Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular senescence as a possible link between prostate diseases of the ageing male

Subjects

Abstract

Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome — known as the senescence-associated secretory phenotype — is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.

Key points

  • BPH and prostate cancer are two common disorders affecting the prostate and both share an increased incidence with advancing age.

  • Ageing, along with other sources of cellular damage (infection, toxins, chemical or physical injury), results in cellular senescence and the accumulation of senescent cells in tissues.

  • Senescent cells, although unable to replicate, remain metabolically active and secrete a raft of inflammatory mediators, known as the senescence-associated secretory phenotype (SASP).

  • Senescent cells have been detected using senescence markers in almost all human samples of BPH, and the role of several components of the SASP has been established in BPH initiation and progression.

  • The role of cellular senescence in prostate cancer is less clearly established, and senescence seems to act mainly through the influence of the senescent stroma on adjacent epithelial cells, favouring cancer initiation, progression and metastasis.

  • The demonstration of the role of senescence in both age-related prostatic diseases presents new therapeutic opportunities with treatments aimed at removing senescent cells (senolytics) and/or targeting components of the SASP (SASP inhibitors or senomorphics).

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Differences between the young and ageing hypertrophied prostate.
Fig. 2: Chaotic architecture of the transition zone in the ageing hypertrophied prostate.
Fig. 3: The implications of senescent cells in BPH and prostate cancer.
Fig. 4: Key signal transducers activated by the senescence-associated secretory phenotype.

References

  1. Berry, S. J., Coffey, D. S., Walsh, P. C. & Ewing, L. L. The development of human benign prostatic hyperplasia with age. J. Urol. 132, 474–479 (1984).

    CAS  PubMed  Article  Google Scholar 

  2. Soos, G. et al. The prevalence of prostate carcinoma and its precursor in Hungary: an autopsy study. Eur. Urol. 48, 739–744 (2005).

    PubMed  Article  Google Scholar 

  3. Bell, K. J. L., Del Mar, C., Wright, G., Dickinson, J. & Glasziou, P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int. J. Cancer 137, 1749–1757 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. McNeal, J. E. The zonal anatomy of the prostate. Prostate 2, 35–49 (1981).

    CAS  PubMed  Article  Google Scholar 

  5. McNeal, J. E., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol. 12, 897–906 (1988).

    CAS  PubMed  Article  Google Scholar 

  6. Turkbey, B. et al. Age-related changes in prostate zonal volumes as measured by high-resolution magnetic resonance imaging (MRI): a cross-sectional study in over 500 patients. BJU Int. 110, 1642–1647 (2012).

    PubMed  Article  Google Scholar 

  7. De Nunzio, C. et al. The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur. Urol. 60, 106–117 (2011).

    PubMed  Article  CAS  Google Scholar 

  8. Cai, T. et al. Current knowledge of the potential links between inflammation and prostate cancer. Int. J. Mol. Sci. 20, 3833 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  9. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Article  Google Scholar 

  11. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  PubMed  Article  Google Scholar 

  13. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A. Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9 (2014).

    PubMed  Article  Google Scholar 

  14. Huda, N. et al. Hepatic senescence, the good and the bad. World J. Gastroenterol. 25, 5069–5081 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 780–785 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Adamus, J., Aho, S., Meldrum, H., Bosko, C. & Lee, J.-M. p16INK4A influences the aging phenotype in the living skin equivalent. J. Invest. Dermatol. 134, 1131–1133 (2014).

    CAS  PubMed  Article  Google Scholar 

  21. Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).

    CAS  PubMed  Article  Google Scholar 

  22. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Smith, J. R. & Pereira-Smith, O. M. Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63–67 (1996).

    CAS  PubMed  Article  Google Scholar 

  24. Byun, H.-O. et al. Cathepsin D and eukaryotic translation elongation factor 1 as promising markers of cellular senescence. Cancer Res. 69, 4638–4647 (2009).

    CAS  PubMed  Article  Google Scholar 

  25. Pruitt, F. L. et al. Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium. Prostate 73, 476–488 (2013).

    CAS  PubMed  Article  Google Scholar 

  26. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Childs, B. G., Bussian, T. J. & Baker, D. J. Cellular Identification and quantification of senescence-associated β-galactosidase activity in vivo. Methods Mol. Biol. 1896, 31–38 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Schwarze, S. R., Fu, V. X., Desotelle, J. A., Kenowski, M. L. & Jarrard, D. F. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7, 816–823 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Halvorsen, O. J., Haukaas, S., Høisæter, P. Å. & Akslen, L. A. Expression of p 16 protein in prostatic adenocarcinomas, intraepithelial neoplasia, and benign/hyperplastic glands. Urol. Oncol. 3, 59–66 (1997).

    CAS  PubMed  Article  Google Scholar 

  32. Zhang, Z., Rosen, D. G., Yao, J. L., Huang, J. & Liu, J. Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod. Pathol. 19, 1339–1343 (2006).

    CAS  PubMed  Article  Google Scholar 

  33. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Pernicová, Z. et al. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13, 526–536 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Ewald, J. A. et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate 73, 337–345 (2013).

    CAS  PubMed  Article  Google Scholar 

  37. Parisotto, M. et al. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J. Exp. Med. 215, 1749–1763 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Hensley, P. J. & Kyprianou, N. Modeling prostate cancer in mice: limitations and opportunities. J. Androl. 33, 133–144 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51–57 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Oliveira, D. S. M. et al. The mouse prostate: a basic anatomical and histological guideline. Bosn. J. Basic. Med. Sci. 16, 8–13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi, J. et al. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology 56, 160–166 (2000).

    CAS  PubMed  Article  Google Scholar 

  42. Castro, P., Giri, D., Lamb, D. & Ittmann, M. Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55, 30–38 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. Vital, P., Castro, P., Tsang, S. & Ittmann, M. The senescence-associated secretory phenotype promotes benign prostatic hyperplasia. Am. J. Pathol. 184, 721–731 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Jiang, S., Song, C. S. & Chatterjee, B. Stimulation of prostate cells by the senescence phenotype of epithelial and stromal cells: implication for benign prostate hyperpalsia. FASEB BioAdvances 1, 353–363 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shapiro, E., Becich, M. J., Hartanto, V. & Lepor, H. The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J. Urol. 147, 1293–1297 (1992).

    CAS  PubMed  Article  Google Scholar 

  46. Vernier, M. et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 25, 41–50 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Deschênes-Simard, X. et al. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev. 27, 900–915 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Krtolica, A. & Campisi, J. Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol. 11, 109–116 (2003).

    CAS  PubMed  Google Scholar 

  49. McNeal, J. E. Origin and evolution of benign prostatic enlargement. Invest. Urol. 15, 340–345 (1978).

    CAS  PubMed  Google Scholar 

  50. Untergasser, G., Madersbacher, S. & Berger, P. Benign prostatic hyperplasia: age-related tissue-remodeling. Exp. Gerontol. 40, 121–128 (2005).

    PubMed  Article  Google Scholar 

  51. Bierhoff, E. et al. Morphological analogies of fetal prostate stroma and stromal nodules in BPH. Prostate 31, 234–240 (1997).

    CAS  PubMed  Article  Google Scholar 

  52. Cunha, G. R. & Ricke, W. A. A historical perspective on the role of stroma in the pathogenesis of benign prostatic hyperplasia. Differ. Res. Biol. Divers. 82, 168–172 (2011).

    CAS  Article  Google Scholar 

  53. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    PubMed  Article  CAS  Google Scholar 

  54. Felka, T. et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis Cartilage 24, 1200–1209 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Price, J. S. et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65 (2002).

    CAS  PubMed  Article  Google Scholar 

  56. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Harman, S. M. et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 86, 724–731 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. Roehrborn, C. G., Marks, L. & Harkaway, R. Enlarged prostate: a landmark national survey of its prevalence and impact on US men and their partners. Prostate Cancer Prostatic Dis. 9, 30–34 (2006).

    CAS  PubMed  Article  Google Scholar 

  59. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    CAS  PubMed  Article  Google Scholar 

  60. Kristal, A. R. et al. Serum steroid and sex hormone-binding globulin concentrations and the risk of incident benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am. J. Epidemiol. 168, 1416–1424 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  61. Boyle, P. et al. Endogenous and exogenous testosterone and the risk of prostate cancer and increased prostate-specific antigen (PSA) level: a meta-analysis. BJU Int. 118, 731–741 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. Mohamad, N.-V. et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 22, 129–140 (2019).

    CAS  PubMed  Article  Google Scholar 

  63. Chen, Y.-Q. et al. Testosterone ameliorates vascular aging via the Gas6/Axl signaling pathway. Aging 12, 16111–16125 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Article  Google Scholar 

  65. De Nunzio, C., Presicce, F. & Tubaro, A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat. Rev. Urol. 13, 613–626 (2016).

    PubMed  Article  CAS  Google Scholar 

  66. Nickel, J. C. et al. Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU Int. 87, 797–805 (2001).

    CAS  PubMed  Article  Google Scholar 

  67. Nickel, J. C. Prostatitis. Can. Urol. Assoc. J. 5, 306–315 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  68. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    PubMed  Article  Google Scholar 

  69. Robert, G. et al. Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69, 1774–1780 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  70. Delongchamps, N. B. et al. Evaluation of prostatitis in autopsied prostates — is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J. Urol. 179, 1736–1740 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  71. McConnell, J. D. et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N. Engl. J. Med. 349, 2387–2398 (2003).

    CAS  PubMed  Article  Google Scholar 

  72. Torkko, K. C. et al. Prostate biopsy markers of inflammation are associated with risk of clinical progression of benign prostatic hyperplasia: findings from the MTOPS study. J. Urol. 194, 454–461 (2015).

    PubMed  Article  Google Scholar 

  73. Vesalainen, S., Lipponen, P., Talja, M. & Syrjänen, K. Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur. J. Cancer 30, 1797–1803 (1994).

    Article  Google Scholar 

  74. Irani, J. et al. High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Urology 54, 467–472 (1999).

    CAS  PubMed  Article  Google Scholar 

  75. Rani, A., Dasgupta, P. & Murphy, J. J. Prostate cancer: the role of inflammation and chemokines. Am. J. Pathol. 189, 2119–2137 (2019).

    CAS  PubMed  Article  Google Scholar 

  76. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2017).

    PubMed  Article  Google Scholar 

  77. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. De Marzo, A. M., Haffner, M. C., Lotan, T. L., Yegnasubramanian, S. & Nelson, W. G. Premalignancy in prostate cancer: rethinking what we know. Cancer Prev. Res. 9, 648–656 (2016).

    Article  CAS  Google Scholar 

  79. Gerrin, S. J., Sowalsky, A. G., Balk, S. P. & Ye, H. Mutation profiling indicates high grade prostatic intraepithelial neoplasia as distant precursors of adjacent invasive prostatic adenocarcinoma: mutation profile of HGPIN. Prostate 76, 1227–1236 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    CAS  PubMed  Article  Google Scholar 

  81. Kaur, H. B. et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod. Pathol. 31, 1539–1552 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Kaur, H. B. et al. TP53 missense mutation is associated with increased tumor-infiltrating T cells in primary prostate cancer. Hum. Pathol. 87, 95–102 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Patarroyo, M., Tryggvason, K. & Virtanen, I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol. 12, 197–207 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. Sprenger, C. C. T. et al. Senescence-induced alterations of laminin chain expression modulate tumorigenicity of prostate cancer cells. Neoplasia 10, 1350–1361 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Platz, E. A. et al. A prospective study of chronic inflammation in benign prostate tissue and risk of prostate cancer: linked PCPT and SELECT cohorts. Cancer Epidemiol. Biomarkers Prev. 26, 1549–1557 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  86. Jiang, J. et al. The role of prostatitis in prostate cancer: meta-analysis. PLoS ONE 8, e85179 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. Langston, M. E. et al. A systematic review and meta-analysis of associations between clinical prostatitis and prostate cancer: new estimates accounting for detection bias. Cancer Epidemiol. Biomarkers Prev. 28, 1594–1603 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  88. de Bono, J. S. et al. Prostate carcinogenesis: inflammatory storms. Nat. Rev. Cancer 20, 455–469 (2020).

    PubMed  Article  CAS  Google Scholar 

  89. Shinohara, D. B. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol. 54, 729–731 (1982).

    CAS  PubMed  Article  Google Scholar 

  91. Liu, C., La Rosa, S. & Hagos, E. G. Oxidative DNA damage causes premature senescence in mouse embryonic fibroblasts deficient for Krüppel-like factor 4. Mol. Carcinog. 54, 889–899 (2015).

    CAS  PubMed  Article  Google Scholar 

  92. Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).

    CAS  PubMed  Article  Google Scholar 

  93. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).

    CAS  PubMed  Article  Google Scholar 

  94. Shariat, S. F. et al. Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58, 1008–1015 (2001).

    CAS  PubMed  Article  Google Scholar 

  95. Maynard, J. P. et al. IL8 expression is associated with prostate cancer aggressiveness and androgen receptor loss in primary and metastatic prostate cancer. Mol. Cancer Res. 18, 153–165 (2020).

    CAS  PubMed  Article  Google Scholar 

  96. Giri, D. & Ittmann, M. Interleukin-1alpha is a paracrine inducer of FGF7, a key epithelial growth factor in benign prostatic hyperplasia. Am. J. Pathol. 157, 249–255 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Giri, D. & Ittmann, M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am. J. Pathol. 159, 139–147 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Castro, P., Xia, C., Gomez, L., Lamb, D. J. & Ittmann, M. Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 60, 153–159 (2004).

    CAS  PubMed  Article  Google Scholar 

  99. Tominaga, K. & Suzuki, H. I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. 20, 5002 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  100. Royuela, M. et al. Transforming growth factor beta 1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma. Growth Factors 16, 101–110 (1998).

    CAS  PubMed  Article  Google Scholar 

  101. Untergasser, G. et al. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech. Ageing Dev. 126, 59–69 (2005).

    CAS  PubMed  Article  Google Scholar 

  102. Walenda, G. et al. TGF-beta1 does not induce senescence of multipotent mesenchymal stromal cells and has similar effects in early and late passages. PLoS ONE 8, e77656 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Wang, L. et al. Aberrant transforming growth factor-β activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cell Transl Med. 6, 394–404 (2017).

    CAS  Article  Google Scholar 

  104. Wang, R. et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging 11, 9442–9460 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Hu, S. et al. Evidence of TGF-β1 mediated epithelial-mesenchymal transition in immortalized benign prostatic hyperplasia cells. Mol. Membr. Biol. 31, 103–110 (2014).

    CAS  PubMed  Article  Google Scholar 

  106. Elliott, R. L. & Blobe, G. C. Role of transforming growth factor beta in human cancer. J. Clin. Oncol. 23, 2078–2093 (2005).

    CAS  PubMed  Article  Google Scholar 

  107. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  108. Zhang, H. et al. lncRNA MIR4435-2HG promotes cancer cell migration and invasion in prostate carcinoma by upregulating TGF-β1. Oncol. Lett. 18, 4016–4021 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Paller, C. et al. TGF-β receptor I inhibitor enhances response to enzalutamide in a pre-clinical model of advanced prostate cancer. Prostate 79, 31–43 (2019).

    CAS  PubMed  Article  Google Scholar 

  110. Romero, D. et al. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis 37, 18–29 (2016).

    CAS  PubMed  Article  Google Scholar 

  111. Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005).

    CAS  PubMed  Article  Google Scholar 

  112. Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

    CAS  PubMed  Article  Google Scholar 

  113. Ao, M. et al. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 67, 4244–4253 (2007).

    CAS  PubMed  Article  Google Scholar 

  114. Linxweiler, J. & Junker, K. Extracellular vesicles in urological malignancies: an update. Nat. Rev. Urol. 17, 11–27 (2020).

    PubMed  Article  Google Scholar 

  115. Junker, K., Heinzelmann, J., Beckham, C., Ochiya, T. & Jenster, G. Extracellular vesicles and their role in urologic malignancies. Eur. Urol. 70, 323–331 (2016).

    PubMed  Article  Google Scholar 

  116. Valentino, A. et al. Exosomal microRNAs in liquid biopsies: future biomarkers for prostate cancer. Clin. Transl Oncol. 19, 651–657 (2017).

    CAS  PubMed  Article  Google Scholar 

  117. Urbanelli, L., Buratta, S., Sagini, K., Tancini, B. & Emiliani, C. Extracellular vesicles as new players in cellular senescence. Int. J. Mol. Sci. 17, 1408 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  118. Jakhar, R. & Crasta, K. Exosomes as emerging pro-tumorigenic mediators of the senescence-associated secretory phenotype. Int. J. Mol. Sci. 20, 2547 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  119. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    CAS  PubMed  Article  Google Scholar 

  120. Alibhai, F. J. et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 19, e13103 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Yaman Agaoglu, F. et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol. 32, 583–588 (2011).

    CAS  PubMed  Article  Google Scholar 

  122. Foj, L. et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate 77, 573–583 (2017).

    CAS  PubMed  Article  Google Scholar 

  123. Elkhattouti, A., Hassan, M. & Gomez, C. R. Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front. Oncol. 5, 158 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  124. Giannoni, E. et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70, 6945–6956 (2010).

    CAS  PubMed  Article  Google Scholar 

  125. Sun, D.-Y., Wu, J.-Q., He, Z.-H., He, M.-F. & Sun, H.-B. Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life Sci. 235, 116791 (2019).

    CAS  PubMed  Article  Google Scholar 

  126. Vickman, R. E. et al. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate 80, 173–185 (2020).

    CAS  PubMed  Article  Google Scholar 

  127. Liu, Y. et al. Klotho-mediated targeting of CCL2 suppresses the induction of colorectal cancer progression by stromal cell senescent microenvironments. Mol. Oncol. 13, 2460–2475 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Jin, B. et al. PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation. Aging Cell 13, 879–889 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Deschênes-Simard, X., Kottakis, F., Meloche, S. & Ferbeyre, G. ERKs in cancer: friends or foes? Cancer Res. 74, 412–419 (2014).

    PubMed  Article  CAS  Google Scholar 

  130. van Deursen, J. M. Senolytic therapies for healthy longevity. Science 364, 636–637 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. Vukmanovic-Stejic, M. et al. Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation. J. Allergy Clin. Immunol. 142, 844–856 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. von Kobbe, C. Targeting senescent cells: approaches, opportunities, challenges. Aging 11, 12844–12861 (2019).

    Article  Google Scholar 

  133. Chen, X. & Song, E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 18, 99–115 (2019).

    CAS  PubMed  Article  Google Scholar 

  134. Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Fung, A. S., Wu, L. & Tannock, I. F. Concurrent and sequential administration of chemotherapy and the mammalian target of rapamycin inhibitor temsirolimus in human cancer cells and xenografts. Clin. Cancer Res. 15, 5389–5395 (2009).

    CAS  PubMed  Article  Google Scholar 

  136. Sprott, R. L. Biomarkers of aging and disease: introduction and definitions. Exp. Gerontol. 45, 2–4 (2010).

    CAS  PubMed  Article  Google Scholar 

  137. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    PubMed  Article  CAS  Google Scholar 

  138. Brennen, W. N. & Isaacs, J. T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat. Rev. Urol. 15, 703–715 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. Hayward, S. W., Cunha, G. R. & Dahiya, R. Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann. N. Y. Acad. Sci. 784, 50–62 (1996).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

G.F. receives funding from the Fondation de France and the European Urology Scholarship Program. V.S. is supported by an MRC Clinical Research Training Fellowship (MR/S005897/1), the Mason Medical Research Foundation (project number: 558866) and acknowledges previous support from The Alan Turing Institute (EPSRC grant EP/N510129/1), the EACR (EACR Travel Fellowship) and UCL (Bogue Fellowship). E.S.C. is funded by a Barts Charity Lectureship (grant MGU045). S.H. is supported by a Movember-funded Prostate Cancer UK fellowship, TLD-PF16-004. A.N.A. is supported by the Medical Research Council (MR/P00184X/1) and an MRC Grand Challenge in Experimental Medicine Grant (MR/M003833/1). M.E. receives research support from the United Kingdom’s National Institute of Health Research (NIHR) UCLH/UCL Biomedical Centre. He was conferred NIHR Senior Investigator status in 2015.

Author information

Authors and Affiliations

Authors

Contributions

G.F., V.S., E.S.C. and S.H. researched data for the article. All authors contributed substantially to discussion of the content. G.F., V.S., E.S.C., S.H. and M.E. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gaelle Fiard.

Additional information

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Urology thanks A. Baniahmad, G. Ferbeyre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiard, G., Stavrinides, V., Chambers, E.S. et al. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 18, 597–610 (2021). https://doi.org/10.1038/s41585-021-00496-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00496-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing