Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The placebo and nocebo effects in functional urology

Abstract

A placebo is an inert substance normally used in clinical trials for comparison with an active substance. However, a placebo has been shown to have an effect on its own; commonly known as the placebo effect. A placebo is an essential component in the design of conclusive clinical trials but has itself become the focus of intense research. The placebo effect is partly the result of positive expectations of the recipient on the state of health. Conversely, a nocebo effect is when negative expectations from a substance lead to poor treatment outcomes and/or adverse events. Randomized controlled trials in functional urology have demonstrated the importance of the placebo and nocebo effects across different diseases such as overactive bladder, urinary incontinence, lower urinary tract symptoms and interstitial cystitis/painful bladder syndrome, as well as male and female sexual dysfunction. Understanding the true nature of the placebo–nocebo complex and the scope of its effect in functional urology could help urologists to maximize the positive effects of this phenomenon while minimizing its potentially negative effects.

Key points

  • Placebo and nocebo effects have major roles in functional urological ailments.

  • The mechanisms by which the placebo and nocebo effects function are not fully understood.

  • The pontine micturition centre might be affected by positive and negative expectations through a cascade of events resulting in improvement or worsening of functional urological symptoms.

  • Clinicians need to consider the placebo and nocebo phenomena when managing a patient with a functional urological ailment.

  • Clinicians should be trained regarding the placebo and nocebo effects with the aim of maximizing the benefits of the placebo effect and minimizing the harms of the nocebo effect.

  • An individualized approach and shared decision-making should be performed when dealing with placebo and nocebo effects, as each individual has different perceptions with regard to placebo and nocebo phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods to harness the placebo effect in daily practice based on a model by Enck and colleagues59.
Fig. 2: The placebo effect as a psychophysiological response.
Fig. 3: Understanding clinical importance.

Similar content being viewed by others

References

  1. Stewart-Williams, S. & Podd, J. The placebo effect: dissolving the expectancy versus conditioning debate. Psychol. Bull. 130, 324 (2004).

    PubMed  Google Scholar 

  2. McDonald, C. J., Mazzuca, S. A. & McCabe, G. P. Jr How much of the placebo ‘effect’ is really statistical regression? Stat. Med. 2, 417–427 (1983).

    CAS  PubMed  Google Scholar 

  3. Colloca, L. The placebo effect in pain therapies. Annu. Rev. Pharmacol. Toxicol. 59, 191–211 (2019).

    CAS  PubMed  Google Scholar 

  4. Aronson, J. Please, please me. BMJ 318, 716 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaab, J. The placebo and its effects: a psychoneuroendocrinological perspective. Psychoneuroendocrinology 105, 3–8 (2019).

    CAS  PubMed  Google Scholar 

  7. Evers, A. W. et al. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother. Psychosom. 87, 204–210 (2018).

    PubMed  Google Scholar 

  8. Ernst, E. & Resch, K. L. Concept of true and perceived placebo effects. BMJ 311, 551–553 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Colloca, L. & Barsky, A. J. Placebo and nocebo effects. N. Engl. J. Med. 382, 554–561 (2020).

    CAS  PubMed  Google Scholar 

  10. Gupta, U. & Verma, M. Placebo in clinical trials. Perspect. Clin. Res. 4, 49 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Lipman, J. J. et al. Peak B endorphin concentration in cerebrospinal fluid: reduced in chronic pain patients and increased during the placebo response. Psychopharmacology 102, 112–116 (1990).

    CAS  PubMed  Google Scholar 

  12. Pollo, A. et al. Expectation modulates the response to subthalamic nucleus stimulation in Parkinsonian patients. Neuroreport 13, 1383–1386 (2002).

    PubMed  Google Scholar 

  13. Howick, J. et al. Are treatments more effective than placebos? A systematic review and meta-analysis. PLoS ONE 8, e62599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Howick, J. H. The Philosophy of Evidence-Based Medicine (John Wiley & Sons, 2011).

  15. Mangera, A., Chapple, C. R., Kopp, Z. S. & Plested, M. The placebo effect in overactive bladder syndrome. Nat. Rev. Urol. 8, 495 (2011).

    CAS  PubMed  Google Scholar 

  16. Chvetzoff, G. & Tannock, I. F. Placebo effects in oncology. J. Natl Cancer Inst. 95, 19–29 (2003).

    CAS  PubMed  Google Scholar 

  17. Kaptchuk, T. J. & Miller, F. G. Placebo effects in medicine. N. Engl. J. Med. 373, 8–9 (2015).

    CAS  PubMed  Google Scholar 

  18. Bishop, F. L. et al. What techniques might be used to harness placebo effects in non-malignant pain? A literature review and survey to develop a taxonomy. BMJ Open 7, e015516 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Beecher, H. K. The powerful placebo. J. Am. Med. Assoc. 159, 1602–1606 (1955).

    CAS  PubMed  Google Scholar 

  20. Häuser, W., Hansen, E. & Enck, P. Nocebo phenomena in medicine: their relevance in everyday clinical practice. Dtsch. Ärztebl. Int. 109, 459 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Kravvariti, E., Kitas, G. D., Mitsikostas, D. D. & Sfikakis, P. P. Nocebos in rheumatology: emerging concepts and their implications for clinical practice. Nat. Rev. Rheumatol. 14, 727–740 (2018).

    PubMed  Google Scholar 

  22. Colagiuri, B., Schenk, L. A., Kessler, M. D., Dorsey, S. G. & Colloca, L. The placebo effect: from concepts to genes. Neuroscience 307, 171–190 (2015).

    CAS  PubMed  Google Scholar 

  23. Fields, H. L. & Levine, J. D. Placebo analgesia — a role for endorphins? Trends Neurosci. 7, 271–273 (1984).

    CAS  Google Scholar 

  24. Peciña, M., Heffernan, J., Wilson, J., Zubieta, J. & Dombrovski, A. Prefrontal expectancy and reinforcement-driven antidepressant placebo effects. Transl. Psychiatry 8, 1–11 (2018).

    Google Scholar 

  25. Mostafaei, H. et al. Nocebo response in the pharmacological management of overactive bladder: a systematic review and meta-analysis. Eur. Urol. Focus 7, 1143–1153 (2020).

    PubMed  Google Scholar 

  26. Colloca, L. & Miller, F. G. Harnessing the placebo effect: the need for translational research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1922–1930 (2011).

    Google Scholar 

  27. Hróbjartsson, A. & Gøtzsche, P. C. Placebo interventions for all clinical conditions (2010 update). Cochrane Database Syst. Rev. 2010, CD003974 (2010).

    PubMed Central  Google Scholar 

  28. Hróbjartsson, A. & Gøtzsche, P. C. Is the placebo powerless? Update of a systematic review with 52 new randomized trials comparing placebo with no treatment. J. Intern. Med. 256, 91–100 (2004).

    PubMed  Google Scholar 

  29. Barnett, A. G., Van Der Pols, J. C. & Dobson, A. J. Regression to the mean: what it is and how to deal with it. Int. J. Epidemiol. 34, 215–220 (2005).

    PubMed  Google Scholar 

  30. Kienle, G. S. & Kiene, H. The powerful placebo effect: fact or fiction? J. Clin. Epidemiol. 50, 1311–1318 (1997).

    CAS  PubMed  Google Scholar 

  31. Hróbjartsson, A. & Gøtzsche, P. C. Placebo interventions for all clinical conditions. Cochrane Database Syst. Rev. 2004, CD003974 (2004).

    Google Scholar 

  32. Benedetti, F., Lanotte, M., Lopiano, L. & Colloca, L. When words are painful: unraveling the mechanisms of the nocebo effect. Neuroscience 147, 260–271 (2007).

    CAS  PubMed  Google Scholar 

  33. Kong, J. et al. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J. Neurosci. 28, 13354–13362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nolan, T. The placebo effect in general practice. InnovAiT 12, 404–407 (2019).

    Google Scholar 

  35. Wells, R. E. & Kaptchuk, T. J. To tell the truth, the whole truth, may do patients harm: the problem of the nocebo effect for informed consent. Am. J. Bioeth. 12, 22–29 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Tyrer, P., Eilenberg, T., Fink, P., Hedman, E. & Tyrer, H. Health anxiety: the silent, disabling epidemic. BMJ 353, i2250 (2016).

    PubMed  Google Scholar 

  37. Planès, S., Villier, C. & Mallaret, M. The nocebo effect of drugs. Pharm. Res. Perspect. 4, e00208 (2016).

    Google Scholar 

  38. Cohen, S. The nocebo effect of informed consent. Bioethics 28, 147–154 (2014).

    PubMed  Google Scholar 

  39. Ockene, J. K. et al. Symptom experience after discontinuing use of estrogen plus progestin. JAMA 294, 183–193 (2005).

    CAS  PubMed  Google Scholar 

  40. Vase, L., Robinson, M. E., Verne, G. N. & Price, D. D. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients: an empirical investigation. Pain 105, 17–25 (2003).

    PubMed  Google Scholar 

  41. Price, D. D. et al. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83, 147–156 (1999).

    CAS  PubMed  Google Scholar 

  42. Benedetti, F., Arduino, C. & Amanzio, M. Somatotopic activation of opioid systems by target-directed expectations of analgesia. J. Neurosci. 19, 3639–3648 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Goebel, M. U. et al. Behavioral conditioning of immunosuppression is possible in humans. FASEB J. 16, 1869–1873 (2002).

    CAS  PubMed  Google Scholar 

  44. Benedetti, F. et al. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23, 4315–4323 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Petrie, K. J. & Rief, W. Psychobiological mechanisms of placebo and nocebo effects: pathways to improve treatments and reduce side effects. Annu. Rev. Psychol. 70, 599–625 (2019).

    PubMed  Google Scholar 

  46. Bąbel, P. Classical conditioning as a distinct mechanism of placebo effects. Front. Psychiatry 10, 449 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Schedlowski, M., Enck, P., Rief, W. & Bingel, U. Neuro-bio-behavioral mechanisms of placebo and nocebo responses: implications for clinical trials and clinical practice. Pharmacol. Rev. 67, 697–730 (2015).

    PubMed  Google Scholar 

  48. Colloca, L. & Finniss, D. Nocebo effects, patient-clinician communication, and therapeutic outcomes. JAMA 307, 567–568 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Nestoriuc, Y., Orav, E. J., Liang, M. H., Horne, R. & Barsky, A. J. Prediction of nonspecific side effects in rheumatoid arthritis patients by beliefs about medicines. Arthritis Care Res. 62, 791–799 (2010).

    Google Scholar 

  50. Papadopoulos, D. & Mitsikostas, D. Nocebo effects in multiple sclerosis trials: a meta-analysis. Mult. Scler. J. 16, 816–828 (2010).

    CAS  Google Scholar 

  51. He, J., Morales, D. R. & Guthrie, B. Exclusion rates in randomized controlled trials of treatments for physical conditions: a systematic review. Trials 21, 1–11 (2020).

    Google Scholar 

  52. Jensen, J. S., Bielefeldt, A. Ø. & Hróbjartsson, A. Active placebo control groups of pharmacological interventions were rarely used but merited serious consideration: a methodological overview. J. Clin. Epidemiol. 87, 35–46 (2017).

    PubMed  Google Scholar 

  53. Faria, V. et al. Do you believe it? Verbal suggestions influence the clinical and neural effects of escitalopram in social anxiety disorder: a randomized trial. EBioMedicine 24, 179–188 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Colloca, L., Lopiano, L., Lanotte, M. & Benedetti, F. Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurol. 3, 679–684 (2013).

    Google Scholar 

  55. Santana, L. & Fontenelle, L. F. A review of studies concerning treatment adherence of patients with anxiety disorders. Patient Prefer. Adherence 5, 427–439 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Chaliha, C. & Stanton, S. The ethnic cultural and social aspects of incontinence — a pilot study. Int. Urogynecol. J. 10, 166–170 (1999).

    CAS  Google Scholar 

  57. Greville-Harris, M. & Dieppe, P. Bad is more powerful than good: the nocebo response in medical consultations. Am. J. Med. 128, 126–129 (2015).

    PubMed  Google Scholar 

  58. van Leeuwen, J. H. S., Castro, R., Busse, M. & Bemelmans, B. L. The placebo effect in the pharmacologic treatment of patients with lower urinary tract symptoms. Eur. Urol. 50, 440–453 (2006).

    PubMed  Google Scholar 

  59. Enck, P., Bingel, U., Schedlowski, M. & Rief, W. The placebo response in medicine: minimize, maximize or personalize? Nat. Rev. Drug Discov. 12, 191 (2013).

    CAS  PubMed  Google Scholar 

  60. Colloca, L., Sigaudo, M. & Benedetti, F. The role of learning in nocebo and placebo effects. Pain 136, 211–218 (2008).

    CAS  PubMed  Google Scholar 

  61. Mondaini, N. et al. Finasteride 5 mg and sexual side effects: how many of these are related to a nocebo phenomenon? J. Sex. Med. 4, 1708–1712 (2007).

    PubMed  Google Scholar 

  62. Many sexual adverse effects of finasteride are attributable to a nocebo effect. Nat. Clin. Pract. Urol. 5, 66–66 (2008).

  63. Walsh, J. J. Old-Time Makers of Medicine: The Story of The Students And Teachers of the Sciences Related to Medicine During the Middle Ages (Good Press, 2019).

  64. Gliedman, L. H., Gantt, W. H. & Teitelbaum, H. A. Some implications of conditional reflex studies for placebo research. Am. J. Psychiatry 113, 1103–1107 (1957).

    CAS  PubMed  Google Scholar 

  65. Kurland, A. A. The drug placebo — its psychodynamic and conditional reflex action. Behav. Sci. 2, 101–110 (1957).

    Google Scholar 

  66. Pavlov, I. P. & Anrep, G. V. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).

  67. Lang, W. & Rand, M. A placebo response as a conditional reflex to glyceryl trinitrate. Med. J. Aust. 1, 12–14 (1969).

    Google Scholar 

  68. Kirsch, I. & Heap, M. Hypnosis: Theory, Research and Application (Routledge, 2017).

  69. Kirsch, I. Response expectancy as a determinant of experience and behavior. Am. Psychol. 40, 1189 (1985).

    Google Scholar 

  70. Kirsch, I. & Weixel, L. J. Double-blind versus deceptive administration of a placebo. Behav. Neurosci. 102, 319 (1988).

    CAS  PubMed  Google Scholar 

  71. Bąbel, P. et al. How classical conditioning shapes placebo analgesia: hidden versus open conditioning. Pain. Med. 19, 1156–1169 (2018).

    PubMed  Google Scholar 

  72. Bąbel, P. et al. Classical conditioning without verbal suggestions elicits placebo analgesia and nocebo hyperalgesia. PLoS ONE 12, e0181856 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Manchikanti, L., Giordano, J., Fellows, B. & Hirsch, J. A. Placebo and nocebo in interventional pain management: a friend or a foe-or simply foes. Pain. Phys. 14, E157–E175 (2011).

    Google Scholar 

  74. Wager, T. D. et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

    CAS  PubMed  Google Scholar 

  75. Amanzio, M., Benedetti, F., Porro, C. A., Palermo, S. & Cauda, F. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Mapp. 34, 738–752 (2013).

    PubMed  Google Scholar 

  76. Benedetti, F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84, 623–637 (2014).

    CAS  PubMed  Google Scholar 

  77. Blok, B. F. Central pathways controlling micturition and urinary continence. Urology 59, 13–17 (2002).

    PubMed  Google Scholar 

  78. Benedetti, F. Placebo Effects (Oxford University Press, USA, 2014).

  79. Colloca, L., Flaten, M. A. & Meissner, K. Placebo and Pain: from Bench to Bedside (Academic Press, 2013).

  80. Holstege, G. The emotional motor system and micturition control. Neurourol. Urodyn. 29, 42–48 (2010).

    PubMed  Google Scholar 

  81. Blok, B. F. & Holstege, G. Direct projections from the periaqueductal gray to the pontine micturition center (M-region). An anterograde and retrograde tracing study in the cat. Neurosci. Lett. 166, 93–96 (1994).

    CAS  PubMed  Google Scholar 

  82. Yoshimura, N. et al. Therapeutic receptor targets for lower urinary tract dysfunction. Naunyn Schmiedebergs Arch. Pharmacol. 377, 437–448 (2008).

    CAS  PubMed  Google Scholar 

  83. Andersson, K.-E. & Gratzke, C. in Textbook of the Neurogenic Bladder 95–114 (CRC Press, 2008).

  84. De la Fuente-Fernández, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293, 1164–1166 (2001).

    PubMed  Google Scholar 

  85. de la Fuente-Fernández, R., Schulzer, M. & Stoessl, A. J. Placebo mechanisms and reward circuitry: clues from Parkinson’s disease. Biol. Psychiatry 56, 67–71 (2004).

    PubMed  Google Scholar 

  86. Van der Aa, F., Ost, D. & De Ridder, D. J. M. K. Interstitial cells of the bladder: the missing link? BJOG 111, 57–60 (2004).

    PubMed  Google Scholar 

  87. Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484–494 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Levine, J., Gordon, N. & Fields, H. The mechanism of placebo analgesia. Lancet 312, 654–657 (1978).

    Google Scholar 

  89. Benedetti, F. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64, 535–543 (1996).

    CAS  PubMed  Google Scholar 

  90. Pertwee, R. G. & Fernando, S. R. Evidence for the presence of cannabinoid CB1 receptors in mouse urinary bladder. Br. J. Pharmacol. 118, 2053–2058 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Freeman, R. et al. The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int. Urogynecol. J. 17, 636–641 (2006).

    CAS  Google Scholar 

  92. Vase, L. & Wartolowska, K. Pain, placebo, and test of treatment efficacy: a narrative review. Br. J. Anaesth. 123, e254–e262 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Benedetti, F. & Amanzio, M. Mechanisms of the placebo response. Pulm. Pharmacol. Ther. 26, 520–523 (2013).

    CAS  PubMed  Google Scholar 

  94. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A. & Maggi, G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135–140 (1997).

    CAS  PubMed  Google Scholar 

  95. Galton, F. Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Gt. Br. Irel. 15, 246–263 (1886).

    Google Scholar 

  96. Sech, S. M. et al. The so-called “placebo effect” in benign prostatic hyperplasia treatment trials represents partially a conditional regression to the mean induced by censoring. Urology 51, 242–250 (1998).

    CAS  PubMed  Google Scholar 

  97. Chapple, C. What is new in functional urology? Eur. Urol. Focus. 5, 307–309 (2019).

    PubMed  Google Scholar 

  98. Haylen, B. T. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodynam. 29, 4–20 (2010).

    Google Scholar 

  99. Coyne, K. S. et al. National community prevalence of overactive bladder in the United States stratified by sex and age. Urology 77, 1081–1087 (2011).

    PubMed  Google Scholar 

  100. Irwin, D. E. et al. Understanding the elements of overactive bladder: questions raised by the EPIC study. BJU Int. 101, 1381–1387 (2008).

    PubMed  Google Scholar 

  101. Stewart, W. et al. Prevalence and burden of overactive bladder in the United States. World J. Urol. 20, 327–336 (2003).

    CAS  PubMed  Google Scholar 

  102. Milsom, I. et al. How widespread are the symptoms of an overactive bladder and how are they managed? A population-based prevalence study. BJU Int. 87, 760–766 (2001).

    CAS  PubMed  Google Scholar 

  103. Eapen, R. S. & Radomski, S. B. Review of the epidemiology of overactive bladder. Res. Rep. Urol. 8, 71 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Andersson, K.-E. The overactive bladder: pharmacologic basis of drug treatment. Urology 50, 74–84 (1997).

    CAS  PubMed  Google Scholar 

  105. Robinson, D. & Cardozo, L. Managing overactive bladder. Climacteric 22, 250–256 (2019).

    CAS  PubMed  Google Scholar 

  106. Yamaguchi, O. et al. Randomized, double-blind, placebo- and propiverine-controlled trial of the once-daily antimuscarinic agent solifenacin in Japanese patients with overactive bladder. BJU Int. 100, 579–587 (2007).

    CAS  PubMed  Google Scholar 

  107. Shin, D. G. et al. Mirabegron as a treatment for overactive bladder symptoms in men (MIRACLE study): efficacy and safety results from a multicenter, randomized, double-blind, placebo-controlled, parallel comparison phase IV study. Neurourol. Urodyn. 38, 295–304 (2019).

    CAS  PubMed  Google Scholar 

  108. Cruz, F. et al. Efficacy and safety of onabotulinumtoxinA in patients with urinary incontinence due to neurogenic detrusor overactivity: a randomised, double-blind, placebo-controlled trial. Eur. Urol. 60, 742–750 (2011).

    CAS  PubMed  Google Scholar 

  109. Mostafaei, H. et al. Placebo response in patients with oral therapy for overactive bladder: a systematic review and meta-analysis. Eur. Urol. Focus https://doi.org/10.1016/j.euf.2021.02.005 (2021).

    Article  PubMed  Google Scholar 

  110. Sand, P. K., Dmochowski, R. R., Reddy, J. & van der Meulen, E. A. Efficacy and safety of low dose desmopressin orally disintegrating tablet in women with nocturia: results of a multicenter, randomized, double-blind, placebo controlled, parallel group study. J. Urol. 190, 958–964 (2013).

    CAS  PubMed  Google Scholar 

  111. Johnson, T. M. et al. Changes in nocturia from medical treatment of benign prostatic hyperplasia: secondary analysis of the Department of Veterans Affairs Cooperative Study Trial. J. Urol. 170, 145–148 (2003).

    PubMed  Google Scholar 

  112. Blaivas, J. G. et al. Overactive bladder phenotypes: development and preliminary data. Can. J. Urol. 28, 10699–10704 (2021).

    PubMed  Google Scholar 

  113. Herschorn, S., Chapple, C. R., Snijder, R., Siddiqui, E. & Cardozo, L. Could reduced fluid intake cause the placebo effect seen in overactive bladder clinical trials? Analysis of a large solifenacin integrated database. Urology 106, 55–59 (2017).

    PubMed  Google Scholar 

  114. Baines, G., Araklitis, G., Flint, R., Robinson, D. & Cardozo, L. What affects the placebo effect? Eur. J. Obstet. Gynecol. Reprod. Biol. 246, 134–137 (2020).

    PubMed  Google Scholar 

  115. Avery, J. C., Braunack-Mayer, A. J., Stocks, N. P., Taylor, A. & Duggan, P. Psychological Perspectives in Urinary Incontinence: a Metasynthesis (OA Women’s Health, 2013).

  116. Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108, 1132–1138 (2011).

    PubMed  Google Scholar 

  117. Milsom, I. & Gyhagen, M. The prevalence of urinary incontinence. Climacteric 22, 217–222 (2019).

    CAS  PubMed  Google Scholar 

  118. Mostafaei, H. et al. Prevalence of female urinary incontinence in the developing world: a systematic review and meta-analysis — a report from the Developing World Committee of the International Continence Society and Iranian Research Center for Evidence Based Medicine. Neurourol. Urodyn. 39, 1063–1086 (2020).

    PubMed  Google Scholar 

  119. Wilson, L., Brown, J. S., Shin, G. P., Luc, K.-O. & Subak, L. L. Annual direct cost of urinary incontinence. Obstet. Gynecol. 98, 398–406 (2001).

    CAS  PubMed  Google Scholar 

  120. Ganz, M. L. et al. Economic costs of overactive bladder in the United States. Urology 75, 526–532 (2010).

    PubMed  Google Scholar 

  121. D’Ancona, C. et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. Neurourol. Urodyn. 38, 433–477 (2019).

    PubMed  Google Scholar 

  122. Abrams, P. et al. 6th International Consultation on Incontinence. Recommendations of the International Scientific Committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse and faecal incontinence. Neurourol. Urodyn. 37, 2271–2272 (2018).

    PubMed  Google Scholar 

  123. Yalcin, I. & Bump, R. C. The effect of previous treatment experience and incontinence severity on the placebo response of stress urinary incontinence. Am. J. Obstet. Gynecol. 191, 194–197 (2004).

    PubMed  Google Scholar 

  124. Klarskov, N., Darekar, A., Scholfield, D., Whelan, L. & Lose, G. Effect of fesoterodine on urethral closure function in women with stress urinary incontinence assessed by urethral pressure reflectometry. Int. Urogynecol. J. 25, 755–760 (2014).

    PubMed  Google Scholar 

  125. Blaganje, M. et al. Non-ablative Er: YAG laser therapy effect on stress urinary incontinence related to quality of life and sexual function: a randomized controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 224, 153–158 (2018).

    PubMed  Google Scholar 

  126. Li, J. et al. The role of duloxetine in stress urinary incontinence: a systematic review and meta-analysis. Int. Urol. Nephrol. 45, 679–686 (2013).

    CAS  PubMed  Google Scholar 

  127. Parish, S. J. et al. Toward a more evidence-based nosology and nomenclature for female sexual dysfunctions — part II. J. Sex. Med. 13, 1888–1906 (2016).

    PubMed  Google Scholar 

  128. Laumann, E. O., Paik, A. & Rosen, R. C. Sexual dysfunction in the United States: prevalence and predictors. JAMA 281, 537–544 (1999).

    CAS  PubMed  Google Scholar 

  129. Basson, R. et al. Report of the international consensus development conference on female sexual dysfunction: definitions and classifications. J. Urol. 163, 888–893 (2000).

    CAS  PubMed  Google Scholar 

  130. Bradford, A. & Meston, C. Correlates of placebo response in the treatment of sexual dysfunction in women: a preliminary report. J. Sex. Med. 4, 1345–1351 (2007).

    PubMed  PubMed Central  Google Scholar 

  131. Modelska, K. & Cummings, S. Female sexual dysfunction in postmenopausal women: systematic review of placebo-controlled trials. Am. J. Obstet. Gynecol. 188, 286–293 (2003).

    CAS  PubMed  Google Scholar 

  132. Weinberger, J. M. et al. Female sexual dysfunction and the placebo effect: a meta-analysis. Obstet. Gynecol. 132, 453–458 (2018).

    PubMed  Google Scholar 

  133. Wiegel, M., Meston, C. & Rosen, R. The female sexual function index (FSFI): cross-validation and development of clinical cutoff scores. J. Sex. Marital. Ther. 31, 1–20 (2005).

    PubMed  Google Scholar 

  134. Bradford, A. & Meston, C. M. Behavior and symptom change among women treated with placebo for sexual dysfunction. J. Sex. Med. 8, 191–201 (2011).

    PubMed  Google Scholar 

  135. Bradford, A. Listening to placebo in clinical trials for female sexual dysfunction. J. Sex. Med. 10, 451–459 (2013).

    PubMed  Google Scholar 

  136. DeRogatis, L. R. & Burnett, A. L. The epidemiology of sexual dysfunctions. J. Sex. Med. 5, 289–300 (2008).

    PubMed  Google Scholar 

  137. Gur, S. et al. Update on drug interactions with phosphodiesterase-5 inhibitors prescribed as first-line therapy for patients with erectile dysfunction or pulmonary hypertension. Curr. Drug Metab. 14, 265–269 (2013).

    CAS  PubMed  Google Scholar 

  138. Swearingen, D., Nehra, A., Morelos, S. & Peterson, C. A. Hemodynamic effect of avanafil and glyceryl trinitrate coadministration. Drugs Context 2013, 212248 (2013).

    PubMed  PubMed Central  Google Scholar 

  139. De Araujo, A. C. et al. The management of erectile dysfunction with placebo only: does it work? J. Sex. Med. 6, 3440–3448 (2009).

    PubMed  Google Scholar 

  140. Seidman, S. N., Roose, S. P., Menza, M. A., Shabsigh, R. & Rosen, R. C. Treatment of erectile dysfunction in men with depressive symptoms: results of a placebo-controlled trial with sildenafil citrate. Am. J. Psychiatry 158, 1623–1630 (2001).

    CAS  PubMed  Google Scholar 

  141. Mulhall, J. P., Carlsson, M., Stecher, V. & Tseng, L.-J. Predictors of erectile function normalization in men with erectile dysfunction treated with placebo. J. Sex. Med. 15, 866–872 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Stridh, A. et al. Placebo responses among men with erectile dysfunction enrolled in phosphodiesterase 5 inhibitor trials: a systematic review and meta-analysis. JAMA Netw. Open 3, e201423–e201423 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Melnik, T. & Abdo, C. H. Psychogenic erectile dysfunction: comparative study of three therapeutic approaches. J. Sex. Marital. Ther. 31, 243–255 (2005).

    PubMed  Google Scholar 

  144. Faasse, K., Martin, L. R., Grey, A., Gamble, G. & Petrie, K. J. Impact of brand or generic labeling on medication effectiveness and side effects. Health Psychol. 35, 187 (2016).

    PubMed  Google Scholar 

  145. Konkle, K. S. et al. Comparison of an interstitial cystitis/bladder pain syndrome clinical cohort with symptomatic community women from the RAND Interstitial Cystitis Epidemiology study. J. Urol. 187, 508–512 (2012).

    PubMed  Google Scholar 

  146. Nigro, D. A. et al. Associations among cystoscopic and urodynamic findings for women enrolled in the Interstitial Cystitis Data Base (ICDB) Study. Urology 49, 86–92 (1997).

    CAS  PubMed  Google Scholar 

  147. Nickel, J. C. Interstitial cystitis: characterization and management of an enigmatic urologic syndrome. Rev. Urol. 4, 112 (2002).

    PubMed  PubMed Central  Google Scholar 

  148. Nickel, J. C. & Moldwin, R. FDA BRUDAC 2018 Criteria for Interstitial Cystitis/Bladder Pain Syndrome Clinical Trials: future direction for research. J. Urol. 200, 39–42 (2018).

    PubMed  Google Scholar 

  149. Hunner, G. L. A rare type of bladder ulcer in women; report of cases. Boston Med. Surgical J. 172, 660–664 (1915).

    Google Scholar 

  150. Hanno, P. International Consultation on IC-Rome, September 2004/Forging an International Consensus: progress in painful bladder syndrome/interstitial cystitis. Int. Urogynecol. J. 16, S2 (2005).

    Google Scholar 

  151. Doggweiler, R. et al. A standard for terminology in chronic pelvic pain syndromes: a report from the chronic pelvic pain working group of the International Continence Society. Neurourol. Urodyn. 36, 984–1008 (2017).

    PubMed  Google Scholar 

  152. Berry, S. H. et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J. Urol. 186, 540–544 (2011).

    PubMed  PubMed Central  Google Scholar 

  153. Parsons, C. L. et al. The prevalence of interstitial cystitis in gynecologic patients with pelvic pain, as detected by intravesical potassium sensitivity. Am. J. Obstet. Gynecol. 187, 1395–1400 (2002).

    PubMed  Google Scholar 

  154. Sant, G. R. Etiology, pathogenesis, and diagnosis of interstitial cystitis. Rev. Urol. 4, S9 (2002).

    PubMed  PubMed Central  Google Scholar 

  155. Foster, H. E. et al. Effect of amitriptyline on symptoms in treatment naive patients with interstitial cystitis/painful bladder syndrome. J. Urol. 183, 1853–1858 (2010).

    PubMed  PubMed Central  Google Scholar 

  156. van Ophoven, A., Vonde, K., Koch, W., Auerbach, G. & Maag, K. P. Efficacy of pentosan polysulfate for the treatment of interstitial cystitis/bladder pain syndrome: results of a systematic review of randomized controlled trials. Curr. Med. Res. Opin. 35, 1495–1503 (2019).

    PubMed  Google Scholar 

  157. Nickel, J. C. et al. Pentosan polysulfate sodium for treatment of interstitial cystitis/bladder pain syndrome: insights from a randomized, double-blind, placebo controlled study. J. Urol. 193, 857–862 (2015).

    CAS  PubMed  Google Scholar 

  158. Bosch, P. C. Examination of the significant placebo effect in the treatment of interstitial cystitis/bladder pain syndrome. Urology 84, 321–326 (2014).

    PubMed  Google Scholar 

  159. Kuo, H. C., Jiang, Y. H., Tsai, Y. C. & Kuo, Y. C. Intravesical botulinum toxin‐A injections reduce bladder pain of interstitial cystitis/bladder pain syndrome refractory to conventional treatment–a prospective, multicenter, randomized, double-blind, placebo-controlled clinical trial. Neurourol. Urodyn. 35, 609–614 (2016).

    CAS  PubMed  Google Scholar 

  160. Pinto, R. A. et al. Intratrigonal onabotulinumtoxinA improves bladder symptoms and quality of life in patients with bladder pain syndrome/interstitial cystitis: a pilot, single center, randomized, double-blind, placebo controlled trial. J. Urol. 199, 998–1003 (2018).

    CAS  PubMed  Google Scholar 

  161. Lai, H. H. Clinical trials: placebo effects in interstitial cystitis/bladder pain syndrome. Nat. Rev. Urol. 11, 494 (2014).

    PubMed  Google Scholar 

  162. Coyne, K. S. et al. The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the Epidemiology of LUTS (EpiLUTS) study. BJU Int. 104, 352–360 (2009).

    PubMed  Google Scholar 

  163. Kupelian, V. et al. Prevalence of lower urinary tract symptoms and effect on quality of life in a racially and ethnically diverse random sample: the Boston Area Community Health (BACH) Survey. Arch. Intern. Med. 166, 2381–2387 (2006).

    PubMed  Google Scholar 

  164. Martin, S. A., Haren, M. T., Marshall, V. R., Lange, K. & Wittert, G. A. Prevalence and factors associated with uncomplicated storage and voiding lower urinary tract symptoms in community-dwelling Australian men. World J. Urol. 29, 179–184 (2011).

    PubMed  Google Scholar 

  165. Abrams, P. et al. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology 61, 37–49 (2003).

    PubMed  Google Scholar 

  166. Gratzke, C. et al. EAU guidelines on the assessment of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur. Urol. 67, 1099–1109 (2015).

    PubMed  Google Scholar 

  167. Brasure, M. et al. Newer Medications for Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: A Review (Agency for Healthcare Research and Quality 2016).

  168. Meng, J. et al. Age, height, BMI and FBG predict prostate volume in ageing benign prostatic hyperplasia: evidence from 5285 patients. Int. J. Clin. Pract. 73, e13438 (2019).

    CAS  Google Scholar 

  169. Zhang, W. et al. Prevalence of lower urinary tract symptoms suggestive of benign prostatic hyperplasia (LUTS/BPH) in China: results from the China Health and Retirement Longitudinal Study. BMJ Open 9, e022792 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Vuichoud, C. & Loughlin, K. R. Benign prostatic hyperplasia: epidemiology, economics and evaluation. Can. J. Urol. 22, 1–6 (2015).

    PubMed  Google Scholar 

  171. Sorokin, I., Schatz, A. & Welliver, C. Placebo medication and sham surgery responses in benign prostatic hyperplasia treatments: implications for clinical trials. Curr. Urol. Rep. 16, 73 (2015).

    PubMed  Google Scholar 

  172. Barry, M. J. et al. Benign prostatic hyperplasia specific health status measures in clinical research: how much change in the American Urological Association symptom index and the benign prostatic hyperplasia impact index is perceptible to patients? J. Urol. 154, 1770–1774 (1995).

    CAS  PubMed  Google Scholar 

  173. McConnell, J. D. et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N. Engl. J. Med. 349, 2387–2398 (2003).

    CAS  PubMed  Google Scholar 

  174. Kirby, R. S. et al. Efficacy and tolerability of doxazosin and finasteride, alone or in combination, in treatment of symptomatic benign prostatic hyperplasia: the Prospective European Doxazosin and Combination Therapy (PREDICT) trial. Urology 61, 119–126 (2003).

    PubMed  Google Scholar 

  175. Lepor, H. et al. The efficacy of terazosin, finasteride, or both in benign prostatic hyperplasia. N. Engl. J. Med. 335, 533–540 (1996).

    CAS  PubMed  Google Scholar 

  176. Byrnes, C. A. et al. Efficacy, tolerability, and effect on health-related quality of life of finasteride versus placebo in men with symptomatic benign prostatic hyperplasia: a community-based study. Clin. Ther. 17, 956–969 (1995).

    CAS  PubMed  Google Scholar 

  177. Nickel, J. C. et al. Efficacy and safety of finasteride therapy for benign prostatic hyperplasia: results of a 2-year randomized controlled trial (the PROSPECT study). PROscar Safety Plus Efficacy Canadian Two year Study. CMAJ 155, 1251 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Nickel, J. Placebo therapy of benign prostatic hyperplasia: a 25-month study. Canadian PROSPECT Study Group. Br. J. Urol. 81, 383–387 (1998).

    CAS  PubMed  Google Scholar 

  179. Roehrborn, C. G. et al. The prostatic urethral lift for the treatment of lower urinary tract symptoms associated with prostate enlargement due to benign prostatic hyperplasia: the LIFT Study. J. Urol. 190, 2161–2167 (2013).

    PubMed  Google Scholar 

  180. Porst, H. et al. Efficacy and safety of tadalafil 5 mg once daily for lower urinary tract symptoms suggestive of benign prostatic hyperplasia: subgroup analyses of pooled data from 4 multinational, randomized, placebo-controlled clinical studies. Urology 82, 667–673 (2013).

    PubMed  Google Scholar 

  181. Regadas, R. P. et al. Urodynamic effects of the combination of tamsulosin and daily tadalafil in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia: a randomized, placebo-controlled clinical trial. Int. Urol. Nephrol. 45, 39–43 (2013).

    CAS  PubMed  Google Scholar 

  182. Eredics, K., Madersbacher, S. & Schauer, I. A relevant midterm (12 months) placebo effect on lower urinary tract symptoms and maximum flow rate in male lower urinary tract symptom and benign prostatic hyperplasia — a meta-analysis. Urology 106, 160–166 (2017).

    PubMed  Google Scholar 

  183. Zimmern, P. Medical treatment modalities for lower urinary tract symptoms: what are the relevant differences in randomised controlled trials? Eur. Urol. 38, 18–24 (2000).

    PubMed  Google Scholar 

  184. Enck, P. & Klosterhalfen, S. Does sex/gender play a role in placebo and nocebo effects? Conflicting evidence from clinical trials and experimental studies. Front. Neurosci. 13, 160 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Vambheim, S. M. & Flaten, M. A. A systematic review of sex differences in the placebo and the nocebo effect. J. Pain. Res. 10, 1831 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Liccardi, G. et al. Evaluation of the nocebo effect during oral challenge in patients with adverse drug reactions. J. Investig. Allergol. Clin. Immunol. 14, 104–107 (2004).

    CAS  PubMed  Google Scholar 

  187. Colloca, L., Pine, D. S., Ernst, M., Miller, F. G. & Grillon, C. Vasopressin boosts placebo analgesic effects in women: a randomized trial. Biol. Psychiatry 79, 794–802 (2016).

    CAS  PubMed  Google Scholar 

  188. Siegel, S. Drug tolerance, drug addiction, and drug anticipation. Curr. Direct Psychol. Sci. 14, 296–300 (2005).

    Google Scholar 

  189. Weimer, K., Colloca, L. & Enck, P. Age and sex as moderators of the placebo response — an evaluation of systematic reviews and meta-analyses across medicine. Gerontology 61, 97–108 (2015).

    PubMed  Google Scholar 

  190. Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis (Routledge, 2013).

  191. Tufanaru, C. What’s in a name: ‘significant’ results? JBI Evid. Synth. 13, 1–3 (2015).

    Google Scholar 

  192. Rai, S. K., Yazdany, J., Fortin, P. R. & Aviña-Zubieta, J. A. Approaches for estimating minimal clinically important differences in systemic lupus erythematosus. Arthritis Res. Ther. 17, 143 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Copay, A. G., Subach, B. R., Glassman, S. D., Polly, D. W. Jr & Schuler, T. C. Understanding the minimum clinically important difference: a review of concepts and methods. Spine J. 7, 541–546 (2007).

    PubMed  Google Scholar 

  194. Wyrwich, K. W., Tierney, W. M. & Wolinsky, F. D. Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J. Clin. Epidemiol. 52, 861–873 (1999).

    CAS  PubMed  Google Scholar 

  195. Jacobson, N. S., Follette, W. C. & Revenstorf, D. Psychotherapy outcome research: methods for reporting variability and evaluating clinical significance. Behav. Ther. 15, 336–352 (1984).

    Google Scholar 

  196. Jacobson, N. S., Follette, W. C. & Revenstorf, D. Toward a standard definition of clinically significant change. Behav. Ther. 17, 308–311 (1986).

    Google Scholar 

  197. Black, N. et al. Consensus development methods: a review of best practice in creating clinical guidelines. J. Health Serv. Res. Policy 4, 236–248 (1999).

    CAS  PubMed  Google Scholar 

  198. McKenna, H. P. The Delphi technique: a worthwhile research approach for nursing? J. Adv. Nurs. 19, 1221–1225 (1994).

    CAS  PubMed  Google Scholar 

  199. Lim, R., Liong, M. L., Lim, K. K., Leong, W. S. & Yuen, K. H. The minimum clinically important difference of the International Consultation on Incontinence Questionnaires (ICIQ-UI SF and ICIQ-LUTSqol). Urology 133, 91–95 (2019).

    PubMed  Google Scholar 

  200. Fuller, T. W., Ristau, B. T., Tepe, S. M. & Benoit, R. M. Characterizing clinically meaningful changes in lower urinary tract symptoms using the American Urological Association symptom index. Urology 115, 139–143 (2018).

    PubMed  Google Scholar 

  201. Barsky, A. J., Saintfort, R., Rogers, M. P. & Borus, J. F. Nonspecific medication side effects and the nocebo phenomenon. JAMA 287, 622–627 (2002).

    PubMed  Google Scholar 

  202. Petrie, K. J., Cameron, L. D., Ellis, C. J., Buick, D. & Weinman, J. Changing illness perceptions after myocardial infarction: an early intervention randomized controlled trial. Psychosom. Med. 64, 580–586 (2002).

    PubMed  Google Scholar 

  203. Kaptchuk, T. J. et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336, 999–1003 (2008).

    PubMed  PubMed Central  Google Scholar 

  204. Petrie, K. J. et al. Effect of providing information about normal test results on patients’ reassurance: randomised controlled trial. BMJ 334, 352 (2007).

    PubMed  PubMed Central  Google Scholar 

  205. Eikelboom, R. & Stewart, J. Conditioning of drug-induced physiological responses. Psychol. Rev. 89, 507 (1982).

    CAS  PubMed  Google Scholar 

  206. Brody, H. The lie that heals: the ethics of giving placebos. Ann. Intern. Med. 97, 112–118 (1982).

    CAS  PubMed  Google Scholar 

  207. Schaefer, M., Sahin, T. & Berstecher, B. Why do open-label placebos work? A randomized controlled trial of an open-label placebo induction with and without extended information about the placebo effect in allergic rhinitis. PLoS ONE 13, e0192758 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Blease, C., Colloca, L. & Kaptchuk, T. J. Are open-label placebos ethical? Informed consent and ethical equivocations. Bioethics 30, 407–414 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. Charlesworth, J. E. et al. Effects of placebos without deception compared with no treatment: a systematic review and meta‐analysis. J. Evid. Based Med. 10, 97–107 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.M., S.J. and E.L. researched data for the article. H.M., K.M., F.Q., V.M.S., A.A., C.G.R., S.F.S. and S.H. made substantial contributions to discussions of content. H.M., G.L.C. and R.S.M. wrote the article. H.M., B.P., C.G.R., S.F.S. and S.H. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Shahrokh F. Shariat.

Ethics declarations

Competing interests

S.F.S. is an advisory board member and/or speaker for Astellas, AstraZeneca, Bayer, BMS, Cepheid, Ferring, Ipsen, Jansen, Lissy, MSD, Olympus, Pfizer, Pierre Fabre, Roche, Sanochemia, Sanofi and Wolff. C.G.R. is a consultant for GSK, Lilly, Procept, NxThera, Neotract and Sophiris and has previously received grants or research support from NxThera, Neotract, Procept and Astellas. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Linda Cardozo, Francisco Cruz and Gommert van Koeveringe for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Regression to the mean

Regression to the mean is a statistical term that indicates that if a variable from a population is extreme in the first measure it is likely that it will move to the mean (become less extreme) in the next measure.

Natural history

The natural history of a disease is the course of a disease from the beginning to resolution.

Symptom fluctuations

Symptom fluctuations are defined as a constantly changing symptom presentation between one level or another.

Classical conditioning

Classical conditioning is a behavioural process in which an unconditioned stimulus (such as food) is paired with a conditioned stimulus (such as a bell).

Hidden conditioning

Hidden conditioning is when the process of classical conditioning proceeds without the target individual noticing.

Open conditioning

Open conditioning is when the target of conditioning is aware of the process of classical conditioning.

Anchor-based method

The anchor-based method compares changes in scores with an ‘anchor’ as a reference. An anchor establishes whether the patient is better after treatment than baseline according to the patient’s own experience.

Distribution-based method

The distribution-based approach is a method of determining minimal clinically important changes. It relies on the variability of data and the statistical characteristics of estimates of magnitudes of change.

Delphi technique

The Delphi method is a process used to reach an agreement or decision by surveying a panel of experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafaei, H., Jilch, S., Carlin, G.L. et al. The placebo and nocebo effects in functional urology. Nat Rev Urol 19, 171–189 (2022). https://doi.org/10.1038/s41585-021-00545-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00545-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing