Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Simulating nature in sperm selection for assisted reproduction

Abstract

Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation — such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses — use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.

Key points

  • Conventional sperm selection methods use surrogate markers that do not reflect the fertilization competence of the selected sperm and might, therefore, result in fertilization failure.

  • Current assisted reproductive techniques (ARTs) bypass many of the natural sperm selection processes in the female reproductive tract (FRT). In particular, intracytoplasmic sperm injection (ICSI) bypasses all the selection processes and thus has increased risk of transferring fragmented DNA and genomic defects in sperm to the resulting child.

  • Multiple mechanisms to select the most fertilization-competent sperm have evolved within the FRT.

  • Sperm need to have a panel of molecules that enable appropriate interactions within the FRT and the cumulus–oocyte complex at the fertilization site for selection.

  • Sperm selection methods based on a single sperm characteristic or the simulation of one selection event in the reproductive tract are unlikely to be sufficient to isolate the most fertilization-competent sperm.

  • A microfluidic system replicating the FRT using multiple selection mechanisms will probably be the optimal tool for selecting the most fertilization-competent sperm for an ART.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo sperm selection mechanisms.
Fig. 2: Currently available sperm selection methods simulating the in vivo selection mechanisms within the female reproductive system.
Fig. 3: A proposed microfluidic platform for sperm selection based on multiple sperm characteristics and responses.

Similar content being viewed by others

References

  1. Croxatto, H. B. Physiology of gamete and embryo transport through the fallopian tube. Reprod. Biomed. Online 4, 160–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum. Reprod. Update 21, 711–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buckett, W. & Sierra, S. The management of unexplained infertility: an evidence-based guideline from the Canadian Fertility and Andrology Society. Reprod. Biomed. Online 39, 633–640 (2019).

    Article  PubMed  Google Scholar 

  5. Bosch, E. et al. ALWAYS ICSI? A SWOT analysis. J. Assist. Reprod. Genet. 37, 2081–2092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, L. N., Sasson, I. E., Sammel, M. D. & Dokras, A. Does intracytoplasmic sperm injection improve the fertilization rate and decrease the total fertilization failure rate in couples with well-defined unexplained infertility? A systematic review and meta-analysis. Fertil. Steril. 100, 704–711 (2013).

    Article  PubMed  Google Scholar 

  7. Silber, S. J. et al. Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum. Reprod. 9, 1705–1709 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Mazzilli, R. et al. Severe male factor in in vitro fertilization: definition, prevalence, and treatment. Asian J. Androl. https://doi.org/10.4103/aja.aja_53_21 (2021).

  9. Pereira, N., O’Neill, C., Lu, V., Rosenwaks, Z. & Palermo, G. D. The safety of intracytoplasmic sperm injection and long-term outcomes. Reproduction 154, F61–F70 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Grunewald, S. & Paasch, U. Sperm selection for ICSI using annexin V. Methods Mol. Biol. 927, 257–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Simon, L., Ge, S. Q. & Carrell, D. T. Sperm selection based on electrostatic charge. Methods Mol. Biol. 927, 269–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Albertini, D. F. et al. IVF, from the past to the future: the inheritance of the Capri Workshop Group. Hum. Reprod. Open. 2020, hoaa040 (2020).

    Article  Google Scholar 

  13. World Health Organization. WHO laboratory manual for the examination and processing of human semen 6th edn (WHO, 2010).

  14. Zini, A., Finelli, A., Phang, D. & Jarvi, K. Influence of semen processing technique on human sperm DNA integrity. Urology 56, 1081–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Younglai, E. V., Holt, D., Brown, P., Jurisicova, A. & Casper, R. F. Sperm swim-up techniques and DNA fragmentation. Hum. Reprod. 16, 1950–1953 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Borges, E. Jr. et al. Intracytoplasmic morphologically selected sperm injection outcomes: the role of sperm preparation techniques. J. Assist. Reprod. Genet. 30, 849–854 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta, S., Sekhon, L., Kim, Y. & Agarwal, A. The role of oxidative stress and antioxidants in assisted reproduction. Curr. Womens Health Rev. 6, 227–238 (2010).

    Article  CAS  Google Scholar 

  18. Tomlinson, M. J. et al. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum. Reprod. 16, 2160–2165 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Morrell, J. et al. Reduced senescence and retained nuclear DNA integrity in human spermatozoa prepared by density gradient centrifugation. J. Assist. Reprod. Genet. 21, 217–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karamahmutoglu, H. et al. The gradient technique improves success rates in intrauterine insemination cycles of unexplained subfertile couples when compared to swim up technique; a prospective randomized study. J. Assist. Reprod. Genet. 31, 1139–1145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Twigg, J. et al. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol. Hum. Reprod. 4, 439–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Marzano, G. et al. Centrifugation force and time alter casa parameters and oxidative status of cryopreserved stallion sperm. Biology 9, 22 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  23. Henkel, R. R. & Schill, W. B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 1, 108 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boomsma, C. M., Heineman, M. J., Cohlen, B. J. & Farquhar, C. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst. Rev. 17, 4 (2007).

    Google Scholar 

  25. Berntsen, S. et al. The health of children conceived by ART: ‘the chicken or the egg?’ Hum. Reprod. Update 25, 137–158 (2019).

    Article  PubMed  Google Scholar 

  26. Pinborg, A., Henningsen, A. K., Malchau, S. S. & Loft, A. Congenital anomalies after assisted reproductive technology. Fertil. Steril. 99, 327–332 (2013).

    Article  PubMed  Google Scholar 

  27. Wang, J. X., Norman, R. J. & Kristiansson, P. The effect of various infertility treatments on the risk of preterm birth. Hum. Reprod. 17, 945–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Pinborg, A. et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum. Reprod. Update 19, 87–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Henningsen, A. K. et al. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil. Steril. 95, 959–963 (2011).

    Article  PubMed  Google Scholar 

  30. Esteves, S. C., Roque, M., Bedoschi, G., Haahr, T. & Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 15, 535–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Kissin, D. M. et al. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum. Reprod. 30, 454–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Boulet, S. L. et al. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255–263 (2015).

    Article  PubMed  Google Scholar 

  33. Levron, J. et al. Sperm chromosome abnormalities in men with severe male factor infertility who are undergoing in vitro fertilization with intracytoplasmic sperm injection. Fertil. Steril. 76, 479–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, H. et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet. 16, 2542–2551 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi, H. et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 17, 1582–1591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garrett, C., Liu, D. Y. & Baker, H. W. Selectivity of the human sperm–zona pellucida binding process to sperm head morphometry. Fertil. Steril. 67, 362–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Rezaei, M., Nikkhoo, B., Moradveisi, B. & Allahveisi, A. Effect of sperm selection methods on ICSI outcomes in patients with oligoteratzoospermia. Am. J. Clin. Exp. Urol. 9, 170–176 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Liu, D. Y., Garrett, C. & Baker, H. W. Low proportions of sperm can bind to the zona pellucida of human oocytes. Hum. Reprod. 18, 2382–2389 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rodrigo, L. et al. Impact of different patterns of sperm chromosomal abnormalities on the chromosomal constitution of preimplantation embryos. Fertil. Steril. 94, 1380–1386 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Loutradi, K. E. et al. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 23, 69–74 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hotaling, J. M., Smith, J. F., Rosen, M., Muller, C. H. & Walsh, T. J. The relationship between isolated teratozoospermia and clinical pregnancy after in vitro fertilization with or without intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 95, 1141–1145 (2011).

    Article  PubMed  Google Scholar 

  43. van den Hoven, L., Hendriks, J. C., Verbeet, J. G., Westphal, J. R. & Wetzels, A. M. Status of sperm morphology assessment: an evaluation of methodology and clinical value. Fertil. Steril. 103, 53–58 (2015).

    Article  PubMed  Google Scholar 

  44. Lee, S.-H. et al. Intracytoplasmic sperm injection may lead to vertical transmission, expansion, and de novo occurrence of Y-chromosome microdeletions in male fetuses. Fertil. Steril. 85, 1512–1515 (2006).

    Article  PubMed  Google Scholar 

  45. Sakkas, D. et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum. Reprod. 11, 837–843 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Bonduelle, M. Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum. Reprod. 17, 2600–2614 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, E. P. P. et al. Male subfertility and oxidative stress. Redox Biol. 46, 102071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aitken, R. J. & Baker, M. A. The role of genetics and oxidative stress in the etiology of male infertility — a unifying hypothesis? Front. Endocrinol. 11, 581838 (2020).

    Article  Google Scholar 

  49. Raad, G. et al. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: a prospective study. Andrology 9, 1549–1559 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Tesarik, J. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum. Reprod. 19, 611–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, J., Zhang, Q., Wang, Y. & Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 102, 998–1005.e8 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Larson-Cook, K. L. et al. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil. Steril. 80, 895–902 (2003).

    Article  PubMed  Google Scholar 

  53. Khambata, K. et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum. Reprod. 36, 48–60 (2021).

    CAS  PubMed  Google Scholar 

  54. Chen, Q., Zhao, J. Y., Xue, X. & Zhu, G. X. The association between sperm DNA fragmentation and reproductive outcomes following intrauterine insemination, a meta analysis. Reprod. Toxicol. 86, 50–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Fernández-Gonzalez, R. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 78, 761–772 (2008).

    Article  PubMed  Google Scholar 

  56. Björndahl, L. & Kvist, U. Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod. Biomed. Online 7, 440–448 (2003).

    Article  PubMed  Google Scholar 

  57. Björndahl, L. & Kvist, U. Influence of seminal vesicular fluid on the zinc content of human sperm chromatin. Int. J. Androl. 13, 232–237 (1990).

    Article  PubMed  Google Scholar 

  58. Lilja, H., Oldbring, J., Rannevik, G. & Laurell, C. B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J. Clin. Invest. 80, 281–285 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakaguchi, D. et al. Human semenogelin 1 promotes sperm survival in the mouse female reproductive tract. Int. J. Mol. Sci. 21, 3961 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  60. Katz, D. F., Slade, D. A. & Nakajima, S. T. Analysis of pre-ovulatory changes in cervical mucus hydration and sperm penetrability. Adv. Contracept. 13, 143–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Muytjens, C. M., Vasiliou, S. K., Oikonomopoulou, K., Prassas, I. & Diamandis, E. P. Putative functions of tissue kallikrein-related peptidases in vaginal fluid. Nat. Rev. Urol. 13, 596–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Martyn, F., McAuliffe, F. M. & Wingfield, M. The role of the cervix in fertility: is it time for a reappraisal? Hum. Reprod. 29, 2092–2098 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Eggert-Kruse, W., Köhler, A., Rohr, G. & Runnebaum, B. The pH as an important determinant of sperm–mucus interaction. Fertil. Steril. 59, 617–628 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Keel, B. A. & Webster, B. W. Correlation of human sperm motility characteristics with an in vitro cervical mucus penetration test. Fertil. Steril. 49, 138–143 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Khayamabed, R., Tavalaee, M., Taherian, S. S. & Nasr-Esfahani, M. H. Effect of recombinant β-defensin 1 protein on human sperm motility and viability. Andrologia 52, e13455 (2020).

    Article  PubMed  Google Scholar 

  66. Diao, R. et al. CCR6 is required for ligand-induced CatSper activation in human sperm. Oncotarget 8, 91445–91458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tollner, T. L. et al. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci. Transl Med. 3, 92ra65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boroujeni, P. B. et al. The role of DEFB126 variation in male infertility and medically assisted reproduction technique outcome. Reprod. Biomed. Online 39, 649–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    Article  PubMed  Google Scholar 

  70. Kunz, G., Beil, D., Deininger, H., Wildt, L. & Leyendecker, G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum. Reprod. 11, 627–632 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Krzanowska, H. The passage of abnormal spermatozoa through the uterotubal junction of the mouse. J. Reprod. Fertil. 38, 81–90 (1974).

    Article  CAS  PubMed  Google Scholar 

  72. Scott, M. A., Liu, I. K., Overstreet, J. W. & Enders, A. C. The structural morphology and epithelial association of spermatozoa at the uterotubal junction: a descriptive study of equine spermatozoa in situ using scanning electron microscopy. J. Reprod. Fertil. Suppl. 56, 415–421 (2000).

    Google Scholar 

  73. Shalgi, R., Smith, T. T. & Yanagimachi, R. A quantitative comparison of the passage of capacitated and uncapacitated hamster spermatozoa through the uterotubal junction. Biol. Reprod. 46, 419–424 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Larasati, T. et al. Tmprss12 is required for sperm motility and uterotubal junction migration in mice. Biol. Reprod. 103, 254–263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ryo, Y. et al. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol. Reprod. 81, 142 (2009).

    Article  Google Scholar 

  76. Nakanishi, T. et al. Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol. Reprod. 71, 959–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hagaman, J. R. et al. Angiotensin-converting enzyme and male fertility. Proc. Natl Acad. Sci. USA 95, 2552–2557 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen, C. et al. Prss37 is required for male fertility in the mouse. Biol. Reprod. 88, 123 (2013).

    Article  PubMed  Google Scholar 

  79. Fujihara, Y. et al. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc. Natl Acad. Sci. USA 110, 8111–8116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Li, W. et al. Tex101 is essential for male fertility by affecting sperm migration into the oviduct in mice. J. Mol. Cell Biol. 5, 345–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, J. et al. Low levels of PRSS37 protein in sperm are associated with many cases of unexplained male infertility. Acta Biochim. Biophys. Sin. 48, 1058–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Li, S. & Winuthayanon, W. Oviduct: roles in fertilization and early embryo development. J. Endocrinol. 232, 1–26 (2017).

    Article  Google Scholar 

  84. Camara Pirez, M., Steele, H., Reese, S. & Kölle, S. Bovine sperm–oviduct interactions are characterized by specific sperm behaviour, ultrastructure and tubal reactions which are impacted by sex sorting. Sci. Rep. 10, 16522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mahé, C. et al. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct. Biol. Reprod. 105, 317–331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Racey, P. A. The prolonged storage and survival of spermatozoa in Chiroptera. J. Reprod. Fertil. 56, 391–402 (1979).

    Article  CAS  PubMed  Google Scholar 

  87. Baillie, H. S., Pacey, A. A., Warren, M. A., Scudamore, I. W. & Barratt, C. L. Greater numbers of human spermatozoa associate with endosalpingeal cells derived from the isthmus compared with those from the ampulla. Hum. Reprod. 12, 1985–1992 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Vigil, P., Salgado, A. M. & Cortés, M. E. Ultrastructural interaction between spermatozoon and human oviductal cells in vitro. J. Electron. Microsc. 61, 123–126 (2012).

    Google Scholar 

  89. Ahlgren, M. Sperm transport to and survival in the human fallopian tube. Gynecol. Invest. 6, 206–214 (1975).

    Article  CAS  PubMed  Google Scholar 

  90. Wilcox, A. J., Weinberg, C. R. & Baird, D. D. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N. Engl. J. Med. 333, 1517–1521 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Williams, M. et al. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum. Reprod. 8, 2019–2026 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Yeung, W. S., Ng, V. K., Lau, E. Y. & Ho, P. C. Human oviductal cells and their conditioned medium maintain the motility and hyperactivation of human spermatozoa in vitro. Hum. Reprod. 9, 656–660 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Choudhary, S. et al. Effect of recombinant and native buffalo OVGP1 on sperm functions and in vitro embryo development: a comparative study. J. Anim. Sci. Biotechnol. 8, 69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pacey, A. A., Davies, N., Warren, M. A., Barratt, C. L. & Cooke, I. D. Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum. Reprod. 10, 2603–2609 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Gualtieri, R. et al. Bovine oviductal monolayers cultured under three-dimension conditions secrete factors able to release spermatozoa adhering to the tubal reservoir in vitro. Theriogenology 79, 429–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Perez-Cerezales, S., Boryshpolets, S. & Eisenbach, M. Behavioral mechanisms of mammalian sperm guidance. Asian J. Androl. 17, 628–632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tesarík, J., Mendoza Oltras, C. & Testart, J. Effect of the human cumulus oophorus on movement characteristics of human capacitated spermatozoa. J. Reprod. Fertil. 88, 665–675 (1990).

    Article  PubMed  Google Scholar 

  98. Carrell, D. T., Middleton, R. G., Peterson, C. M., Jones, K. P. & Urry, R. L. Role of the cumulus in the selection of morphologically normal sperm and induction of the acrosome reaction during human in vitro fertilization. Arch. Androl. 31, 133–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Fatehi, A. N., Zeinstra, E. C., Kooij, R. V., Colenbrander, B. & Bevers, M. M. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57, 1347–1355 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Mortimer, D., Leslie, E. E., Kelly, R. W. & Templeton, A. A. Morphological selection of human spermatozoa in vivo and in vitro. J. Reprod. Fertil. 64, 391 (1982).

    Article  CAS  PubMed  Google Scholar 

  101. Kruger, T. F. et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil. Steril. 46, 1118–1123 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Grow, D. & Oehninger, S. Strict criteria for the evaluation of human sperm morphology and its impact on assisted reproduction. Andrologia 27, 325–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Fesahat, F., Henkel, R. & Agarwal, A. Globozoospermia syndrome: an update. Andrologia 52, e13459 (2020).

    Article  PubMed  Google Scholar 

  104. De Braekeleer, M., Nguyen, M. H., Morel, F. & Perrin, A. Genetic aspects of monomorphic teratozoospermia: a review. J. Assist. Reprod. Genet. 32, 615–623 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bartoov, B. et al. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J. Androl. 23, 1–8 (2002).

    Article  PubMed  Google Scholar 

  106. Bartoov, B. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N. Engl. J. Med. 345, 1067–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Setti, A. S., Paes de Almeida Ferreira Braga, D., Iaconelli, A., Aoki, T. & Borges, E. Twelve years of MSOME and IMSI: a review. Reprod. Biomed. Online 27, 338–352 (2013).

    Article  PubMed  Google Scholar 

  108. Cassuto, N. G. et al. Correlation between DNA defect and sperm-head morphology. Reprod. Biomed. Online 24, 211–218 (2011).

    Article  PubMed  Google Scholar 

  109. Mangiarini, A. et al. Specific sperm defects are differentially correlated with DNA fragmentation in both normozoospermic and teratozoospermic subjects. Andrology 1, 838–844 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Hammoud, I. et al. Selection of normal spermatozoa with a vacuole-free head (×6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia 45, 163–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. McQueen, D. B., Zhang, J. & Robins, J. C. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil. Steril. 112, 54–60.e53 (2019).

    Article  PubMed  Google Scholar 

  112. Pocate-Cheriet, K. et al. Predicting the clinical outcome of ICSI by sperm head vacuole examination. Syst. Biol. Reprod. Med. 63, 29–36 (2017).

    Article  PubMed  Google Scholar 

  113. Zanetti, B. F. et al. Sperm morphological normality under high magnification is correlated to male infertility and predicts embryo development. Andrology 6, 420–427 (2018).

    Article  Google Scholar 

  114. Teixeira, D. M. et al. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst. Rev. 2, CD010167 (2020).

    PubMed  Google Scholar 

  115. De Vos, A., Polyzos, N. P., Verheyen, G. & Tournaye, H. Intracytoplasmic morphologically selected sperm injection (IMSI): a critical and evidence-based review. Basic Clin. Androl. 23, 10 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vanderzwalmen, P. et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod. Biomed. Online 17, 617–627 (2008).

    Article  PubMed  Google Scholar 

  117. Cassuto, N. G. M. D. et al. A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil. Steril. 92, 1616–1625 (2009).

    Article  PubMed  Google Scholar 

  118. Perdrix, A. et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int. J. Androl. 35, 491–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Montjean, D., Belloc, S., Benkhalifa, M., Dalleac, A. & Ménézo, Y. Sperm vacuoles are linked to capacitation and acrosomal status. Hum. Reprod. 27, 2927–2932 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Ebner, T. et al. Easy sperm processing technique allowing exclusive accumulation and later usage of DNA-strandbreak-free spermatozoa. Reprod. Biomed. Online 22, 37–43 (2010).

    Article  PubMed  Google Scholar 

  121. Seiringer, M. et al. Efficacy of a sperm-selection chamber in terms of morphology, aneuploidy and DNA packaging. Reprod. Biomed. Online 27, 81–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Asghar, W. et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv. Healthc. Mater. 3, 1671–1679 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Quinn, M. M. et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 33, 1388–1393 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Schröter, S., Osterhoff, C., McArdle, W. & Ivell, R. The glycocalyx of the sperm surface. Hum. Reprod. Update 5, 302–313 (1999).

    Article  PubMed  Google Scholar 

  125. Tecle, E. & Gagneux, P. Sugar-coated sperm: unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev. 82, 635–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chan, P. J., Jacobson, J. D., Corselli, J. U. & Patton, W. C. A simple zeta method for sperm selection based on membrane charge. Fertil. Steril. 85, 481–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Khakpour, S., Sadeghi, E., Tavalaee, M., Bahadorani, M. & Nasr-Esfahani, M. H. Zeta method: a noninvasive method based on membrane charge for selecting spermatozoa expressing high level of phospholipaseCζ. Andrologia 51, e13249 (2019).

    Article  PubMed  Google Scholar 

  128. Zarei-Kheirabadi, M. et al. Evaluation of ubiquitin and annexin V in sperm population selected based on density gradient centrifugation and zeta potential (DGC-Zeta). J. Assist. Reprod. Genet. 29, 365–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Kheirollahi-Kouhestani, M. et al. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum. Reprod. 24, 2409–2416 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Karimi, N. et al. DGC/Zeta as a new strategy to improve clinical outcome in male factor infertility patients following intracytoplasmic sperm injection: a randomized, single-blind, clinical trial. Cell J. 22, 55–59 (2020).

    PubMed  Google Scholar 

  131. Ainsworth, C., Nixon, B. & Aitken, R. J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 20, 2261–2270 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Simon, L. et al. Optimization of microelectrophoresis to select highly negatively charged sperm. J. Assist. Reprod. Genet. 33, 679–688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Fleming, S. D. et al. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum. Reprod. 23, 2646–2651 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Sakkas, D., Seli, E., Bizzaro, D., Tarozzi, N. & Manicardi, G. C. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod. Biomed. Online 7, 428–432 (2003).

    Article  PubMed  Google Scholar 

  135. Hichri, R. et al. Apoptotic sperm biomarkers and the correlation between conventional sperm parameters and clinical characteristics. Andrologia 50,12813 (2018).

    Article  Google Scholar 

  136. Oosterhuis, G. J. et al. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil. Steril. 74, 245–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Said, T. M. et al. Utility of magnetic cell separation as a molecular sperm preparation technique. J. Androl. 29, 134–142 (2008).

    Article  PubMed  Google Scholar 

  138. Grunewald, S. M. D. et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil. Steril. 92, 572–577 (2009).

    Article  PubMed  Google Scholar 

  139. de Vantery Arrighi, C., Lucas, H., Chardonnens, D. & de Agostini, A. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reprod. Biol. Endocrinol. 7, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tavalaee, M., Deemeh, M. R., Arbabian, M. & Nasr-Esfahani, M. H. Density gradient centrifugation before or after magnetic-activated cell sorting: which technique is more useful for clinical sperm selection? J. Assist. Reprod. Genet. 29, 31–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Nadalini, M., Tarozzi, N., Di Santo, M. & Borini, A. Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better then the traditional one? J. Assist. Reprod. Genet. 31, 1045–1051 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gil, M., Sar-Shalom, V., Melendez Sivira, Y., Carreras, R. & Checa, M. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J. Assist. Reprod. Genet. 30, 479–485 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Romany, L. P. D. et al. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil. Steril. 102, 1567–1575.e1 (2014).

    Article  PubMed  Google Scholar 

  144. Agarwal, A., Ikemoto, I. & Loughlin, K. R. Effect of sperm washing on levels of reactive oxygen species in semen. Arch. Androl. 33, 157–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Tang, S., Garrett, C. & Baker, H. W. Comparison of human cervical mucus and artificial sperm penetration media. Hum. Reprod. 14, 2812–2817 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Ivic, A. et al. Critical evaluation of methylcellulose as an alternative medium in sperm migration tests. Hum. Reprod. 17, 143–149 (2002).

    Article  PubMed  Google Scholar 

  147. Bianchi, P. G. et al. Human cervical mucus can act in vitro as a selective barrier against spermatozoa carrying fragmented DNA and chromatin structural abnormalities. J. Assist. Reprod. Genet. 21, 97–102 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bains, R., Miles, D. M., Carson, R. J. & Adeghe, J. Hyaluronic acid increases motility/intracellular CA2+ concentration in human sperm in vitro. Arch. Androl. 47, 119–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Biljan, M. M. et al. Evaluation of different sperm function tests as screening methods for male fertilization potential — the value of the sperm migration test. Fertil. Steril. 62, 591–598 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Barbonetti, A. et al. Prevalence of anti-sperm antibodies and relationship of degree of sperm auto-immunization to semen parameters and post-coital test outcome: a retrospective analysis of over 10,000 men. Hum. Reprod. 34, 834–841 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Pacey, A. A. et al. Andrology: the interaction in vitro of human spermatozoa with epithelial cells from the human uterine (fallopian) tube. Hum. Reprod. 10, 360–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Ellington, J. E. et al. Higher-quality human sperm in a sample selectively attach to oviduct (fallopian tube) epithelial cells in vitro. Fertil. Steril. 71, 924–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Gualtieri, R. & Talevi, R. Selection of highly fertilization-competent bovine spermatozoa through adhesion to the fallopian tube epithelium in vitro. Reproduction 125, 251–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. López-Úbeda, R., García-Vázquez, F. A., Gadea, J. & Matás, C. Oviductal epithelial cells selected boar sperm according to their functional characteristics. Asian J. Androl. 19, 396–403 (2017).

    Article  PubMed  Google Scholar 

  155. Talevi, R. & Gualtieri, R. Molecules involved in sperm-oviduct adhesion and release. Theriogenology 73, 796–801 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Miller, D. J. Regulation of sperm function by oviduct fluid and the epithelium: insight into the role of glycans. Reprod. Domest. Anim. 50, 31–39 (2015).

    Article  PubMed  Google Scholar 

  157. Huang, V. W. et al. Sperm fucosyltransferase-5 mediates spermatozoa–oviductal epithelial cell interaction to protect human spermatozoa from oxidative damage. Mol. Hum. Reprod. 21, 516–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Kessler, M. et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat. Commun. 6, 8989 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Ferraz, M. A. M. M., Henning, H. H. W., Stout, T. A. E., Vos, P. L. A. M. & Gadella, B. M. Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann. Biomed. Eng. 45, 1731–1744 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hong, S. J. et al. Establishment of a capillary-cumulus model to study the selection of sperm for fertilization by the cumulus oophorus. Hum. Reprod. 19, 1562–1569 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Rijsdijk, M. M. M. S. & Franken, D. R. P. D. Use of the capillary–cumulus oophorus model for evaluating the selection of spermatozoa. Fertil. Steril. 88, 1595–1602 (2007).

    Article  PubMed  Google Scholar 

  163. Naknam, W. et al. Effect of sperm selection method by cumulus oophorus complexes and conventional sperm preparation method on sperm quality and DNA fragmentation for assisted reproduction techonology. Eur. J. Obstet. Gynecol. Reprod. Biol. 243, 46–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Hong, S.-J. et al. Cumulus cells and their extracellular matrix affect the quality of the spermatozoa penetrating the cumulus mass. Fertil. Steril. 92, 971–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Wang, C. et al. Cumulus oophorus complexes favor physiologic selection of spermatozoa for intracytoplasmic sperm injection. Fertil. Steril. 109, 823–831 (2018).

    Article  PubMed  Google Scholar 

  166. Akgul, Y., Holt, R., Mummert, M., Word, A. & Mahendroo, M. Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology 153, 3493–3503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rodriguez-Martinez, H. et al. The ubiquitous hyaluronan: functionally implicated in the oviduct? Theriogenology 86, 182–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Chen, L. et al. Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Mol. Reprod. Dev. 26, 236–247 (1990).

    Article  PubMed  Google Scholar 

  169. Bains, R., Adeghe, J. & Carson, R. J. Human sperm cells express CD44. Fertil. Steril. 78, 307–312 (2002).

    Article  PubMed  Google Scholar 

  170. Saylan, A. & Duman, S. Efficacy of hyaluronic acid in the selection of human spermatozoa with intact DNA by the swim-up method. Cell J. 18, 83–88 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Yagci, A., Murk, W., Stronk, J. & Huszar, G. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study. J. Androl. 31, 566–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Huszar, G. et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod. Biomed. Online 14, 650–663 (2007).

    Article  PubMed  Google Scholar 

  173. Huszar, G. et al. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil. Steril. 79, 1616–1624 (2003).

    Article  PubMed  Google Scholar 

  174. Ye, H., Huang, G. N., Gao, Y. & Liu, D. Y. Relationship between human sperm–hyaluronan binding assay and fertilization rate in conventional in vitro fertilization. Hum. Reprod. 21, 1545–1550 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Mokánszki, A. et al. Is sperm hyaluronic acid binding ability predictive for clinical success of intracytoplasmic sperm injection: PICSI vs. ICSI? Syst. Biol. Reprod. Med. 60, 348–354 (2014).

    Article  PubMed  Google Scholar 

  176. Beck-Fruchter, R., Shalev, E. & Weiss, A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod. Biomed. Online 32, 286–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Kirkman-Brown, J. et al. Sperm selection for assisted reproduction by prior hyaluronan binding: the HABSelect RCT. Effic. Mech. Eval. 6, 1 (2019).

    Article  Google Scholar 

  178. Lepine, S. et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst. Rev. 7, CD010461 (2019).

    PubMed  Google Scholar 

  179. Overstreet, J. W. & Hembree, W. C. Penetration of the zona pellucida of nonliving human oocytes by human spermatozoa in vitro. Fertil. Steril. 27, 815–831 (1976).

    Article  CAS  PubMed  Google Scholar 

  180. Burkman, L. J. et al. The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertil. Steril. 49, 688–697 (1988).

    Article  CAS  PubMed  Google Scholar 

  181. Oehninger, S., Franken, D. R., Sayed, E., Barroso, G. & Kolm, P. Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta-analysis. Hum. Reprod. Update 6, 160–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Arslan, M. et al. Predictive value of the hemizona assay for pregnancy outcome in patients undergoing controlled ovarian hyperstimulation with intrauterine insemination. Fertil. Steril. 85, 1697–1707 (2006).

    Article  PubMed  Google Scholar 

  183. Gupta, S. K. & Bhandari, B. Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J. Androl. 13, 97–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Inci, F. et al. A novel on-chip method for differential extraction of sperm in forensic cases. Adv. Sci. 5, 1800121 (2018).

    Article  Google Scholar 

  185. Deshmukh, S. et al. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system. Forensic Sci. Int. Genet. 48, 102313 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Pang, P.-C. et al. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 333, 1761 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Bastiaan, H. S. et al. Relationship between zona pellucida-induced acrosome reaction, sperm morphology, sperm-zona pellucida binding, and in vitro fertilization. Fertil. Steril. 79, 49–55 (2003).

    Article  PubMed  Google Scholar 

  188. Liu, D. Y., Liu, M. L., Clarke, G. N. & Baker, H. W. Hyperactivation of capacitated human sperm correlates with the zona pellucida-induced acrosome reaction of zona pellucida-bound sperm. Hum. Reprod. 22, 2632–2638 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Liu, D. Y. & Baker, H. W. Human sperm bound to the zona pellucida have normal nuclear chromatin as assessed by acridine orange fluorescence. Hum. Reprod. 22, 1597–1602 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Franken, D. R., Kruger, T. F., Oehninger, S. C., Kaskar, K. & Hodgen, G. D. Sperm binding capacity of human zona pellucida derived from oocytes obtained from different sources. Andrologia 26, 277–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  191. Braga, D. Pd. A. F. et al. Outcome of ICSI using zona pellucida-bound spermatozoa and conventionally selected spermatozoa. Reprod. Biomed. Online 19, 802–807 (2009).

    Article  Google Scholar 

  192. Black, M., Liu, D. Y., Bourne, H. & Baker, H. W. G. Comparison of outcomes of conventional intracytoplasmic sperm injection and intracytoplasmic sperm injection using sperm bound to the zona pellucida of immature oocytes. Fertil. Steril. 93, 672–674 (2010).

    Article  PubMed  Google Scholar 

  193. Liu, F. et al. Use of zona pellucida-bound sperm for intracytoplasmic sperm injection produces higher embryo quality and implantation than conventional intracytoplasmic sperm injection. Fertil. Steril. 95, 815–818 (2011).

    Article  PubMed  Google Scholar 

  194. Jin, R. et al. Outcomes of intracytoplasmic sperm injection using the zona pellucida-bound sperm or manually selected sperm. J. Assist. Reprod. Genet. 33, 597–601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Casciani, V. et al. Traditional intracytoplasmic sperm injection provides equivalent outcomes compared with human zona pellucida-bound selected sperm injection. Zygote 22, 565–570 (2014).

    Article  PubMed  Google Scholar 

  196. Liu, D.-Y. Could using the zona pellucida bound sperm for intracytoplasmic sperm injection (ICSI) enhance the outcome of ICSI? Asian J. Androl. 13, 197–198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reid, A. T., Redgrove, K., Aitken, R. J. & Nixon, B. Cellular mechanisms regulating sperm–zona pellucida interaction. Asian J. Androl. 13, 88–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Nosrati, R. et al. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 14, 707–730 (2017).

    Article  PubMed  Google Scholar 

  199. Shirota, K. et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 105, 315–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Miki, K. & Clapham, D. E. Rheotaxis guides mammalian sperm. Curr. Biol. 23, 443–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Seo, D.-b, Agca, Y., Feng, Z. C. & Critser, J. K. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid. Nanofluidics 3, 561–570 (2007).

    Article  Google Scholar 

  202. Martin, H. et al. Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 34, 1699–1708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wu, J.-K. et al. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 142, 938–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Zaferani, M., Cheong, S. H. & Abbaspourrad, A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc. Natl Acad. Sci. USA 115, 8272–8277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, Z. et al. Human sperm rheotaxis: a passive physical process. Sci. Rep. 6, 23553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Schiffer, C. et al. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J. 39, e102363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fanaei, H., Keshtgar, S., Bahmanpour, S., Ghannadi, A. & Kazeroni, M. Beneficial effects of α-tocopherol against intracellular calcium overload in human sperm. Reprod. Sci. 18, 978–982 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Bahat, A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Bahat, A., Caplan, S. R. & Eisenbach, M. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS ONE 7, e41915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. De Toni, L. et al. Heat sensing receptor TRPV1 is a mediator of thermotaxis in human spermatozoa. PLoS ONE 11, e0167622 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Roy, D., Levi, K., Kiss, V., Nevo, R. & Eisenbach, M. Rhodopsin and melanopsin coexist in mammalian sperm cells and activate different signaling pathways for thermotaxis. Sci. Rep. 10, 112–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Boryshpolets, S., Pérez-Cerezales, S. & Eisenbach, M. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum. Reprod. 30, 884–892 (2015).

    Article  PubMed  Google Scholar 

  213. Pérez-Cerezales, S. et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci. Rep. 8, 2902–2902 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kaupp, U. B., Kashikar, N. D. & Weyand, I. Mechanisms of sperm chemotaxis. Annu. Rev. Physiol. 70, 93–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Anderson, R. A. Jr, Feathergill, K. A., Rawlins, R. G., Mack, S. R. & Zaneveld, L. J. Atrial natriuretic peptide: a chemoattractant of human spermatozoa by a guanylate cyclase-dependent pathway. Mol. Reprod. Dev. 40, 371–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  216. Oren-Benaroya, R., Orvieto, R., Gakamsky, A., Pinchasov, M. & Eisenbach, M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 23, 2339–2345 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Xie, L. et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin. Chem. 56, 1270–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Sokmensuer, L. K., Palaniappan, S., Toner, M., Toth, T. L. & Wright, D. L. A microfluidic chemotaxis system to select motile and mature sperm. Fertil. Steril. 82, 327–328 (2004).

    Article  Google Scholar 

  219. Li, K. et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J. Transl. Med. 16, 203–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Marc, S. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    Article  Google Scholar 

  221. Caballero-Campo, P. et al. A role for the chemokine receptor CCR6 in mammalian sperm motility and chemotaxis. J. Cell Physiol. 229, 68–78 (2014).

    CAS  PubMed  Google Scholar 

  222. Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  223. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals — an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Gatica, L. V. et al. Picomolar gradients of progesterone select functional human sperm even in subfertile samples. Mol. Hum. Reprod. 19, 559–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Teves, M. E. et al. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil. Steril. 86, 745–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  226. Jaiswal, B. S., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Human sperm chemotaxis: is progesterone a chemoattractant? Biol. Reprod. 60, 1314–1319 (1999).

    Article  CAS  PubMed  Google Scholar 

  227. Teves, M. E. et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS ONE 4, e8211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Ko, Y. J., Maeng, J. H., Hwang, S. Y. & Ahn, Y. Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol. 23, 507–515 (2018).

    Article  PubMed  Google Scholar 

  229. Yan, Y., Zhang, B., Fu, Q., Wu, J. & Liu, R. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip 21, 310–318 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Suarez, S. S. Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod. Fertil. Dev. 19, 103–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Lishko, P. V., Botchkina, I. L. & Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Rath, D., Schuberth, H. J., Coy, P. & Taylor, U. Sperm interactions from insemination to fertilization. Reprod. Domest. Anim. 43 (Suppl. 5), 2–11 (2008).

    Article  PubMed  Google Scholar 

  233. Strünker, T. et al. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471, 382–386 (2011).

    Article  PubMed  Google Scholar 

  234. Almiñana, C. et al. The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15, 293–293 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Holt, W. V. & Fazeli, A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol. Hum. Reprod. 21, 491–501 (2015).

    Article  PubMed  Google Scholar 

  236. Xu, W. et al. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J. Proteom. 75, 5426–5436 (2012).

    Article  CAS  Google Scholar 

  237. Ayaz, A. et al. Proteomic analysis of sperm proteins in infertile men with high levels of reactive oxygen species. Andrologia 50, e13015 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Cui, Z., Sharma, R. & Agarwal, A. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian J. Androl. 18, 735–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Martínez-Heredia, J., de Mateo, S., Vidal-Taboada, J. M., Ballescà, J. L. & Oliva, R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 23, 783–791 (2008).

    Article  PubMed  Google Scholar 

  240. Frapsauce, C. et al. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil. Steril. 102, 372–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Zhu, Y. et al. Differential proteomic profiling in human spermatozoa that did or did not result in pregnancy via IVF and AID. Proteom. Clin. Appl. 7, 850–858 (2013).

    Article  CAS  Google Scholar 

  242. Agarwal, A., Sharma, R., Samanta, L., Durairajanayagam, D. & Sabanegh, E. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility. Asian J. Androl. 18, 282–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Chan, C.-C., Sun, G.-H., Shui, H.-A. & Wu, G.-J. Differential spermatozoal protein expression profiles in men with varicocele compared to control subjects: upregulation of heat shock proteins 70 and 90 in varicocele. Urology 81, 1379.e1–8 (2013).

    Article  Google Scholar 

  244. Panner Selvam, M. K., Agarwal, A., Pushparaj, P. N., Baskaran, S. & Bendou, H. Sperm proteome analysis and identification of fertility-associated biomarkers in unexplained male infertility. Genes 10, 522 (2019).

    Article  PubMed Central  Google Scholar 

  245. Redgrove, K. A. et al. Investigation of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm surface receptors involved in human sperm–oocyte recognition. Mol. Hum. Reprod. 19, 120–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  246. Bromfield, E. G., McLaughlin, E. A., Aitken, R. J. & Nixon, B. Heat shock protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa. Mol. Hum. Reprod. 22, 93–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Motiei, M., Tavalaee, M., Rabiei, F., Hajihosseini, R. & Nasr-Esfahani, M. H. Evaluation of HSPA2 in fertile and infertile individuals. Andrologia 45, 66–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Teijeiro, J. M., Roldán, M. L. & Marini, P. E. Annexin A2 and S100A10 in the mammalian oviduct. Cell Tissue Res. 363, 567–577 (2015).

    Article  PubMed  Google Scholar 

  249. Moore, A., Penfold, L. M., Johnson, J. L., Latchman, D. S. & Moore, H. D. M. Human sperm–egg binding is inhibited by peptides corresponding to core region of an acrosomal serine protease inhibitor. Mol. Reprod. Dev. 34, 280–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  250. Frayne, J. & Hall, L. A re-evaluation of sperm protein 17 (Sp17) indicates a regulatory role in an A-kinase anchoring protein complex, rather than a unique role in sperm–zona pellucida binding. Reproduction 124, 767–774 (2002).

    Article  CAS  PubMed  Google Scholar 

  251. Li, C. Y. et al. CFTR is essential for sperm fertilizing capacity and is correlated with sperm quality in humans. Hum. Reprod. 25, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  252. Reddy, V. R. K., Rajeev, S. K. & Gupta, V. α6β1 integrin is a potential clinical marker for evaluating sperm quality in men. Fertil. Steril. 79, 1590–1596 (2003).

    Article  PubMed  Google Scholar 

  253. Puga Molina, L. C. et al. Essential role of CFTR in PKA-dependent phosphorylation, alkalinization, and hyperpolarization during human sperm capacitation. J. Cell Physiol. 232, 1404–1414 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Flesch, F. M. & Gadella, B. M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  255. Samanta, L., Swain, N., Ayaz, A., Venugopal, V. & Agarwal, A. Post-translational modifications in sperm proteome: the chemistry of proteome diversifications in the pathophysiology of male factor infertility. Biochim. Biophys. Acta 1860, 1450–1465 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Donà, G. et al. Human sperm capacitation involves the regulation of the Tyr-phosphorylation level of the anion exchanger 1 (AE1). Int. J. Mol. Sci. 21, 4063 (2020).

    Article  PubMed Central  Google Scholar 

  257. Andrews, R. E., Galileo, D. S. & Martin-DeLeon, P. A. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. Mol. Hum. Reprod. 21, 832–843 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kelly, L. A., Amanda, J. H., Eileen, A. M., Brett, N. & Aitken, R. J. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol. Reprod. 72, 328 (2005).

    Article  Google Scholar 

  259. Nixon, B. et al. Evidence for the involvement of PECAM-1 in a receptor mediated signal-transduction pathway regulating capacitation-associated tyrosine phosphorylation in human spermatozoa. J. Cell Sci. 118, 4865–4877 (2005).

    Article  CAS  PubMed  Google Scholar 

  260. BouÃ, F., Blais, J. & Sullivan, R. Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol. Reprod. 54, 1009 (1996).

    Article  Google Scholar 

  261. Focarelli, R. et al. Specific localization in the equatorial region of gp20, a 20 kDa sialylglycoprotein of the capacitated human spermatozoon acquired during epididymal transit which is necessary to penetrate zona-free hamster eggs. Mol. Hum. Reprod. 4, 119–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  262. Giuliani, V. et al. Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men. Mol. Reprod. Dev. 69, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  263. Chandonnet, L., Roberts, K. D., Chapdelaine, A. & Manjunath, P. Identification of heparin-binding proteins in bovine seminal plasma. Mol. Reprod. Dev. 26, 313–318 (1990).

    Article  CAS  PubMed  Google Scholar 

  264. Marín-Briggiler, C. I. et al. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol. Hum. Reprod. 14, 561–571 (2008).

    Article  PubMed  Google Scholar 

  265. Chiu, P. C. N. et al. Glycodelin-S in human seminal plasma reduces cholesterol efflux and inhibits capacitation of spermatozoa. J. Biol. Chem. 280, 25580–25589 (2005).

    Article  CAS  PubMed  Google Scholar 

  266. de Lamirande, E. Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Semin. Thromb. Hemost. 33, 60–68 (2007).

    Article  PubMed  Google Scholar 

  267. Hernández-Silva, G. & Chirinos, M. Proteins from male and female reproductive tracts involved in sperm function regulation. Zygote 27, 5–16 (2019).

    Article  PubMed  Google Scholar 

  268. Fraser, L. R. Mouse sperm capacitation in vitro involves loss of a surface-associated inhibitory component. J. Reprod. Fertil. 72, 373–384 (1984).

    Article  CAS  PubMed  Google Scholar 

  269. Saez, F., Frenette, G. & Sullivan, R. Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J. Androl. 24, 149–154 (2003).

    Article  PubMed  Google Scholar 

  270. Foot, N. J. & Kumar, S. The role of extracellular vesicles in sperm function and male fertility. Subcell. Biochem. 97, 483–500 (2021).

    Article  CAS  PubMed  Google Scholar 

  271. Rodriguez-Martinez, H., Martinez, E. A., Calvete, J. J., Peña Vega, F. J. & Roca, J. Seminal plasma: relevant for fertility? Int. J. Mol. Sci. 22, 4368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Jones, J. L. et al. Galectin-3 is associated with prostasomes in human semen. Glycoconj. J. 27, 227–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  273. Frenette, G., Légaré, C., Saez, F. & Sullivan, R. Macrophage migration inhibitory factor in the human epididymis and semen. Mol. Hum. Reprod. 11, 575–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  274. Rooney, I. A. et al. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J. Exp. Med. 177, 1409–1420 (1993).

    Article  CAS  PubMed  Google Scholar 

  275. Mei, S. et al. The role of galectin-3 in spermatozoa–zona pellucida binding and its association with fertilization in vitro. Mol. Hum. Reprod. 25, 458–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Giacomini, E., Makieva, S., Murdica, V., Vago, R. & Viganó, P. Extracellular vesicles as a potential diagnostic tool in assisted reproduction. Curr. Opin. Obstet. Gynecol. 32, 179–184 (2020).

    Article  PubMed  Google Scholar 

  277. Bathala, P. et al. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Mol. Hum. Reprod. 24, 143–157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Okunade, G. W. et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 279, 33742–33750 (2004).

    Article  CAS  PubMed  Google Scholar 

  279. Mastelaro de Rezende, M., Ferreira, A. T. & Paredes-Gamero, E. J. Leukemia stem cell immunophenotyping tool for diagnostic, prognosis, and therapeutics. J. Cell Physiol. 235, 4989–4998 (2020).

    Article  CAS  PubMed  Google Scholar 

  280. Sarkar, A. et al. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci. 273, 119270 (2021).

    Article  CAS  PubMed  Google Scholar 

  281. Chemi, F. et al. Early dissemination of circulating tumor cells: biological and clinical insights. Front. Oncol. 11, 672195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  282. McDowell, S. et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst. Rev. 10, CD010461 (2014).

    Google Scholar 

  283. Miller, D. et al. Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. Lancet 393, 416–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Quelhas, J. et al. Bovine semen sexing: sperm membrane proteomics as candidates for immunological selection of X- and Y-chromosome-bearing sperm. Vet. Med. Sci. 7, 1633–1641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Dias, T. R. et al. Proteomic signatures reveal differences in stress response, antioxidant defense and proteasomal activity in fertile men with high seminal ROS Levels. Int. J. Mol. Sci. 20, 203 (2019).

    Article  PubMed Central  Google Scholar 

  286. Dorus, S., Skerget, S. & Karr, T. L. Proteomic discovery of diverse immunity molecules in mammalian spermatozoa. Syst. Biol. Reprod. Med. 58, 218–228 (2012).

    Article  CAS  PubMed  Google Scholar 

  287. Zuccarello, D. et al. How the human spermatozoa sense the oocyte: a new role of SDF1-CXCR4 signalling. Int. J. Androl. 34, e554–e565 (2011).

    Article  CAS  PubMed  Google Scholar 

  288. Rajabi, S. et al. Effect of chemical immobilization of SDF-1α into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. J. Tissue Eng. Regen. Med. 12, e438–e450 (2018).

    Article  CAS  PubMed  Google Scholar 

  289. Sutovsky, P., Aarabi, M., Miranda-Vizuete, A. & Oko, R. Negative biomarker based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies. Asian J. Androl. 17, 554–560 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Sutovsky, P., Terada, Y. & Schatten, G. Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum. Reprod. 16, 250–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  291. Ozanon, C., Chouteau, J. & Sutovsky, P. Clinical adaptation of the sperm ubuquitin tag immunoassay (SUTI): relationship of sperm ubiquitylation with sperm quality in gradient-purified semen samples from 93 men from a general infertility clinic population. Hum. Reprod. 20, 2271–2278 (2005).

    Article  CAS  PubMed  Google Scholar 

  292. Odhiambo, J. F. et al. Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol. Reprod. 91, 97 (2014).

    Article  PubMed  Google Scholar 

  293. Smith, G. D. & Takayama, S. Application of microfluidic technologies to human assisted reproduction. Mol. Hum. Reprod. 23, 257–268 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Knowlton, S. M., Sadasivam, M. & Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol. 33, 221–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  295. Hyun, K. A., Lee, T. Y. & Jung, H. I. Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal. Chem. 85, 4439–4445 (2013).

    Article  CAS  PubMed  Google Scholar 

  296. Dardikman-Yoffe, G., Mirsky, S. K., Barnea, I. & Shaked, N. T. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv. 6, 7619 (2020).

    Article  Google Scholar 

  297. McCallum, C. et al. Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2, 250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Parmegiani, L. et al. Comparison of two ready-to-use systems designed for sperm–hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. Sperm Slow: a prospective, randomized trial. Fertil. Steril. 98, 632–637 (2012).

    Article  PubMed  Google Scholar 

  299. Parmegiani, L. et al. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil. Steril. 93, 598–604 (2010).

    Article  PubMed  Google Scholar 

  300. Song, W. et al. Functional, UV-curable coating for the capture of circulating tumor cells. Biomater. Sci. 7, 2383–2393 (2019).

    Article  CAS  PubMed  Google Scholar 

  301. Tasoglu, S. et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small 9, 3374–3384 (2013).

    Article  CAS  PubMed  Google Scholar 

  302. Nosrati, R. et al. Rapid selection of sperm with high DNA integrity. Lab Chip 14, 1142–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. Chinnasamy, T. et al. Guidance and self-sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest. Adv. Sci. 5, 1700531 (2018).

    Article  Google Scholar 

  304. Liu, W. et al. Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis. Biomicrofluidics 9, 044127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Gode, F. et al. Comparison of microfluid sperm sorting chip and density gradient methods for use in intrauterine insemination cycles. Fertil. Steril. 112, 842–848.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    Article  CAS  PubMed  Google Scholar 

  307. Raj, M. K. & Chakraborty, S. PDMS microfluidics: a mini review. J. Appl. Polym. Sci. 137, 48958 (2020).

    Article  Google Scholar 

  308. Oseguera-López, I., Ruiz-Díaz, S., Ramos-Ibeas, P. & Pérez-Cerezales, S. Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front. Cell Dev. Biol. 29, 298 (2019).

    Article  Google Scholar 

  309. Björndahl, L. et al. in A Practical Guide to Basic Laboratory Andrology 147–166 (Cambridge Univ. Press, 2010).

  310. Yeh, E. C. et al. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3, e1501645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Lottero-Leconte, R., Alonso, C. A. I., Castellano, L. & Perez Martinez, S. Mechanisms of the sperm guidance, an essential aid for meeting the oocyte. Transl. Cancer Res. 6 (Suppl. 2), S427–S430 (2017).

    Article  Google Scholar 

  312. Witt, K. D. et al. Hyaluronic acid binding sperm selection for assisted reproduction treatment (HABSelect): study protocol for a multicentre randomised controlled trial. BMJ Open 6, e012609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project is supported by the Hong Kong Research Grant Council Grant (17116417); the Hong Kong Health and Medical Research Fund (07182446); the Shenzhen Science and Technology Program (KQTD20190929172749226), the Sanming Project of Medicine in Shenzhen, China (SZSM201612083) and the HKU-SZH Fund for Shenzhen Key Medical Discipline (SZXK2020089).

Author information

Authors and Affiliations

Authors

Contributions

E.T.Y.L. and P.C.N.C. researched data for the article. E.T.Y.L., C.-L.L., K.K.W.L., R.H.W.L., E.H.Y.N., W.S.B.Y. and P.C.N.C. made substantial contributions to discussions of content. E.T.Y.L., C.-L.L., E.H.Y.N., W.S.B.Y. and P.C.N.P. wrote the manuscript and all authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to William S. B. Yeung or Philip C. N. Chiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, E.T.Y., Lee, CL., Tian, X. et al. Simulating nature in sperm selection for assisted reproduction. Nat Rev Urol 19, 16–36 (2022). https://doi.org/10.1038/s41585-021-00530-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00530-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing