Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in sperm analysis: techniques, discoveries and applications

An Author Correction to this article was published on 10 August 2021

This article has been updated

Abstract

Infertility affects one in six couples worldwide, and fertility continues to deteriorate globally, partly owing to a decline in semen quality. Sperm analysis has a central role in diagnosing and treating male factor infertility. Many emerging techniques, such as digital holography, super-resolution microscopy and next-generation sequencing, have been developed that enable improved analysis of sperm motility, morphology and genetics to help overcome limitations in accuracy and consistency, and improve sperm selection for infertility treatment. These techniques have also improved our understanding of fundamental sperm physiology by enabling discoveries in sperm behaviour and molecular structures. Further progress in sperm analysis and integrating these techniques into laboratories and clinics requires multidisciplinary collaboration, which will increase discovery and improve clinical outcomes.

Key points

  • Technical advances have improved the accuracy, speed and efficiency in the analysis of sperm motility, morphology and genetics.

  • Advances in sperm analysis improve sperm selection for infertility treatment by measuring sperm behaviour and biomarkers of fertility potential.

  • Discoveries in sperm locomotion and behaviour improve understanding of sperm motion and guidance within the female reproductive tract.

  • Analyses of sperm structure and molecules such as CatSper channels and ubiquitin increase understanding of sperm physiology and contribute to the identification of biomarkers of fertility potential.

  • Further progress in sperm analysis promises non-invasive testing for sperm selection, increased efficiency and accuracy via automation and artificial intelligence, and improved access to point-of-care assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of sperm motility and morphology.
Fig. 2: Analysis of sperm genetics.
Fig. 3: Analysis-enabled sperm selection.
Fig. 4: Analysis of sperm locomotion and behaviour.
Fig. 5: Analysis of sperm structure and molecules.

Similar content being viewed by others

Change history

References

  1. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

    Article  Google Scholar 

  2. Agarwal, A. et al. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skakkebaek, N. E. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol. Rev. 96, 55–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Vollset, S. E. et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 396, 1285–1306 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carlsen, E. et al. Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–613 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23, 646–659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sripada, S. et al. Trends in Semen Parameters in the Northeast of Scotland. J. Androl. 28, 313–319 (2007).

    Article  PubMed  Google Scholar 

  8. Centola, G. M. et al. Decline in sperm count and motility in young adult men from 2003 to 2013: observations from a U . S . sperm bank. Andrology 4, 270–276 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Virtanen, H. E. & Toppari, J. Semen quality in the 21 st century. Nat. Rev. Urol. 14, 120–130 (2017).

    Article  PubMed  Google Scholar 

  10. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. https://www.who.int/docs/default-source/reproductive-health/srhr-documents/infertility/examination-and-processing-of-human-semen-5ed-eng.pdf?sfvrsn=5227886e_2 (2010).

  11. David, S. et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 345, 1388–1393 (2001).

    Article  Google Scholar 

  12. Donnelly, E. T. et al. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil. Steril. 70, 305–314 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Bartoov, B. et al. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J. Androl. 23, 1–8 (2002).

    Article  PubMed  Google Scholar 

  14. De Vos, A. et al. Influence of individual sperm morphology on fertilization, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil. Steril. 79, 42–48 (2003).

    Article  PubMed  Google Scholar 

  15. Evenson, D. P. The Sperm Chromatin Structure Assay (SCSA) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 169, 56–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ramasamy, R., Besada, S. & Lamb, D. J. Fluorescent in situ hybridization of human sperm: Diagnostics, indications, and therapeutic implications. Fertil. Steril. 102, 1534–1539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zini, A., San Gabriel, M. & Baazeem, A. Antioxidants and sperm DNA damage: a clinical perspective. J. Assist. Reprod. Genet. 26, 427–432 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baldi, E., & Muratori, M. Genetic Damage in Human Spermatozoa (Springer, 2014).

  19. Zidi-Jrah, I. et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil. Steril. 105, 58–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Esteves, S. C., Roque, M., Bradley, C. K. & Garrido, N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil. Steril. 108, 456–467 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Nosrati, R. et al. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 14, 707 (2017).

    Article  PubMed  Google Scholar 

  22. Esteves, S. C., Roque, M., Bedoschi, G., Haahr, T. & Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 15, 1–28 (2018).

    Article  CAS  Google Scholar 

  23. Adamson, G. D. et al. International committee for monitoring assisted reproductive technology: world report on assisted reproductive technology, 2011. Fertil. Steril. 110, 1067–1080 (2018).

    Article  PubMed  Google Scholar 

  24. Sunderam, S. et al. Assisted reproductive technology surveillance — United States, 2012. Morbidity Mortal. Wkly. Report Surveill. Summaries 64, 1–29 (2015).

    Google Scholar 

  25. Wyns, C. et al. ART in Europe, 2016: results generated from European registries by ESHRE. Hum. Reprod. Open 3, hoaa032 (2020).

    Article  Google Scholar 

  26. Gnoth, C. et al. Final ART success rates: a 10 years survey. Hum. Reprod. 26, 2239–2246 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Em, S. et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod. Biomed. Online 27, 325–337 (2013).

    Article  CAS  Google Scholar 

  28. Eamer, L. et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab. Chip 16, 2418–2422 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Parmegiani, L. et al. “Physiologic ICSI”: Hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil. Steril. 93, 598–604 (2010).

    Article  PubMed  Google Scholar 

  30. Hoogendijk, C. F., Ph, D., Kruger, T. F., Bouic, P. J. D. & Ph, D. A novel approach for the selection of human sperm using annexin V-binding and flow cytometry. Fertil. Steril. 91, 1285–1292 (2009).

    Article  PubMed  Google Scholar 

  31. Miller, D. et al. Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. Lancet 393, 416–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum. Reprod. Update 21, 711–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amann, R. P. & Katz, D. F. Andrology lab corner: reflections on CASA after 25 years. J. Androl. 25, 317–325 (2004).

    Article  PubMed  Google Scholar 

  34. Daloglu, M. U. et al. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. Light. Sci. Appl. 7, 17111–17121 (2018).

    CAS  Google Scholar 

  35. Dai, C. et al. Automated non-invasive measurement of single sperm’s motility and morphology. IEEE Trans. Med. Imaging 37, 2257–2265 (2018).

    Article  PubMed  Google Scholar 

  36. Sánchez, V. et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil. Steril. 98, 1124–1129 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Nazarenko, R. V., Irzhak, A. V., Pomerantsev, A. L. & Rodionova, O. Y. Confocal Raman spectroscopy and multivariate data analysis for evaluation of spermatozoa with normal and abnormal morphology. A feasibility study. Chemom. Intell. Lab. Syst. 182, 172–179 (2018).

    Article  CAS  Google Scholar 

  38. Sequencing, W. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1631 (2012).

    Article  CAS  Google Scholar 

  39. Tran, Q. T. et al. Chromosomal scan of single sperm cells by combining fluorescence-activated cell sorting and next-generation sequencing. J. Assist. Reprod. Genet. 36, 91–97 (2019).

    Article  PubMed  Google Scholar 

  40. Nosrati, R. et al. Rapid selection of sperm with high DNA integrity. Lab. Chip 14, 1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Wagenaar, B. D., Dekker, S., Olthuis, W., Berg, A. V. D. & Segerink, L. I. Towards microfluidic sperm refinement: continuous flow label-free analysis and sorting of sperm cells. Lab. Chip 16, 528–530 (2015).

    Google Scholar 

  42. Zaferani, M., Cheong, S. H. & Abbaspourrad, A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc. Natl Acad. Sci. USA 115, 8272–8277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bucar, S. et al. DNA fragmentation in human sperm after magnetic-activated cell sorting. J. Assist. Reprod. Genet. 32, 147–154 (2015).

    Article  PubMed  Google Scholar 

  44. Su, T.-W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018–16022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su, T. W. et al. Sperm trajectories form chiral ribbons. Sci. Rep. 3, 1–8 (2013).

    Article  Google Scholar 

  46. Nosrati, R., Driouchi, A., Yip, C. M. & Sinton, D. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6, 8703 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Denissenko, P., Kantsler, V., Smith, D. J. & Kirkman-Brown, J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109, 8007–8010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung, J. J. et al. Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157, 808–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frolikova, M., Sebkova, N., Ded, L. & Dvorakova-Hortova, K. Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 6, 1–15 (2016).

    Article  CAS  Google Scholar 

  50. Sutovsky, P., Terada, Y. & Schatten, G. Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum. Reprod. 16, 250–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Schiza, C. G., Jarvi, K., Diamandis, E. P. & Drabovich, A. P. An emerging role of TEX101 protein as a male infertility biomarker. J. Int. Fed. Clin. Chem. Lab. Med. 25, 9–26 (2014).

    Google Scholar 

  52. Huszar, G. Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod. Biomed. Online 7, 462–468 (2003).

    Article  PubMed  Google Scholar 

  53. Louis, G. M. B. et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil. Steril. 101, 453–462 (2014).

    Article  Google Scholar 

  54. Zinaman, M. J., Brown, C. C., Selevan, S. G. & Clegg, E. D. Semen quality and human fertility: a prospective study with healthy couples. J. Androl. 21, 145–153 (2000).

    CAS  PubMed  Google Scholar 

  55. Bonde, J. P. E. et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352, 1172–1177 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bungum, M. et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 22, 174–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Duran, E. H., Morshedi, M., Taylor, S. & Oehninger, S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum. Reprod. 17, 3122–3128 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Marques, C. J. et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol. Hum. Reprod. 14, 67–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Jenkins, T. G. et al. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst. Biol. Reprod. Med. 63, 69–76 (2017).

    Article  PubMed  Google Scholar 

  60. Turner, R. M. Moving to the beat: a review of mammalian sperm motility regulation. Reprod. Fertil. Dev. 18, 25–38 (2005).

    Article  Google Scholar 

  61. Gaffney, E. et al. Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–528 (2011).

    Article  Google Scholar 

  62. Lindemann, C. B. & Lesich, K. A. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton 73, 652–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Piomboni, P., Focarelli, R., Stendardi, A., Ferramosca, A. & Zara, V. The role of mitochondria in energy production for human sperm motility. Int. J. Androl. 35, 109–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Vernon, G. G. & Woolley, D. M. Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum. Biophys. J. 87, 3934–3944 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guzick, D. S. et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 345, 1388–1393 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, J. C., Huang, Y. F. & Lu, N. Q. Computer‐aided sperm analysis: past, present and future. Andrologia 46, 329–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17 (2014).

    Article  PubMed  Google Scholar 

  68. Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Urbano, L., Masson, P., VerMilyea, M. & Kam, M. Automatic tracking and motility analysis of human sperm in time-lapse images. IEEE Trans. Med. Imaging 36, 792–801 (2016).

    Article  PubMed  Google Scholar 

  70. Tomlinson, M. J. et al. Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil. Steril. 93, 1911–1920 (2010).

    Article  PubMed  Google Scholar 

  71. Agarwal, A., Henkel, R., Huang, C. C. & Lee, M. S. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia 51, 13440 (2019).

    Article  Google Scholar 

  72. Menkveld, R. et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an effort towards standardization of in-vivo thresholds. Hum. Reprod. 16, 1165–1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Bijar, A., Benavent, A. P., Mikaeili, M. & Khayati, R. Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear. J. Biomed. Sci. Eng. 5, 384–395 (2012).

    Article  Google Scholar 

  74. Maree, L., Du Plessis, S. S., Menkveld, R. & Van der Horst, G. Morphometric dimensions of the human sperm head depend on the staining method used. Hum. Reprod. 25, 1369–1382 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Perdrix, A. & Rives, N. Motile sperm organelle morphology examination (MSOME) and sperm head vacuoles: state of the art in 2013. Hum. Reprod. Update 19, 527–541 (2013).

    Article  PubMed  Google Scholar 

  76. Berkovitz, A. et al. The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum. Reprod. 20, 185–190 (2005).

    Article  PubMed  Google Scholar 

  77. Setti, A. S., Braga, D. P., Iaconelli, A., Aoki, T. & Borges, E. Twelve years of MSOME and IMSI: a review. Reprod. Biomed. Online 27, 338–352 (2013).

    Article  PubMed  Google Scholar 

  78. Hammoud, I. et al. Selection of normal spermatozoa with a vacuole-free head (×6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia 45, 163–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Balaban, B. et al. Clinical outcome of intracytoplasmic injection of spermatozoa morphologically selected under high magnification: a prospective randomized study. Reprod. Biomed. Online 22, 472–476 (2011).

    Article  PubMed  Google Scholar 

  80. De Vos, A. et al. Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum. Reprod. 28, 617–626 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Ebner, T., Shebl, O., Oppelt, P. & Mayer, R. B. Some reflections on intracytoplasmic morphologically selected sperm injection. Int. J. Fertil. Steril. 8, 105 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Rougier, N. et al. Changes in DNA fragmentation during sperm preparation for intracytoplasmic sperm injection over time. Fertil. Steril. 100, 69–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Vingris, L. et al. Sperm morphological normality under high magnification predicts laboratory and clinical outcomes in couples undergoing ICSI. Hum. Fertil. 18, 81–86 (2015).

    Article  Google Scholar 

  84. Dai, C. et al. Automated motility and morphology measurement of live spermatozoa. Andrology https://doi.org/10.1111/andr.13002 (2021).

    Article  PubMed  Google Scholar 

  85. Yin, Z., Kanade, T. & Chen, M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 16, 1047–1062 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Obara, B., Roberts, M. A., Armitage, J. P. & Grau, V. Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinform. 14, 1–3 (2013).

    Article  Google Scholar 

  87. Shaked, N. T. Label-free quantitative imaging of sperm for in-vitro fertilization using interferometric phase microscopy. JFIV Reprod. Med. Genet. 4, 190 (2016).

    Article  Google Scholar 

  88. Coppola, G. et al. Digital holographic microscopy for the evaluation of human sperm structure. Zygote 22, 446–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Haifler, M. et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells. Fertil. Steril. 104, 43–47 (2015).

    Article  PubMed  Google Scholar 

  90. Almeling, R. Selling genes, selling gender: Egg agencies, sperm banks, and the medical market in genetic material. Am. Sociol. Rev. 72, 319–340 (2007).

    Article  Google Scholar 

  91. Bisht, S., Faiq, M., Tolahunase, M. & Dada, R. Oxidative stress and male infertility. Nat. Rev. Urol. 14, 470–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Tang, S. et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 100, 854–864 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Firat-karalar, E. N., Sante, J., Elliott, S. & Stearns, T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J. Cell Sci. 3, 4128–4133 (2014).

    Google Scholar 

  94. Coutton, C. et al. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am. J. Hum. Genet. 104, 331–340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu, F. et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am. J. Hum. Genet. 99, 942–949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, F. et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am. J. Hum. Genet. 103, 188–199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Krausz, C. & Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 15, 1–16 (2018).

    Article  CAS  Google Scholar 

  98. Lewis, S. E. & Simon, L. Clinical implications of sperm DNA damage. Hum. Fertil. 13, 201–207 (2010).

    Article  Google Scholar 

  99. Evenson, D. P. Evaluation of sperm chromatin structure and DNA strand breaks is an important part of clinical male fertility assessment. Transl. Androl. Urol. 6, 2–7 (2017).

    Article  Google Scholar 

  100. Evenson, D. & Wixon, R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod. Biomed. Online 12, 466–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Shamsi, M. B., Imam, S. N. & Dada, R. Sperm DNA integrity assays: Diagnostic and prognostic challenges and implications in management of infertility. J. Assist. Reprod. Genet. 28, 1073–1085 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mishra, S., Kumar, R., Malhotra, N., Singh, N. & Dada, R. Mild oxidative stress is beneficial for sperm telomere length maintenance. World J. Methodol. 6, 163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tremellen, K. Oxidative stress and male infertility — a clinical perspective. Hum. Reprod. Update 14, 243–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lewis, S. E. & Aitken, R. J. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 322, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kumar, S. B., Chawla, B., Bisht, S., Yadav, R. K. & Dada, R. Tobacco use increases oxidative DNA damage in sperm-possible etiology of childhood cancer. Asian Pac. J. Cancer Prev. 16, 6967–6972 (2015).

    Article  PubMed  Google Scholar 

  106. Vorilhon, S. et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum. Reprod. 33, 553–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Muratori, M. et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol. Med. 21, 109–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ni, K., Spiess, A. N., Schuppe, H. C. & Steger, K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta‐analysis. Andrology 4, 789–799 (2006).

    Article  CAS  Google Scholar 

  109. Sakkas, D., Seli, E., Bizzaro, D., Tarozzi, N. & Manicardi, G. C. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod. Biomed. Online 7, 428–432 (2003).

    Article  PubMed  Google Scholar 

  110. Virro, M. R., Larson-cook, K. L. & Evenson, D. P. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil. Steril. 81, 1289–1295 (2004).

    Article  PubMed  Google Scholar 

  111. Henkel, R., Hoogendijk, C. F., Bouic, P. J. D. & Kruger, T. F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 42, 305–313 (2010).

    Article  PubMed  Google Scholar 

  112. Sergerie, M., Laforest, G., Bujan, L., Bissonnette, F. & Bleau, G. Sperm DNA fragmentation: threshold value in male fertility. Hum. Reprod. 20, 3446–3451 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Ribeiro, S. et al. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology 5, 477–485 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Mitchell, L. A., Iuliis, G. N. D. & Aitken, R. J. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int. J. Androl. 34, 2–13 (2010).

    Article  CAS  Google Scholar 

  115. Muratori, M., Forti, G. & Baldi, E. Comparing flow cytometry and fluorescence microscopy for analyzing human sperm DNA fragmentation by TUNEL labeling. Cytom. A 73, 785–787 (2008).

    Article  Google Scholar 

  116. Cho, C. L. & Agarwal, A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab. J. Urol. 16, 21–34 (2018).

    Article  PubMed  Google Scholar 

  117. Muriel, L. et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J. Androl. 24, 59–66 (2003).

    PubMed  Google Scholar 

  118. Morris, I. D., Ilott, S., Dixon, L. & Brison, D. R. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod. 17, 990–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Afanasieva, K. & Sivolob, A. Biophysical chemistry physical principles and new applications of comet assay. Biophys. Chem. 238, 1–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Collins, A. R. et al. The comet assay: topical issues. Mutagenesis 23, 143–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Olive, P. L. & Banáth, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Simon, L. et al. Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil. Steril. 95, 652–657 (2011).

    Article  PubMed  Google Scholar 

  123. Ribas-Maynou, J. et al. Double stranded sperm DNA breaks measured by comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS ONE 7, 44679 (2012).

    Article  CAS  Google Scholar 

  124. Sanchez, V. et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil. Steril. 98, 1124–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Angelis, A. De et al. Combined Raman spectroscopy and digital holographic microscopy for sperm cell quality analysis. J. Spectrosc. 2017, 1–15 (2017).

    Article  CAS  Google Scholar 

  126. Boydston-white, S., Mattha, C., Romeo, M. & Diem, M. A. X. Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60, 1–8 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Costa, R. Da, Amaral, S., Redmann, K., Kliesch, S. & Id, S. S. Spectral features of nuclear DNA in human sperm assessed by raman microspectroscopy: effects of UV-irradiation and hydration. PLoS ONE 13, 1–15 (2018).

    Article  Google Scholar 

  128. Wang, Y. et al. Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Adv. Sci. 6, 1900712 (2019).

    Article  CAS  Google Scholar 

  129. Barnea, I. et al. Stain-free interferometric phase microscopy correlation with DNA fragmentation stain in human spermatozoa. J. Biophotonics 11, 1–10 (2018).

    Article  CAS  Google Scholar 

  130. McCallum, C. et al. Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2, 1–100 (2019).

    Article  CAS  Google Scholar 

  131. Calogero, A. E. et al. Sperm aneuploidy in infertile men. Reprod. Biomed. Online 6, 310–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Shi, Q. & Martin, R. H. Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors. Cytogenet. Cell Genet. 90, 219–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Muriel, L. et al. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and FISH analysis. J. Androl. 28, 38–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Huber, D., Voithenberg, L. V. V. & Kaigala, G. V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 1, 15–24 (2018).

    Article  Google Scholar 

  136. Song, S. H. et al. Genome-wide screening of severe male factor infertile patients using BAC-array comparative genomic hybridization (CGH). Gene 506, 248–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Karampetsou, E., Morrogh, D. & Chitty, L. Microarray technology for the diagnosis of fetal chromosomal aberrations: which platform should we use? J. Clin. Med. 3, 663–678 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rubio, C. et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil. Steril. 99, 1044–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Patassini, C. et al. Molecular karyotyping of human single sperm by array- comparative genomic hybridization. PLoS ONE 8, 60922 (2013).

    Article  CAS  Google Scholar 

  140. Xi, R., Kim, T. & Park, P. J. Detecting structural variations in the human genome using next generation sequencing. Brief. Funct. Genomics 9, 405–415 (2011).

    Article  PubMed Central  CAS  Google Scholar 

  141. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cheung, S., Parrella, A., Rosenwaks, Z. & Palermo, G. D. Genetic and epigenetic profiling of the infertile male. PLoS ONE 14, e0214275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kazda, A. et al. Chromosome end protection by blunt-ended telomeres. Genes Dev. 26, 1703–1713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nandakumar, J. & Cech, T. R. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 14, 69–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thilagavathi, J. et al. Analysis of sperm telomere length in men with idiopathic infertility. Arch. Gynecol. Obstet. 287, 803–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Yang, Q. et al. Sperm telomere length is positively associated with the quality of early embryonic development. Hum. Reprod. 30, 1876–1881 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Boniewska-Bernacka, E., Pańczyszyn, A. & Cybulska, N. Telomeres as a molecular marker of male infertility. Hum. Fertil. 22, 78–87 (2019).

    Article  CAS  Google Scholar 

  148. Lafuente, R. et al. Sperm telomere length in motile sperm selection techniques: a qFISH approach. Andrologia 50, e12840 (2018).

    Article  CAS  Google Scholar 

  149. Turner, S. & Hartshorne, G. M. Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol. Hum. Reprod. 19, 510–518 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Cariati, F. et al. Investigation of sperm telomere length as a potential marker of paternal genome integrity and semen quality. Reprod. Biomed. Online 33, 404–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Zhao, F., Yang, Q., Shi, S., Luo, X. & Sun, Y. Semen preparation methods and sperm telomere length: density gradient centrifugation versus the swim up procedure. Sci. Rep. 6, 39051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rocca, M. S., Foresta, C. & Ferlin, A. Telomere length: lights and shadows on their role in human reproduction. Biol. Reprod. 100, 305–317 (2019).

    PubMed  Google Scholar 

  153. Jenkins, T. G. & Carrell, D. T. The sperm epigenome and potential implications for the developing embryo. Reproduction 143, 727 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Hammoud, S. S. et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum. Reprod. 26, 2558–2569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Denomme, M. M., McCallie, B. R., Parks, J. C., Schoolcraft, W. B. & Katz-Jaffe, M. G. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum. Reprod. 32, 2443–2455 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Aston, K. I. et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil. Steril. 104, 1388–1397 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Schrott, R. et al. Sperm DNA methylation altered by tHc and nicotine: vulnerability of neurodevelopmental genes with bivalent chromatin. Sci. Rep. 10, 1–12 (2020).

    Article  CAS  Google Scholar 

  158. Maamar, M. B. et al. Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure. Dev. Biol. 445, 280–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Jenkins, T. G. et al. Intra-sample heterogeneity of sperm DNA methylation. Mol. Hum. Reprod. 21, 313–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Keravnou, A. et al. Whole-genome fetal and maternal DNA methylation analysis using MeDIP-NGS for the identification of differentially methylated regions. Genet. Res. 98, 1–9 (2016).

    Article  Google Scholar 

  161. Luján, S. et al. Sperm DNA methylation epimutation biomarkers for male infertility and FSH therapeutic responsiveness. Sci. Rep. 9, 1–12 (2019).

    Article  CAS  Google Scholar 

  162. Oostlander, A. E., Meijer, G. A. & Ylstra, B. Microarray‐based comparative genomic hybridization and its applications in human genetics. Clin. Genet. 66, 488–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Houshdaran, S. et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE 2, e1289 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Aston, K. I. et al. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil. Steril. 97, 285–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Brykczynska, U. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Steilmann, C. et al. Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa. Reprod. Fertil. Dev. 23, 997–1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boissonnas, C., Ph, D. & Jouannet, P. Epigenetic disorders and male subfertility. Fertil. Steril. 99, 624–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Hamatani, T. Human spermatozoal RNAs. Fertil. Steril. 97, 275–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Pelloni, M. et al. Molecular study of human sperm RNA: ropporin and CABYR in asthenozoospermia. J. Endocrinol. Invest. 41, 781–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Gòdia, M. et al. A RNA-Seq analysis to describe the boar sperm transcriptome and its seasonal changes. Front. Genet. 10,, 299 (2019).

    Article  CAS  Google Scholar 

  172. Wein, S. et al. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat. Commun. 11, 1–12 (2020).

    Article  CAS  Google Scholar 

  173. Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 951–969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Aoki, V. W., Liu, L. & Carrell, D. T. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol. Hum. Reprod. 12, 41–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P. & Krawetz, S. A. Delivering spermatozoan RNA to the oocyte. Nature 429, 154 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Sone, Y. et al. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development. Biochem. Biophys. Res. Commun. 330, 690–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Zini, A., Finelli, A., Phang, D. & Jarvi, K. Influence of semen processing technique on human sperm DNA integrity. Urology 56, 1081–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Xue, X. et al. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J. Assist. Reprod. Genet. 31, 1161–1166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Henkel, R. R. & Schill, W. B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 1, 108 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zaferani, M., Palermo, G. D. & Abbaspourrad, A. Strictures of a microchannel impose fierce competition to select for highly motile sperm. Sci. Adv. 5, 2111 (2019).

    Article  Google Scholar 

  184. Li, K. et al. Novel distance — progesterone — combined selection approach improves human sperm quality. J. Transl. Med. 16, 1–10 (2018).

    Article  Google Scholar 

  185. Tasoglu, S. et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small 9, 3374–3384 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Nosrati, R., Graham, P. J., Liu, Q. & Sinton, D. Predominance of sperm motion in corners. Sci. Rep. 6, 1–9 (2016).

    Article  CAS  Google Scholar 

  187. Zaferani, M., Hon, S. & Abbaspourrad, A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc. Natl Acad. Sci. USA 115, 8272–8277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kaupp, U. B., Kashikar, N. D. & Weyand, I. Mechanisms of sperm chemotaxis. Annu. Rev. Physiol. 70, 93–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Huszar, G. et al. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil. Steril. 79, 1616–1624 (2003).

    Article  PubMed  Google Scholar 

  190. Simopoulou, M. et al. Improving ICSI: a review from the spermatozoon perspective. Syst. Biol. Reprod. Med. 62, 359–371 (2016).

    Article  PubMed  Google Scholar 

  191. Liu, T. et al. Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Anal. Chem. 81, 2410–2413 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Gil, M., Sar-Shalom, V., Sivira, Y. M., Carreras, R. & Checa, M. A. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J. Assist. Reprod. Genet. 30, 479–485 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Galatioto, G. P. et al. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? World J. Urol. 26, 97–102 (2008).

    Article  CAS  Google Scholar 

  194. Jun, L. et al. Quantitative analysis of locomotive behavior of human sperm head and tail. Biomed. Eng. IEEE Trans. 60, 390–396 (2013).

    Article  Google Scholar 

  195. Zhang, Z. et al. An automated system for investigating sperm orientation in fluid flow. IEEE Int. Conf. Robot. Autom. https://doi.org/10.1109/ICRA.2016.7487551 (2016).

  196. Hernandez-Herrera, P., Montoya, F., Rendón-Mancha, J. M., Darszon, A. & Corkidi, G. 3-D human sperm flagellum tracing in low SNR fluorescence images. IEEE Trans. Med. Imaging 37, 2236–2247 (2018).

    Article  PubMed  Google Scholar 

  197. Saggiorato, G. et al. Human sperm steer with second harmonics of the flagellar beat. Nat. Commun. 8, 1–9 (2017).

    Article  CAS  Google Scholar 

  198. Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Julicher, F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 213, 1226–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Gade, H., Gaffney, E. A. & Smith, D. J. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7, 1689–1697 (2010).

    Article  Google Scholar 

  200. Zhang, Z. et al. Human sperm rheotaxis: a passive physical process. Sci. Rep. 6, 23553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bukatin, A., Kukhtevich, I., Stoop, N., Dunkel, J. & Kantsler, V. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells. Proc. Natl Acad. Sci. USA 112, 15904–15909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pérez-Cerezales, S. et al. Involvement of opsins in mammalian sperm thermotaxis. Sci. Rep. 5, 16146 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Di Caprio, G. et al. 4D tracking of clinical seminal samples for quantitative characterization of motility parameters. Biomed. Opt. Express 5, 690–700 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Di Caprio, G. et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review. J. Biophotonics 8, 779–789 (2015).

    Article  PubMed  Google Scholar 

  205. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Gadêlha, H., Hernández-Herrera, P., Montoya, F., Darszon, A. & Corkidi, G. Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering. Sci. Adv. 6, eaba5168 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Elgeti, J., Kaupp, U. B. & Gompper, G. Hydrodynamics of sperm cells near surfaces. Biophys J 99, 1018–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, X. et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab. Chip 11, 2535 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Bazylewski, P. & Ezugwu, S. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. 7, 973 (2017).

    Article  CAS  Google Scholar 

  210. Andolfi, L. et al. The application of scanning near field optical imaging to the study of human sperm morphology. J. Nanobiotechnol. 13, 2 (2015).

    Article  Google Scholar 

  211. Chemes, H. E. & Rawe, V. Y. Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum. Reprod. Update 9, 405–428 (2003).

    Article  PubMed  Google Scholar 

  212. Xu, J., Tehrani, K. F., Kner, P., States, U. & Avenue, C. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano 9, 2917–2925 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chung, J. J. et al. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. eLife 6, e23082 (2007).

    Article  Google Scholar 

  215. Strünker, T. et al. The CatSper channel mediates progesterone-induced Ca 2+ influx in human sperm. Nature 471, 382–386 (2011).

    Article  PubMed  CAS  Google Scholar 

  216. Gervasi, G., Xu, X., Carbajal-Gonzalez, B., Buffone, M. G. & Visconti, P. E. The actin cytoskeleton of the mouse sperm flagellum is organized in a helical structure. J. Cell Sci. 131, 1–9 (2018).

    Google Scholar 

  217. Dunleavy, J. E., O’Bryan, M. K., Stanton, P. G. & O’Donnell, L. The cytoskeleton in spermatogenesis. Reproduction 157, 53–72 (2019).

    Article  Google Scholar 

  218. Paës, G., Habrant, A. & Terryn, C. Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy. Plants 7, 1–9 (2018).

    Article  CAS  Google Scholar 

  219. Aminski, C. L. F. K. Frontiers in structured illumination microscopy. Optica 3, 667–677 (2016).

    Article  Google Scholar 

  220. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  221. Dan, D. et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep. 3, 1–7 (2013).

    Article  Google Scholar 

  222. Chang, B. J., Chou, L. J., Chang, Y. C. & Chiang, S. Y. Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Opt. Express 17, 14710–14721 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Calvi, A. et al. SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Dev. Biol. 407, 321–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Yeh, C. H. et al. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS ONE 10, e0120722 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Miller, M. R. et al. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352, 555–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Baker, M. A., Hetherington, L., Ecroyd, H., Roman, S. D. & Aitken, R. J. Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J. Cell Sci. 117, 211–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Asquith, K. L., Baleato, R. M., McLaughlin, E. A., Nixon, B. & Aitken, R. J. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 117, 3645–3657 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Awad, H., Khamis, M. M. & El-Aneed, A. Mass spectrometry, review of the basics: ionization. Appl. Spectrosc. Rev. 50, 158–175 (2015).

    Article  CAS  Google Scholar 

  229. Platt, M. D., Salicioni, A. M., Hunt, D. F. & Visconti, P. E. Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J. Proteome Res. 8, 1431–1440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ardito, F., Giuliani, M., Perrone, D., Troiano, G. & Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int. J. Mol. Med. 40, 271–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Castillo, J. et al. Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction. Front. Cell Dev. Biol. 7, 295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Drabovich, A. P. et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci. Transl. Med. 5, 212ra160 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Zerbinati, C. et al. Redox Biology Mass spectrometry pro fi ling of oxysterols in human sperm identi fi es 25- hydroxycholesterol as a marker of sperm function. Redox Biol. 11, 111–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Hafiz, P. et al. Predicting implantation outcome of in vitro fertilization and intracytoplasmic sperm injection using data mining techniques. Int. J. Fertil. Steril. 11, 184–190 (2017).

    PubMed  PubMed Central  Google Scholar 

  235. Comhaire, F., Messiaen, A. & Decleer, W. A mathematical model predicting the individual outcome of IVF through sperm-analysis: the role of the HaloSpermG2 DNA fragmentation test. Med. Hypotheses 117, 50–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Farias-hesson, E. et al. Semi-automated library preparation for high-throughput DNA sequencing platforms. J. Biomed. Biotechnol. 2010, 1–8 (2010).

    Article  CAS  Google Scholar 

  237. Malm, J. et al. Semi-automated biobank sample processing with a 384 high density sample tube robot used in cancer and cardiovascular studies. Clin. Transl. Med. 4, 27 (2015).

    Article  PubMed Central  Google Scholar 

  238. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. J. 42, 60–88 (2017).

    Article  Google Scholar 

  239. Hicks, S. A. et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  240. Sobieranski, A. C. et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light. Sci. Appl. 4, 346 (2015).

    Article  CAS  Google Scholar 

  241. Kanakasabapathy, M. K. et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl. Med. 9, 7863 (2017).

    Article  CAS  Google Scholar 

  242. Carrilho, E., Martinez, A. W. & Whitesides, G. M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Matsuura, K. et al. Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluid. Nanofluidics 16, 857–867 (2014).

    Article  CAS  Google Scholar 

  244. Nosrati, R., Gong, M. M., Gabriel, C. S., Zini, A. & Sinton, D. Paper-based sperm DNA integrity analysis. Anal. Methods 8, 6260–6264 (2016).

    Article  CAS  Google Scholar 

  245. Ribas-Maynou, J. et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology 1, 715–722 (2013).

    Article  CAS  PubMed  Google Scholar 

  246. Eisenbach, M. & Giojalas, L. Sperm guidance in mammals — an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  247. Vanderzwalmen, P. et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod. Biomed. Online 17, 617–627 (2008).

    Article  PubMed  Google Scholar 

  248. Pandiyan, N. et al. in Male Infertility A Clinical Approach (Springer, 2016).

  249. Rougier, N. et al. Changes in DNA fragmentation during sperm preparation for intracytoplasmic sperm injection over time. Fertil. Steril. 100, 69–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Fink, M. & Taylor, M. A. in A Clinician’ s Guide to Diagnosis Sperm DNA and Chromatin Damage (Springer, 2018).

  251. Palermo, G. D., Colombero, L. T., Hariprashad, J. J., Schlegel, P. N. & Rosenwaks, Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum. Reprod. 17, 570–575 (2002).

    Article  PubMed  Google Scholar 

  252. Lockwood, W. W., Chari, R., Chi, B. & Lam, W. L. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur. J. Hum. Genet. 14, 139–148 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.S., C.D., Z.Z. and K.J. contributed substantially to discussion of the content. C.D, Z.Z., G.S., L.-T.C. and Z.H. wrote the article. Y.S., S.M., C.L. and K.J. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Keith Jarvi or Yu Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks R. Dada, N. Garrido and R. Henkel for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Zhang, Z., Shan, G. et al. Advances in sperm analysis: techniques, discoveries and applications. Nat Rev Urol 18, 447–467 (2021). https://doi.org/10.1038/s41585-021-00472-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00472-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing