Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Host–biomaterial interactions in mesh complications after pelvic floor reconstructive surgery


Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.

Key points

  • Current evidence suggests that risk factors for developing complications following transvaginal mesh placement include pro-inflammatory conditions such as patient age, smoking and diabetes, as well as surgical technique and experience.

  • Explanted mesh following transvaginal pelvic organ prolapse repair from women with complications shows poorly regulated inflammation with a fibrous capsule and a dense cellular infiltrate of predominantly macrophages.

  • Differences in the abdominal and vaginal biological niche probably contribute to dissimilar immune responses to polypropylene mesh and consequently the extent to which mesh can integrate.

  • Mesh with large pore diameters, low surface area and low local stiffness might be less likely to induce an adverse foreign body response, but this supposition has not been evaluated longitudinally.

  • A lack of transparency in pelvic floor preclinical testing and post-marketing surveillance are regulatory failings that have probably contributed to the inappropriate repurposing of meshes for some patient groups.

  • The ability to assess factors driving negative outcomes will rely on longitudinal studies to ascertain baseline drivers of tissue response in women who develop complications and those who do not.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The host immune response to PPL mesh cumulating in a foreign body reaction.
Fig. 2: Polypropylene material properties and processes that could influence the host immune response.
Fig. 3: Regulated inflammation and mesh complications are influenced by the complex interaction between the patient (host factors), tissue niche and mesh material properties.


  1. 1.

    Wu, J. M., Matthews, C. A., Conover, M. M., Pate, V. & Jonsson Funk, M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet. Gynecol. 123, 1201–1206 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Smith, F. J., Holman, C. D. J., Moorin, R. E. & Tsokos, N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet. Gynecol. 116, 1096–1100 (2010).

    PubMed  Google Scholar 

  3. 3.

    Haylen, B. T. et al. An international urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 29, 4–20 (2010).

    PubMed  Google Scholar 

  4. 4.

    Jelovsek, J. E. et al. Effect of uterosacral ligament suspension vs sacrospinous ligament fixation with or without perioperative behavioral therapy for pelvic organ vaginal prolapse on surgical outcomes and prolapse symptoms at 5 years in the OPTIMAL Randomized Clinical Trial. JAMA 319, 1554 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lapitan, M. C. M., Cody, J. D. & Mashayekhi, A. Open retropubic colposuspension for urinary incontinence in women. Cochrane Database Syst. Rev. 2, CD002912 (2017).

    Google Scholar 

  6. 6.

    Joint Writing Group of the American Urogynecologic Society & the International Urogynecological Association. Joint report on terminology for surgical procedures to treat pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 26, 173–201 (2020).

    Google Scholar 

  7. 7.

    Chapple, C. R. et al. Consensus statement of the European Urology Association and the European Urogynaecological Association on the use of implanted materials for treating pelvic organ prolapse and stress urinary incontinence. Eur. Urol. 72, 424–431 (2017).

    PubMed  Google Scholar 

  8. 8.

    Barone, W. R., Abramowitch, S. D. & Moalli, P. A. in Host Response to Biomaterials Ch. 13 (ed. Badylak, S. F.) 375–423 (Academic, 2015).

  9. 9.

    Chu, C. C. in Biotextiles Medical Implants (ed. King, M. W.) 275–334 (Woodhead, 2013).

  10. 10.

    Brown, C. & Finch, J. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 92, 272–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mangir, N., Roman, S., Chapple, C. R. & MacNeil, S. Complications related to use of mesh implants in surgical treatment of stress urinary incontinence and pelvic organ prolapse: infection or inflammation? World J. Urol. 38, 73–80 (2020).

    PubMed  Google Scholar 

  12. 12.

    Mangir, N., Aldemir Dikici, B., Chapple, C. R. & MacNeil, S. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nat. Rev. Urol. 16, 675–689 (2019).

    PubMed  Google Scholar 

  13. 13.

    Balsamo, R. et al. Sacrocolpopexy with polyvinylidene fluoride mesh for pelvic organ prolapse: mid term comparative outcomes with polypropylene mesh. Eur. J. Obstet. Gynecol. Reprod. Biol. 220, 74–78 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Barski, D. et al. Transvaginal PVDF-mesh for cystocele repair: a cohort study. Int. J. Surg. 39, 249–254 (2017).

    PubMed  Google Scholar 

  15. 15.

    Kawaguchi, S. et al. Transvaginal polytetrafluoroethylene mesh surgery for pelvic organ prolapse: 1-year clinical outcomes. Int. J. Urol. 28, 268–272 (2021).

    PubMed  Google Scholar 

  16. 16.

    Ford, A. A., Rogerson, L., Cody, J. D., Aluko, P. & Ogah, J. A. Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst. Rev. 1, CD006375 (2017).

    Google Scholar 

  17. 17.

    Glazener, C. M. et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet 389, 381–392 (2017).

    PubMed  Google Scholar 

  18. 18.

    Welk, B., Al-Hothi, H. & Winick-Ng, J. Removal or revision of vaginal mesh used for the treatment of stress urinary incontinence. JAMA Surg. 150, 1167 (2015).

    PubMed  Google Scholar 

  19. 19.

    Morling, J. R. et al. Adverse events after first, single, mesh and non-mesh surgical procedures for stress urinary incontinence and pelvic organ prolapse in Scotland, 1997–2016: a population-based cohort study. Lancet 389, 629–640 (2017).

    PubMed  Google Scholar 

  20. 20.

    Keltie, K. et al. Complications following vaginal mesh procedures for stress urinary incontinence: an 8 year study of 92,246 women. Sci. Rep. 7, 12015 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Maher, C. et al. Surgery for women with apical vaginal prolapse. Cochrane Database Syst. Rev. 10, CD012376 (2016).

    PubMed  Google Scholar 

  22. 22.

    Mucowski, S. J., Jurnalov, C. & Phelps, J. Y. Use of vaginal mesh in the face of recent FDA warnings and litigation. Am. J. Obstet. Gynecol. 203, 103.e1–103.e4 (2010).

    Google Scholar 

  23. 23.

    Food and Drug Administration. Serious complications associated with transvaginal placement of surgical mesh for pelvic organ prolapse: FDA safety communication (FDA, 2011).

  24. 24.

    Sedrakyan, A., Chughtai, B. & Mao, J. Regulatory warnings and use of surgical mesh in pelvic organ prolapse. JAMA Intern. Med. 176, 275 (2016).

    PubMed  Google Scholar 

  25. 25.

    Scottish Independent Review. Scottish Independent Review of the use, safety and efficacy of transvaginal mesh implants in the treatment of stress urinary incontinence and pelvic organ prolapse in women (2017).

  26. 26.

    Wall, L. L. & Brown, D. The perils of commercially driven surgical innovation. Am. J. Obstet. Gynecol. 202, 30.e1–4 (2010).

    Google Scholar 

  27. 27.

    Danish Medicines Agency. Withdrawal of vaginal mesh. Laegemiddelstyrelsen (2019).

  28. 28.

    Gardner, A. B., Lee, S. K. C., Woods, E. C. & Acharya, A. P. Biomaterials-based modulation of the immune system. Biomed. Res. Int. 2013, 1–7 (2013).

    Google Scholar 

  29. 29.

    Nolfi, A. L. et al. Host response to synthetic mesh in women with mesh complications. Am. J. Obstet. Gynecol. 215, 206.e1–206.e8 (2016).

    Google Scholar 

  30. 30.

    Kelly, M., Macdougall, K., Olabisi, O. & McGuire, N. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility. Int. Urogynecol. J. 28, 171–180 (2017).

    PubMed  Google Scholar 

  31. 31.

    Brown, B. N. & Badylak, S. F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 9, 4948–4955 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    de Almeida, S. H. M., Rodrigues, M. A. F., Gregório, É., Crespígio, J. & Moreira, H. A. Influence of sling material on inflammation and collagen deposit in an animal model. Int. J. Urol. 14, 1040–1043 (2007).

    PubMed  Google Scholar 

  33. 33.

    Faulk, D. M. et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35, 8585–8595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mariani, E., Lisignoli, G., Borzì, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).

    CAS  PubMed Central  Google Scholar 

  35. 35.

    Abed, H. et al. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int. Urogynecol. J. 22, 789–798 (2011).

    PubMed  Google Scholar 

  36. 36.

    Olsen, A., Smith, V., Bergstrom, J., Colling, J. & Clark, A. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89, 501–506 (1997).

    CAS  PubMed  Google Scholar 

  37. 37.

    Milani, A. L., Damoiseaux, A., IntHout, J., Kluivers, K. B. & Withagen, M. I. J. Long-term outcome of vaginal mesh or native tissue in recurrent prolapse: a randomized controlled trial. Int. Urogynecol. J. 29, 847–858 (2018).

    PubMed  Google Scholar 

  38. 38.

    MacDonald, S., Terlecki, R., Costantini, E. & Badlani, G. Complications of transvaginal mesh for pelvic organ prolapse and stress urinary incontinence: tips for prevention, recognition, and management. Eur. Urol. Focus. 2, 260–267 (2016).

    PubMed  Google Scholar 

  39. 39.

    Nygaard, I. et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse. JAMA 309, 2016–2024 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Izett-Kay, M. L. et al. Long-term mesh complications and reoperation after laparoscopic mesh sacrohysteropexy: a cross-sectional study. Int. Urogynecol. J. 31, 2595–2602 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Fall, M. et al. EAU guidelines on chronic pelvic pain. Eur. Urol. 57, 35–48 (2010).

    PubMed  Google Scholar 

  42. 42.

    Breivik, H., Collett, B., Ventafridda, V., Cohen, R. & Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333 (2006).

    PubMed  Google Scholar 

  43. 43.

    Maher, C. et al. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2, CD012079 (2016).

    PubMed  Google Scholar 

  44. 44.

    Caquant, F. et al. Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J. Obstet. Gynaecol. Res. 34, 449–456 (2008).

    PubMed  Google Scholar 

  45. 45.

    Clavé, A. et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int. Urogynecol. J. 21, 261–270 (2010).

    PubMed  Google Scholar 

  46. 46.

    Artsen, A. M. et al. Mesh induced fibrosis: the protective role of T regulatory cells. Acta Biomater. 96, 203–210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Goodall, E. J., Cartwright, R., Stratta, E. C., Jackson, S. R. & Price, N. Outcomes after laparoscopic removal of retropubic midurethral slings for chronic pain. Int. Urogynecol. J. 30, 1323–1328 (2019).

    PubMed  Google Scholar 

  48. 48.

    Barski, D. & Deng, D. Y. Management of mesh complications after SUI and POP repair: review and analysis of the current literature. Biomed Res. Int. 2015, 831285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Javadian, P. & O’Leary, D. Vaginally placed meshes: a review of their complications, risk factors, and management. Curr. Obstet. Gynecol. Rep. 4, 96–101 (2015).

    Google Scholar 

  50. 50.

    Sirls, L. T. et al. Exploring predictors of mesh exposure after vaginal prolapse repair. Female Pelvic Med. Reconstr. Surg. 19, 206–209 (2013).

    PubMed  Google Scholar 

  51. 51.

    Elmér, C. et al. Risk factors for mesh complications after trocar guided transvaginal mesh kit repair of anterior vaginal wall prolapse. Neurourol. Urodyn. 31, 1165–1169 (2012).

    PubMed  Google Scholar 

  52. 52.

    Cundiff, G. W. et al. Risk factors for mesh/suture erosion following sacral colpopexy. Am. J. Obstet. Gynecol. 199, 688.e1–688.e5 (2008).

    Google Scholar 

  53. 53.

    Deng, T., Liao, B., Luo, D., Shen, H. & Wang, K. Risk factors for mesh erosion after female pelvic floor reconstructive surgery: a systematic review and meta-analysis. BJU Int. 117, 323–343 (2016).

    PubMed  Google Scholar 

  54. 54.

    Kokanali, M. K. et al. Risk factors for mesh erosion after vaginal sling procedures for urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 177, 146–150 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Rao, A., Avula, M. & Grainger, D. in Host Response to Biomaterials Ch. 11 (ed. Badylak, S. F.) 269–313 (Academic, 2015).

  56. 56.

    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  57. 57.

    Wilkins, J., Ghosh, P., Vivar, J., Chakraborty, B. & Ghosh, S. Exploring the associations between systemic inflammation, obesity and healthy days: a health related quality of life (HRQOL) analysis of NHANES 2005–2008. BMC Obes. 5, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Patnam, R. et al. Effect of BMI on clinical outcomes following minimally invasive sacrocolpopexy. J. Robot. Surg. 15, 63–68 (2021).

    PubMed  Google Scholar 

  59. 59.

    Davila, G. W., Baessler, K., Cosson, M. & Cardozo, L. Selection of patients in whom vaginal graft use may be appropriate. Int. Urogynecol. J. 23, 7–14 (2012).

    Google Scholar 

  60. 60.

    Bradley, C. S., Visco, A. G., Weber LeBrun, E. E. & Barber, M. D. The pelvic floor disorders registry: purpose and development. Female Pelvic Med. Reconstr. Surg. 22, 77–82 (2016).

    PubMed  Google Scholar 

  61. 61.

    Silva, M. M. et al. Systemic inflammatory reaction after silicone breast implant. Aesthetic Plast. Surg. 35, 789–794 (2011).

    PubMed  Google Scholar 

  62. 62.

    Yao, Z., Lin, T.-H., Pajarinen, J., Sato, T. & Goodman, S. in Host Response to Biomaterials Ch. 12 (ed. Badylak, S. F.) 315–373 (Academic, 2015).

  63. 63.

    Tennyson, L. et al. Characterization of the T-cell response to polypropylene mesh in women with complications. Am. J. Obstet. Gynecol. 220, 187.e1–187.e8 (2019).

    CAS  Google Scholar 

  64. 64.

    Robichaud, A. et al. Avoidance of the vaginal incision site for mesh placement in vaginal wall prolapse surgery: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 131–136 (2017).

    PubMed  Google Scholar 

  65. 65.

    Leanza, V., Zanghì, G., Vecchio, R. & Leanza, G. How to prevent mesh erosion in transobturator Tension-Free Incontinence Cystocoele Treatment (TICT): a comparative survey. G. Chir. 36, 21–25 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Achtari, C., Hiscock, R., O’Reilly, B. A., Schierlitz, L. & Dwyer, P. L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 16, 389–394 (2005).

    Google Scholar 

  67. 67.

    Chung, L., Maestas, D. Jr, Housseau, F. & Elisseeff, J. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Londono, R. & Badylak, S. F. in Host Response to Biomaterials Ch. 1 (ed. Badylak, S. F.) 1–12 (Academic, 2015).

  69. 69.

    Swartzlander, M. D. et al. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41, 26–36 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Horbett, T. A. Chapter 13 Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovasc. Pathol. 2, 137–148 (1993).

    Google Scholar 

  71. 71.

    Al-Maawi, S., Orlowska, A., Sader, R., James Kirkpatrick, C. & Ghanaati, S. In vivo cellular reactions to different biomaterials — physiological and pathological aspects and their consequences. Semin. Immunol. 29, 49–61 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS  PubMed  Google Scholar 

  73. 73.

    Gurevich, D. B. et al. Live imaging the Foreign Body Response reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 133, jcs236075 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Chung, L. et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl Med. 12, eaax3799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hachim, D. et al. Effects of aging upon the host response to implants. J. Biomed. Mater. Res. A 105, 1281–1292 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016).

    CAS  Google Scholar 

  78. 78.

    Duluc, D. et al. Functional diversity of human vaginal APC subsets in directing T-cell responses. Mucosal Immunol. 6, 626–638 (2013).

    CAS  PubMed  Google Scholar 

  79. 79.

    Heymann, F. et al. Polypropylene mesh implantation for hernia repair causes myeloid cell-driven persistent inflammation. JCI Insight 4, e123862 (2019).

    PubMed Central  Google Scholar 

  80. 80.

    Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Wang, A. C., Lee, L.-Y., Lin, C.-T. & Chen, J.-R. A histologic and immunohistochemical analysis of defective vaginal healing after continence taping procedures: a prospective case-controlled pilot study. Am. J. Obstet. Gynecol. 191, 1868–1874 (2004).

    PubMed  Google Scholar 

  82. 82.

    Wang, A., Lin, C.T., Ko, Y.S. & Lin, Y.H. Effector mechanisms of the site specific graft rejection after intravaginal mesh implantation — a long-term prospective case-controlled study [abstract 57]. in International Continence Society (2010).

  83. 83.

    Kavvadias, T., Kaemmer, D., Klinge, U., Kuschel, S. & Schuessler, B. Foreign body reaction in vaginally eroded and noneroded polypropylene suburethral slings in the female: a case series. Int. Urogynecol. J. Pelvic Floor Dysfunct. 20, 1473–1476 (2009).

    PubMed  Google Scholar 

  84. 84.

    Smith, T. M. et al. Pathologic evaluation of explanted vaginal mesh. Female Pelvic Med. Reconstr. Surg. 19, 238–241 (2013).

    PubMed  Google Scholar 

  85. 85.

    Elmer, C., Blomgren, B., Falconer, C., Zhang, A. & Altman, D. Histological inflammatory response to transvaginal polypropylene mesh for pelvic reconstructive surgery. J. Urol. 181, 1189–1195 (2009).

    PubMed  Google Scholar 

  86. 86.

    Shi, C. et al. Clinical analysis of pain after transvaginal mesh surgery in patients with pelvic organ prolapse. BMC Womens Health 21, 46 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Crosby, E. C. et al. Symptom resolution after operative management of complications from transvaginal mesh. Obstet. Gynecol. 123, 134–139 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Holihan, J. L. et al. Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J. Surg. 40, 89–99 (2016).

    PubMed  Google Scholar 

  89. 89.

    Wise, J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds. BMJ 362, k4104 (2018).

    PubMed  Google Scholar 

  90. 90.

    Sevinç, B., OkuŞ, A., Ay, S., Aksoy, N. & Karahan, Ö. Randomized prospective comparison of long-term results of onlay and sublay mesh repair techniques for incisional hernia. Turkish J. Surg. 34, 17–20 (2018).

    Google Scholar 

  91. 91.

    de Landsheere, L. et al. Surgical intervention after transvaginal Prolift mesh repair: retrospective single-center study including 524 patients with 3 years’ median follow-up. Am. J. Obstet. Gynecol. 206, 83.e1–83.e7 (2012).

    Google Scholar 

  92. 92.

    Wang, Y. et al. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity. Nat. Commun. 6, 6100 (2015).

    CAS  PubMed  Google Scholar 

  93. 93.

    Mselle, T. F. et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin. Immunol. 124, 69–76 (2007).

    CAS  PubMed  Google Scholar 

  94. 94.

    Johansson, E. L., Rudin, A., Wassén, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Usala, S. J., Usala, F. O., Haciski, R., Holt, J. A. & Schumacher, G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J. Reprod. Med. 34, 292–294 (1989).

    CAS  PubMed  Google Scholar 

  96. 96.

    Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).

    CAS  PubMed  Google Scholar 

  97. 97.

    Ghosh, M., Rodriguez-Garcia, M. & Wira, C. R. The immune system in menopause: pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 142, 171–175 (2014).

    CAS  PubMed  Google Scholar 

  98. 98.

    Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178, 2572–2578 (2007).

    CAS  PubMed  Google Scholar 

  99. 99.

    Veit-Rubin, N. et al. Abnormal vaginal microbiome associated with vaginal mesh complications. Neurourol. Urodyn. 38, 2255–2263 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Miller, E. A., Beasley, D. E., Dunn, R. R. & Archie, E. A. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol. 7, 1936 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Diez-Itza, I., Aizpitarte, I. & Becerro, A. Risk factors for the recurrence of pelvic organ prolapse after vaginal surgery: a review at 5 years after surgery. Int. Urogynecol. J. Pelvic Floor Dysfunct. 18, 1317–1324 (2007).

    CAS  PubMed  Google Scholar 

  102. 102.

    Whiteside, J. L., Weber, A. M., Meyn, L. A. & Walters, M. D. Risk factors for prolapse recurrence after vaginal repair. Am. J. Obstet. Gynecol. 191, 1533–1538 (2004).

    PubMed  Google Scholar 

  103. 103.

    Alperin, M., Cook, M., Tuttle, L. J., Esparza, M. C. & Lieber, R. L. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am. J. Obstet. Gynecol. 215, 312.e1–9 (2016).

    Google Scholar 

  104. 104.

    Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  105. 105.

    Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Geller, E. J., Babb, E., Nackley, A. G. & Zolnoun, D. Incidence and risk factors for pelvic pain after mesh implant surgery for the treatment of pelvic floor disorders. J. Minim. Invasive Gynecol. 24, 67–73 (2017).

    PubMed  Google Scholar 

  108. 108.

    Kasyan, G., Abramyan, K., Popov, A. A., Gvozdev, M. & Pushkar, D. Mesh-related and intraoperative complications of pelvic organ prolapse repair. Cent. Eur. J. Urol. 67, 296–301 (2014).

    Google Scholar 

  109. 109.

    Sendama, W. The effect of ageing on the resolution of inflammation. Ageing Res. Rev. 57, 101000 (2020).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Sebastian-Valverde, M. & Pasinetti, G. M. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells 9, 1552 (2020).

    CAS  PubMed Central  Google Scholar 

  111. 111.

    Khadzhieva, M. B., Kolobkov, D. S., Kamoeva, S. V. & Salnikova, L. E. Expression changes in pelvic organ prolapse: a systematic review and in silico study. Sci. Rep. 7, 7668 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Zhao, Y., Xia, Z., Lin, T. & Yin, Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ 8, e9773 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Mouthuy, P.-A. et al. Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials 109, 55–68 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Wattamwar, P. P. & Dziubla, T. D. in Engineering Biomaterials for Regenerative Medicine (ed. Bhatia, S.) 161–192 (Springer, 2012).

  115. 115.

    Iakovlev, V. V., Guelcher, S. A. & Bendavid, R. Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients. J. Biomed. Mater. Res. B Appl. Biomater. 105, 237–248 (2017).

    CAS  PubMed  Google Scholar 

  116. 116.

    Cochran, D. & Dziubla, T. D. in Antioxidant Polymers Ch. 15 (eds Cirilo, G. & Iemma, F.) 459–484 (Wiley, 2012).

  117. 117.

    Davison, N. L., Barrère-de Groot, F. & Grijpma, D. W. in Tissue Engineering Ch. 6 (eds Van Blitterswijk, C. A. & De Boer, J.) 177–215 (Academic, 2014).

  118. 118.

    Talley, A. D., Rogers, B. R., Iakovlev, V., Dunn, R. F. & Guelcher, S. A. Oxidation and degradation of polypropylene transvaginal mesh. J. Biomater. Sci. Polym. Ed. 28, 444–458 (2017).

    CAS  PubMed  Google Scholar 

  119. 119.

    Costello, C. R., Bachman, S. L., Ramshaw, B. J. & Grant, S. A. Materials characterization of explanted polypropylene hernia meshes. J. Biomed. Mater. Res. B 83, 44–49 (2007).

    CAS  Google Scholar 

  120. 120.

    Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996).

    PubMed  Google Scholar 

  121. 121.

    Thames, S. F., White, J. B. & Ong, K. L. The myth: in vivo degradation of polypropylene-based meshes. Int. Urogynecol. J. 28, 285–297 (2017).

    PubMed  Google Scholar 

  122. 122.

    Milleret, V. et al. Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers. Acta Biomater. 24, 343–351 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    Serpooshan, V. et al. Protein corona influences cell-biomaterial interactions in nanostructured tissue engineering Scaffolds. Adv. Funct. Mater. 25, 4379–4389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Meder, F., Brandes, C., Treccani, L. & Rezwan, K. Controlling protein–particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups. Acta Biomater. 9, 5780–5787 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Feola, A. et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG 120, 224–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Liang, R. et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120, 233–243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Sumner, D. R. & Galante, J. O. Determinants of stress shielding. Clin. Orthop. Relat. Res. 274, 202–212 (1992).

    Google Scholar 

  128. 128.

    Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    CAS  PubMed  Google Scholar 

  129. 129.

    Ji, Y. et al. Substrate stiffness affects the immunosuppressive and trophic function of hMSCs via modulating cytoskeletal polymerization and tension. Biomater. Sci. 7, 5292–5300 (2019).

    CAS  PubMed  Google Scholar 

  130. 130.

    Blakney, A. K., Swartzlander, M. D. & Bryant, S. J. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100, 1375–1386 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Roman, S. et al. Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse. Neurourol. Urodyn. 38, 107–115 (2019).

    CAS  PubMed  Google Scholar 

  132. 132.

    Kruger, J. A., Yan, X., Li, X., Nielsen, P. M. F. & Nash, M. P. in Biomechanics of the Female Pelvic Floor Ch. 18 (eds Hoyte, L. & Damaser, M.) 367–382 (Academic, 2016).

  133. 133.

    Kruger, J., Hayward, L., Nielsen, P., Loiselle, D. & Kirton, R. Design and development of a novel intra-vaginal pressure sensor. Int. Urogynecol. J. 24, 1715–1721 (2013).

    PubMed  Google Scholar 

  134. 134.

    Velayudhan, S., Martin, D. & Cooper-White, J. Evaluation of dynamic creep properties of surgical mesh prostheses — uniaxial fatigue. J. Biomed. Mater. Res. B 91, 287–296 (2009).

    Google Scholar 

  135. 135.

    Liang, R., Knight, K., Abramowitch, S. & Moalli, P. A. Exploring the basic science of prolapse meshes. Curr. Opin. Obstet. Gynecol. 28, 413–419 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Durst, P. J. & Heit, M. H. Polypropylene mesh predicts mesh/suture exposure after sacrocolpopexy independent of known risk factors: a retrospective case-control study. Female Pelvic Med. Reconstr. Surg. 24, 360–366 (2018).

    PubMed  Google Scholar 

  137. 137.

    Goldstein, H. S. Selecting the right mesh. Hernia 3, 23–26 (1999).

    Google Scholar 

  138. 138.

    Barone, W. R., Moalli, P. A. & Abramowitch, S. D. Textile properties of synthetic prolapse mesh in response to uniaxial loading. Am. J. Obstet. Gynecol. 215, 326.e1–326.e9 (2016).

    Google Scholar 

  139. 139.

    Amid, P. K. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1, 15–21 (1997).

    Google Scholar 

  140. 140.

    Klinge, U. & Klosterhalfen, B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 16, 251–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Otto, J., Kaldenhoff, E., Kirschner-Hermanns, R., Mühl, T. & Klinge, U. Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. J. Biomed. Mater. Res. A 102, 1079–1084 (2014).

    PubMed  Google Scholar 

  142. 142.

    Junge, K. et al. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbecks Arch. Surg. 397, 255–270 (2012).

    PubMed  Google Scholar 

  143. 143.

    Manodoro, S. et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120, 244–250 (2013).

    CAS  PubMed  Google Scholar 

  144. 144.

    Klinge, U. et al. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 103, 208–214 (2002).

    CAS  PubMed  Google Scholar 

  145. 145.

    US Food and Drug Administration. Search the releasable 510(k) database (FDA, 2018).

  146. 146.

    Institute of Medicine. Medical Devices and the Public’s Health (National Academies, 2011).

  147. 147.

    International Consortium of Investigative Journalists. Medical devices harm patients worldwide as governments fail on safety. ICIJ (2018).

  148. 148.

    Heneghan, C. et al. Transvaginal mesh failure: lessons for regulation of implantable devices. BMJ 359, j5515 (2017).

    PubMed  Google Scholar 

  149. 149.

    Zargar, N. & Carr, A. The regulatory ancestral network of surgical meshes. PLoS ONE 13, e0197883 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Ostergard, D. R. Vaginal mesh grafts and the Food and Drug Administration. Int. Urogynecol. J. 21, 1181–1183 (2010).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Heneghan, C. et al. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process. BMJ Open 7, e017125 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Barber, S. Surgical mesh implants (House of Commons Library, 2018).

  153. 153.

    Obstetrical and Gynecological Devices. Reclassification of Surgical mesh for transvaginal pelvic organ prolapse repair; final order. Fed. Regist. 81, 353–361 (2016).

    Google Scholar 

  154. 154.

    US Food and Drug Administration. Code of Federal Regulations — Title 21 (FDA, 2019).

  155. 155.

    Hartung, T. & Daston, G. Are in vitro tests suitable for regulatory use? Toxicol. Sci. 111, 233–237 (2009).

    CAS  PubMed  Google Scholar 

  156. 156.

    International Organization for Standardization. ISO 10993-6:2016: biological evaluation of medical devices — Part 6: Tests for local effects after implantation (ISO, 2020).

  157. 157.

    International Organization for Standardization. ISO 10993-11:2006: biological evaluation of medical devices — Part 11: Tests for systemic toxicity (ISO, 2020).

  158. 158.

    Hast, M. W., Zuskov, A. & Soslowsky, L. J. The role of animal models in tendon research. Bone Jt. Res. 3, 193–202 (2014).

    CAS  Google Scholar 

  159. 159.

    Pierce, L. M. et al. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am. J. Obstet. Gynecol. 200, 546.e1–546.e8 (2009).

    Google Scholar 

  160. 160.

    Ostergard, D. R. Degradation, infection and heat effects on polypropylene mesh for pelvic implantation: what was known and when it was known. Int. Urogynecol. J. 22, 771–774 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Medicines and Healthcare Products Regulatory Agency. Yellow card scheme. Yellow Card (2021).

  162. 162.

    US Food and Drug Administration. MAUDE — manufacturer and user facility device experience (FDA, 2021).

  163. 163.

    Rimmer, A. Vaginal mesh procedures need compulsory register, says Royal College. BMJ 360, k586 (2018).

    PubMed  Google Scholar 

  164. 164.

    National Joint Registry. Welcome to the national joint registry (NJR). NJR (2020).

  165. 165.

    NHS Digital. Breast and cosmetic implant registry (NHS Digital, 2021).

  166. 166.

    Hansen, U. D., Gradel, K. O. & Larsen, M. D. Danish urogynaecological database. Clin. Epidemiol. 8, 709–712 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Daly, J. O., Ahern, S., Herkes, R. & O’Connell, H. E. The Australasian pelvic floor procedure registry: not before time. Aust. N. Zeal. J. Obstet. Gynaecol. 59, 473–476 (2019).

    Google Scholar 

  168. 168.

    New Zealand Ministry of Health. Surgical mesh registry: cost benefit analysis (Deloitte, 2018).

  169. 169.

    Bako, A. & Dhar, R. Review of synthetic mesh-related complications in pelvic floor reconstructive surgery. Int. Urogynecol. J. 20, 103–111 (2009).

    Google Scholar 

  170. 170.

    International Association for the Study of Pain. Definition of pain. IASP (2020).

  171. 171.

    Haylen, B. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) and grafts in female pelvic floor surgery. Neurourol. Urodyn. 30, 2–12 (2011).

    PubMed  Google Scholar 

Download references

Author information




R.E.A., H.L.M. and S.J.B.S. researched data for the article, R.E.A., M.L.I.-K., R.C. and S.J.B.S. made substantial contributions to the discussion of the content of the article, R.E.A., M.I., H.L.M. and S.S. wrote the article, R.E.A., M.I., H.L.M., R.C. and S.S. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Roxanna E. Abhari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks S. Takahashi, P. Moalli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Biocompatibility is the ability of a material to perform its intended function with an appropriate host immune response for a specific application.

Microporous meshes

According to the widely used Amid classification, microporous mesh refers to mesh that contains pores that are <10 microns in size.

M1 macrophages

Classically activated macrophages typically associated with pro-inflammatory responses in in vitro studies.

M2 macrophages

Alternatively activated macrophages that typically induce pro-resolving and anti-inflammatory responses in in vitro studies.

TH1 cytokines

For example, IFNγ and TNF are typically associated with pro-inflammatory responses driving immune cell activation and maturation.

Vroman effect

The sequence in which serum proteins adsorb to a surface; proteins that adsorb earlier are competitively displaced by other proteins with stronger binding affinities.

Mesh knot

Refers to a dense area of mesh fibres immediately adjacent to each other.

510k route

Refers to a premarket submission process made to the FDA, demonstrating that the device that is to be marketed is as safe and effective (that is, substantially equivalent) to a legally marketed device.

Predicate device

A medical device that is used as a point of comparison for new medical devices seeking approval through the FDA’s 510k premarket clearance pathway.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abhari, R.E., Izett-Kay, M.L., Morris, H.L. et al. Host–biomaterial interactions in mesh complications after pelvic floor reconstructive surgery. Nat Rev Urol 18, 725–738 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing