladder cancer: a system review and meta-analysis. Oncotarget 9, 25294–25303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Roszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015, 816460 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Vartolomei, M. D. et al. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): a systematic review and meta-analysis. Urol. Oncol. 36, 389–399 (2018).

    Article  PubMed  Google Scholar 

  62. Viers, B. R. et al. Pretreatment neutrophil-to-lymphocyte ratio is associated with advanced pathologic tumor stage and increased cancer-specific mortality among patients with urothelial carcinoma of the bladder undergoing radical cystectomy. Eur. Urol. 66, 1157–1164 (2014). Initial large study demonstrating usefulness of the NLR in muscle-invasive bladder cancer.

    Article  PubMed  Google Scholar 

  63. Parada, B. et al. Anti-inflammatory, anti-proliferative and antioxidant profiles of selective cyclooxygenase-2 inhibition as chemoprevention for rat bladder carcinogenesis. Cancer Biol. Ther. 8, 1615–1622 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Suttmann, H. et al. Neutrophil granulocytes are required for effective Bacillus Calmette-Guérin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res. 66, 8250–8257 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Kawai, K. et al. Enhancement of rat urinary bladder tumorigenesis by lipopolysaccharide-induced inflammation. Cancer Res. 53, 5172–5175 (1993).

    CAS  PubMed  Google Scholar 

  66. Tamatani, T., Turk, P., Weitzman, S. & Oyasu, R. Tumorigenic conversion of a rat urothelial cell line by human polymorphonuclear leukocytes activated by lipopolysaccharide. Jpn. J. Cancer Res. 90, 829–836 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu, L. X. et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52, 1322–1333 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Elchuri, S. et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Dhawan, D., Jeffreys, A. B., Zheng, R., Stewart, J. C. & Knapp, D. W. Cyclooxygenase-2 dependent and independent antitumor effects induced by celecoxib in urinary bladder cancer cells. Mol. Cancer Ther. 7, 897–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Wilson, C. L. et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat. Commun. 6, 6818 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, A. et al. Presence of lymphocytic infiltrate cytotoxic T lymphocyte CD3+, CD8+, and immunoscore as prognostic marker in patients after radical cystectomy. PLoS ONE 13, e0205746 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Faraj, S. F. et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology 85, 703.e701–706 (2015).

    Article  Google Scholar 

  76. Sharma, P. et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc. Natl Acad. Sci. USA 104, 3967–3972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holland, B. C. et al. Age and sex have no impact on expression levels of markers of immune cell infiltration and immune checkpoint pathways in patients with muscle-invasive urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Immunol. Immunother. 68, 991–997 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Buchta Rosean, C. M. & Rutkowski, M. R. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin. Immunol. 32, 62–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, J. et al. The microbiome and breast cancer: a review. Breast Cancer Res. Treat. 178, 493–496 (2019).

    Article  PubMed  Google Scholar 

  81. Koliarakis, I. et al. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int. J. Mol. Sci. 20, 4146 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  82. Zhuang, H. et al. Dysbiosis of the gut microbiome in lung cancer. Front. Cell Infect. Microbiol. 9, 112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rajagopala, S. V. et al. The human microbiome and cancer. Cancer Prev. Res. 10, 226–234 (2017).

    Article  Google Scholar 

  84. Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Mouries, J. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 71, 1216–1228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grander, C. et al. The role of gut vascular barrier in experimental alcoholic liver disease and A. muciniphila supplementation. Gut Microbes 12, 1851986 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. & Rodriguez Yoldi, M. J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 18, 197 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  88. Allam-Ndoul, B., Castonguay-Paradis, S. & Veilleux, A. Gut microbiota and intestinal trans-epithelial permeability. Int. J. Mol. Sci. 21, 6402 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  89. He, C. et al. Gut microbial composition changes in bladder cancer patients: a case-control study in Harbin, China. Asia Pac. J. Clin. Nutr. 29, 395–403 (2020).

    PubMed  Google Scholar 

  90. Chopin, V., Toillon, R. A., Jouy, N. & Le Bourhis, X. Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br. J. Pharmacol. 135, 79–86 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nastasi, C. et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci. Rep. 7, 14516 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang, F. et al. Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells. FASEB J. 34, 4266–4282 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466 e454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. mSphere 2, e00327-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Badal, V. D. et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients 12, 3759 (2020).

    Article  PubMed Central  Google Scholar 

  97. Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).

    Article  PubMed  Google Scholar 

  98. Biagi, E. et al. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech. Ageing Dev. 165, 180–184 (2017). Important analysis of the microbiome in centenarians and other age groups.

    Article  PubMed  Google Scholar 

  99. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022). Seminal paper demonstrating the potential benefit of Akkermansia in cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  100. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scheppach, W., Bartram, H. P. & Richter, F. Role of short-chain fatty acids in the prevention of colorectal cancer. Eur. J. Cancer 31A, 1077–1080 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cai, D. et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients 8, 564 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  106. Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Salazar, N. et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: a cross-sectional study. Nutrients 11, 1765 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  108. Iraporda, C. et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220, 1161–1169 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Cox, M. A. et al. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, F. et al. The inflammation induced by lipopolysaccharide can be mitigated by short-chain fatty acid, butyrate, through upregulation of IL-10 in septic shock. Scand. J. Immunol. 85, 258–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Krantz, D. et al. Neoadjuvant chemotherapy reinforces antitumour T cell response in urothelial urinary bladder cancer. Eur. Urol. 74, 688–692 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Eruslanov, E., Daurkin, I., Vieweg, J., Daaka, Y. & Kusmartsev, S. Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. Int. Immunopharmacol. 11, 848–855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Vinolo, M. A. et al. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci. 117, 331–338 (2009).

    Article  CAS  Google Scholar 

  117. Sonowal, R. et al. Indoles from commensal bacteria extend healthspan. Proc. Natl Acad. Sci. USA 114, E7506–E7515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta 503, 90–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, D., Wu, J., Jin, D., Wang, B. & Cao, H. Fecal microbiota transplantation in cancer management: current status and perspectives. Int. J. Cancer 145, 2021–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Clark, R. I. et al. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Curty, G., de Carvalho, P. S. & Soares, M. A. The role of the cervicovaginal microbiome on the genesis and as a biomarker of premalignant cervical intraepithelial neoplasia and invasive cervical cancer. Int. J. Mol. Sci. 21, 222 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  124. Mani, S. Microbiota and breast cancer. Prog. Mol. Biol. Transl. Sci. 151, 217–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Tran, L. & Greenwood-Van Meerveld, B. Age-associated remodeling of the intestinal epithelial barrier. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1045–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kühn, F. et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 5, e134049 (2020).

    Article  PubMed Central  Google Scholar 

  127. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Champer, M. et al. The role of the vaginal microbiome in gynaecological cancer. BJOG 125, 309–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Wu, P. et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front. Cell Infect. Microbiol. 8, 167 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zeng, J. et al. Alterations in urobiome in patients with bladder cancer and implications for clinical outcome: a single-institution study. Front. Cell Infect. Microbiol. 10, 555508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Aragón, I. M. et al. The urinary tract microbiome in health and disease. Eur. Urol. Focus 4, 128–138 (2018).

    Article  PubMed  Google Scholar 

  132. Lewis, D. A. et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell Infect. Microbiol. 3, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fouts, D. E. et al. Integrated next-generation sequencing of 16 S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl Med. 10, 174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pohl, H. G. et al. The urine microbiome of healthy men and women differs by urine collection method. Int. Neurourol. J. 24, 41–51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Burnett, L. A., Hochstedler, B. R., Weldon, K., Wolfe, A. J. & Brubaker, L. Recurrent urinary tract infection: association of clinical profiles with urobiome composition in women. Neurourol. Urodyn. 40, 1479–1489 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Zandbergen, L. E., Halverson, T., Brons, J. K., Wolfe, A. J. & de Vos, M. G. J. The good and the bad: ecological interaction measurements between the urinary microbiota and uropathogens. Front. Microbiol. 12, 659450 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bajic, P., Wolfe, A. J. & Gupta, G. N. The urinary microbiome: implications in bladder cancer pathogenesis and therapeutics. Urology 126, 10–15 (2019).

    Article  PubMed  Google Scholar 

  138. Pearce, M. M. et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5, e01283-14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Abernethy, M. G. et al. Urinary microbiome and cytokine levels in women with interstitial cystitis. Obstet. Gynecol. 129, 500–506 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Bučević Popović, V. et al. The urinary microbiome associated with bladder cancer. Sci. Rep. 8, 12157 (2018). Early analysis of the urinary microbiome in patients with bladder cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Markowski, M. C. et al. The microbiome and genitourinary cancer: a collaborative review. Eur. Urol. 75, 637–646 (2019).

    Article  PubMed  Google Scholar 

  142. Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 21, 345–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, F. et al. Dysbiosis signatures of the microbial profile in tissue from bladder cancer. Cancer Med. 8, 6904–6914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Parra-Grande, M. et al. Profiling the bladder microbiota in patients with bladder cancer. Front. Microbiol. 12, 718776 (2021).

    Article  PubMed  Google Scholar 

  145. Ching, C. B. et al. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 93, 1320–1329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Samuelsson, P., Hang, L., Wullt, B., Irjala, H. & Svanborg, C. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect. Immun. 72, 3179–3186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McDermott, C. et al. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide. Toxicol. Vitr. 27, 1693–1698 (2013).

    Article  CAS  Google Scholar 

  148. Yeh, J., Lu, M., Alvarez-Lugo, L. & Chai, T. C. Bladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis. Am. J. Physiol. Renal Physiol. 316, F617–F623 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Ying, H. et al. TLR4 mediates MAPK-STAT3 axis activation in bladder epithelial cells. Inflammation 36, 1064–1074 (2013).

    Article  PubMed  CAS  Google Scholar 

  150. Mirzaei, S. et al. Pre-clinical investigation of STAT3 pathway in bladder cancer: paving the way for clinical translation. Biomed. Pharmacother. 133, 111077 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Gatta, L. B. et al. Hyper-activation of STAT3 sustains progression of non-papillary basal-type bladder cancer via FOSL1 regulome. Cancers 11, 1219 (2019).

    Article  CAS  Google Scholar 

  152. Korac-Prlic, J. et al. Targeting Stat3 signaling impairs the progression of bladder cancer in a mouse model. Cancer Lett. 490, 89–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Reis, S. T. et al. Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of bladder cancer. BMC Urol. 12, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Huang, C. P., Liu, L. X. & Shyr, C. R. Tumor-associated macrophages facilitate bladder cancer progression by increasing cell growth, migration, invasion and cytokine expression. Anticancer. Res. 40, 2715–2724 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Urakami, S. et al. Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin. Cancer Res. 12, 2109–2116 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Lin, C. et al. Constitutive β-catenin activation induces male-specific tumorigenesis in the bladder urothelium. Cancer Res. 73, 5914–5925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shin, K. et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shin, K. et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat. Cell Biol. 16, 469–478 (2014). Establishment of the cellular origin of bladder cancer and crucial pathways involved in the proliferation of those cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Van Batavia, J. et al. Bladder cancers arise from distinct urothelial sub-populations. Nat. Cell Biol. 16, 982–991 (2014). Establishment of the cellular origin of bladder cancer and crucial pathways involved in proliferation of those cells.

    Article  PubMed  CAS  Google Scholar 

  162. Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci. Adv. 4, eaar5598 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Bertram, J. S. & Craig, A. W. Specific induction of bladder cancer in mice by butyl-(4-hydroxybutyl)-nitrosamine and the effects of hormonal modifications on the sex difference in response. Eur. J. Cancer 8, 587–594 (1972).

    Article  CAS  PubMed  Google Scholar 

  164. Bayne, C. E., Farah, D., Herbst, K. W. & Hsieh, M. H. Role of urinary tract infection in bladder cancer: a systematic review and meta-analysis. World J. Urol. 36, 1181–1190 (2018).

    Article  PubMed  Google Scholar 

  165. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  166. Gontero, P. et al. Prognostic factors and risk groups in T1G3 non-muscle-invasive bladder cancer patients initially treated with Bacillus Calmette-Guerin: results of a retrospective multicenter study of 2451 patients. Eur. Urol. 67, 74–82 (2015).

    Article  PubMed  Google Scholar 

  167. Joudi, F. N., Smith, B. J., O’Donnell, M. A. & Konety, B. R. The impact of age on the response of patients with superficial bladder cancer to intravesical immunotherapy. J. Urol. 175, 1634–1639; discussion 175, 1639–1640 (2006).

  168. Herr, H. W. Age and outcome of superficial bladder cancer treated with bacille Calmette-Guérin therapy. Urology 70, 65–68 (2007).

    Article  PubMed  Google Scholar 

  169. Sweis, R. F. et al. Association of the commensal urinary microbiome with response to Bacillus Calmette-Guérin (BCG) immunotherapy in nonmuscle invasive bladder cancer. J. Clin. Oncol. 37 (Suppl. 7), 423 (2019).

    Article  Google Scholar 

  170. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  172. Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Pirzada, M. T. et al. Outcomes of BCG induction in high-risk non-muscle-invasive bladder cancer patients (NMIBC): a retrospective cohort study. Cureus 9, e957 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. Kates, M. et al. Adaptive immune resistance to intravesical BCG in non-muscle invasive bladder cancer: implications for prospective BCG-unresponsive trials. Clin. Cancer Res. 26, 882–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Kato, I., Endo, K. & Yokokura, T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol. 16, 29–36 (1994).

    Article  CAS  PubMed  Google Scholar 

  176. Ohashi, Y. et al. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol. Int. 68, 273–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, Y. et al. Lactobacillus casei protects dextran sodium sulfate- or rapamycin-induced colonic inflammation in the mouse. Eur. J. Nutr. 59, 1443–1451 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Lee, T. H. et al. Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis. Int. J. Mol. Med. 45, 1130–1140 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Munday, R. et al. Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res. 68, 1593–1600 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Iida, K. et al. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 28, 2398–2403 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Xie, H., Chun, F. K., Rutz, J. & Blaheta, R. A. Sulforaphane impact on reactive oxygen species (ROS) in bladder carcinoma. Int. J. Mol. Sci. 22, 5938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Teo, M. Y. & Rosenberg, J. E. Nivolumab for the treatment of urothelial cancers. Expert Rev. Anticancer. Ther. 18, 215–221 (2018).

    Article  PubMed  CAS  Google Scholar 

  183. Miller, P. L. & Carson, T. L. Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review. Gut Pathog. 12, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vetizou, M. & Trinchieri, G. Anti-PD1 in the wonder-gut-land. Cell Res. 28, 263–264 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Byrd, A. L. et al. Gut microbiome stability and dynamics in healthy donors and patients with non-gastrointestinal cancers. J. Exp. Med. 218, e20200606 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Biagi, E. et al. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol. Res. 69, 11–20 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded in part by the Albert Charitable Trust (J.A.T. III), American Urological Association Research Scholar Award (B.L.W.) and National Institutes of Health (R01CA185322 (S.U.)).

Author information

Authors and Affiliations

Authors

Contributions

A.M., B.L.W. and J.A.T. III researched data for the article. All authors contributed substantially to discussion of the content. A.M., B.L.W. and J.A.T. III wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John A. Taylor III.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Randy Sweis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A., Woolbright, B.L., Umar, S. et al. Bladder cancer, inflammageing and microbiomes. Nat Rev Urol 19, 495–509 (2022). https://doi.org/10.1038/s41585-022-00611-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00611-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer