Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment and trials in non-metastatic castration-resistant prostate cancer

Abstract

Metastatic prostate cancer is associated with considerable morbidity and mortality. Standard treatment for non-metastatic prostate cancer, to prevent metastatic progression, is androgen deprivation therapy (ADT); however, many patients will eventually develop castration-resistant prostate cancer (CRPC), which can prove challenging to treat. Between the stages of non-metastatic androgen-sensitive disease and metastatic CRPC is an intermediate disease state that has been termed non-metastatic CRPC (nmCRPC), which is a heterogeneous, man-made disease stage that occurs after a patient who has no radiological evidence of metastasis shows evidence of cancer progression even after ADT. Awareness of nmCRPC has risen owing to an increased use of ADT and its eventual failure. Men with nmCRPC are at a high risk of progression to mCRPC, with historically few options to halt this process. However, in the past two decades, multiple therapies have been investigated for the treatment of nmCRPC, including endothelin receptor antagonists and bone-targeted therapies, but none has changed the standard of care. In the past decade, the efficacy of androgen receptor pathway-targeting modalities has been investigated. Three novel nonsteroidal antiandrogen agents for treating high-risk nmCRPC have been investigated; the PROSPER, SPARTAN and ARAMIS trials were phase III, randomized, placebo-controlled clinical trials that investigated the efficacy and safety of enzalutamide, apalutamide and darolutamide, respectively. All three therapeutics showed statistically significant improvements in metastasis-free survival, progression to antineoplastic therapy was lengthened and at final analysis, overall survival was significantly improved. The comparative efficacy and safety of all three agents has not yet been investigated in a comprehensive clinical trial, but approval of these medications by the FDA and other regulatory agencies means that providers now have three effective therapeutic options to augment ADT for patients with nmCRPC.

Key points

  • Non-metastatic castration-resistant prostate cancer (nmCRPC) is a heterogeneous disease classification. This disease stage occurs after a patient with prostate cancer who has no radiological evidence of metastasis shows evidence of cancer progression even after androgen deprivation therapy.

  • Multiple therapies have been investigated for treating nmCRPC, including endothelin receptor antagonists and bone-targeted therapies. Within the past decade, the efficacy of androgen receptor pathway-targeting modalities has been investigated.

  • Three phase III, randomized, placebo-controlled, clinical trials (PROSPER, SPARTAN and ARAMIS) have shown significant metastasis-free survival and overall survival benefits of enzalutamide, apalutamide and darolutamide, respectively.

  • These novel nonsteroidal antiandrogen agents have been approved by governmental agencies, such as the FDA, for nmCRPC, and apalutamide and enzalutamide have been included in international guidelines, such as those from the AUA and EAU.

  • To our knowledge, no head-to-head comparison of all three therapeutic agents exists to compare their efficacy and safety; however, all three have shown comparable efficacy in separate trials.

  • Patient selection can be made through shared decision-making between patients and physicians based on differing adverse effect profiles and other differing parameters between the three therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient selection and treatment options for high-risk non-metastatic castration-resistant prostate cancer.

Similar content being viewed by others

References

  1. Pernar, C. H., Ebot, E. M., Wilson, K. M. & Mucci, L. A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med. 10, 63–89 (2018).

    Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    PubMed  Google Scholar 

  3. American Cancer Society. Cancer facts & figures 2018 (American Cancer Society, 2019).

  4. Dickinson, J. et al. Trends in prostate cancer incidence and mortality in Canada during the era of prostate-specific antigen screening. CMAJ Open 4, E73–E79 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Hodges, C. Studies on prostatic cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    Google Scholar 

  6. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    CAS  PubMed  Google Scholar 

  7. Loriot, Y. et al. Management of non-metastatic castrate-resistant prostate cancer: a systematic review. Cancer Treat. Rev. 70, 223–231 (2018).

    PubMed  Google Scholar 

  8. Scher, H. I. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J. Clin. Oncol. 34, 1402–1418 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Roy, A. K. et al. Regulation of androgen action. Vitam. Hormones 55, 309–352 (1999).

    CAS  Google Scholar 

  10. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Crawford, E. D. et al. Androgen receptor targeted treatments of prostate cancer: 35 years of progress with antiandrogens. J. Urol. 200, 956–966 (2018).

    CAS  PubMed  Google Scholar 

  12. Culig, Z. & Santer, F. R. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 33, 413–427 (2014).

    CAS  PubMed  Google Scholar 

  13. Waltering, K. K., Urbanucci, A. & Visakorpi, T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell. Endocrinol. 360, 38–43 (2012).

    CAS  PubMed  Google Scholar 

  14. Ahmed, A., Ali, S. & Sarkar, F. H. Advances in androgen receptor targeted therapy for prostate cancer. J. Cell Physiol. 229, 271–276 (2014).

    CAS  PubMed  Google Scholar 

  15. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Chi, K. N. et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 381, 13–24 (2019).

    CAS  PubMed  Google Scholar 

  17. Hong, J. H. & Kim, I. Y. Nonmetastatic castration-resistant prostate cancer. Korean J. Urol. 55, 153–160 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Fizazi, K. et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 380, 1235–1246 (2019).

    CAS  PubMed  Google Scholar 

  19. Hussain, M. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378, 2465–2474 (2018).

    CAS  PubMed  Google Scholar 

  20. Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378, 1408–1418 (2018).

    CAS  PubMed  Google Scholar 

  21. El-Amm, J. & Aragon-Ching, J. B. The current landscape of treatment in non-metastatic castration-resistant prostate cancer. Clin. Med. Insights Oncol. 13, 1179554919833927 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Mateo, J. et al. Managing nonmetastatic castration-resistant prostate cancer. Eur. Urol. 75, 285–293 (2019).

    PubMed  Google Scholar 

  23. Saad, F., Bögemann, M., Suzuki, K. & Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-020-00310-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scher, H. I., Solo, K., Valant, J., Todd, M. B. & Mehra, M. Prevalence of prostate cancer clinical states and mortality in the United States: estimates using a dynamic progression model. PLoS One 10, e0139440 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Wade, C. A. & Kyprianou, N. Profiling prostate cancer therapeutic resistance. Int. J. Mol. Sci. 19, 904 (2018).

    PubMed Central  Google Scholar 

  26. Halabi, S. et al. Meta-analysis evaluating the impact of site of metastasis on overall survival in men with castration-resistant prostate cancer. J. Clin. Oncol. 34, 1652–1659 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oefelein, M. G. et al. Clinical predictors of androgen-independent prostate cancer and survival in the prostate-specific antigen era. Urology 60, 120–124 (2002).

    PubMed  Google Scholar 

  28. Hussain, M. et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J. Clin. Oncol. 24, 3984–3990 (2006).

    PubMed  Google Scholar 

  29. Ma, J. et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 9, 1039–1047 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moreira, D. M. et al. Predictors of time to metastasis in castration-resistant prostate cancer. Urology 96, 171–176 (2016).

    PubMed  Google Scholar 

  31. Kohaar, I., Petrovics, G. & Srivastava, S. A rich array of prostate cancer molecular biomarkers: opportunities and challenges. Int. J. Mol. Sci. 20, 1813 (2019).

    CAS  PubMed Central  Google Scholar 

  32. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    PubMed  Google Scholar 

  33. Thalgott, M. et al. Detection of circulating tumor cells in different stages of prostate cancer. J. Cancer Res. Clin. Oncol. 139, 755–763 (2013).

    PubMed  Google Scholar 

  34. Di Nunno, V. et al. Recent advances in liquid biopsy in patients with castration resistant prostate cancer. Front. Oncol. 8, 397–397 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Chalfin, H. J. et al. Prostate cancer disseminated tumor cells are rarely detected in the bone marrow of patients with localized disease undergoing radical prostatectomy across multiple rare cell detection platforms. J. Urol. 199, 1494–1501 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 6, 101–113 (2004).

    PubMed  PubMed Central  Google Scholar 

  37. Maurer, T. et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

    PubMed  Google Scholar 

  38. Pyka, T. et al. Comparison of bone scintigraphy and 68 Ga-PSMA PET for skeletal staging in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 43, 2114–2121 (2016).

    CAS  PubMed  Google Scholar 

  39. Stattin, P. et al. Prostate cancer mortality in areas with high and low prostate cancer incidence. J. Natl Cancer Inst. 106, dju007 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Gravis, G. et al. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur. Urol. 70, 256–262 (2016).

    CAS  PubMed  Google Scholar 

  41. Xie, W. et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J. Clin. Oncol. 35, 3097 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakayama, M. et al. Association of early PSA decline and time to PSA progression in abiraterone acetate-treated metastatic castration-resistant prostate cancer; a post-hoc analysis of Japanese phase 2 trials. BMC Urol. 16, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Pinover, W. H., Horwitz, E. M., Hanlon, A. L., Uzzo, R. G. & Hanks, G. E. Validation of a treatment policy for patients with prostate specific antigen failure after three-dimensional conformal prostate radiation therapy. Cancer 97, 1127–1133 (2003).

    PubMed  Google Scholar 

  44. Smith, M. R., Cook, R., Lee, K. A. & Nelson, J. B. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer 117, 2077–2085 (2011).

    PubMed  Google Scholar 

  45. Duchesne, G. M. et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol. 17, 727–737 (2016).

    CAS  PubMed  Google Scholar 

  46. Jung, M. E. et al. Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration-resistant prostate cancer (CRPC). J. Med. Chem. 53, 2779–2796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Penson, D. F. et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J. Clin. Oncol. 34, 2098–2106 (2016).

    CAS  PubMed  Google Scholar 

  49. Clegg, N. J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujita, K. & Nonomura, N. Role of androgen receptor in prostate cancer: a review. World J. Mens Health 37, 288–295 (2019).

    PubMed  Google Scholar 

  51. Smith, M. R. et al. Phase 2 study of the safety and antitumor activity of apalutamide (ARN-509), a potent androgen receptor antagonist, in the high-risk nonmetastatic castration-resistant prostate cancer cohort. Eur. Urol. 70, 963–970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Leibowitz-Amit, R. & Joshua, A. M. Targeting the androgen receptor in the management of castration-resistant prostate cancer: rationale, progress, and future directions. Curr. Oncol. 19, S22–S31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moilanen, A. M. et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep. 5, 12007 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Fizazi, K. et al. Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): an open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial. Lancet Oncol. 15, 975–985 (2014).

    CAS  PubMed  Google Scholar 

  55. Zurth, C. et al. Blood-brain barrier penetration of [14C]darolutamide compared with [14C]enzalutamide in rats using whole body autoradiography. J. Clin. Oncol. 36 (Suppl. 6), 345 (2018).

    Google Scholar 

  56. Zurth, C., Sandmann, S., Trummel, D., Seidel, D. & Gieschen, H. Higher blood–brain barrier penetration of [14C]apalutamide and [14C]enzalutamide compared to [14C]darolutamide in rats using whole-body autoradiography. J. Clin. Oncol. 37 (Suppl. 7), 156 (2019).

    Google Scholar 

  57. Huggins, C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann. Surg. 115, 1192–1200 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Denmeade, S. R. & Isaacs, J. T. A history of prostate cancer treatment. Nat. Rev. Cancer 2, 389–396 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor, C. D., Elson, P. & Trump, D. L. Importance of continued testicular suppression in hormone-refractory prostate cancer. J. Clin. Oncol. 11, 2167–2172 (1993).

    CAS  PubMed  Google Scholar 

  60. Gilligan, T. & Kantoff, P. W. Chemotherapy for prostate cancer. Urology 60, 94–100 (2002).

    PubMed  Google Scholar 

  61. Newling, D. W. The management of hormone refractory prostate cancer. Eur. Urol. 29 (Suppl 2), 69–74 (1996).

    PubMed  Google Scholar 

  62. Rice, M. A., Malhotra, S. V. & Stoyanova, T. Second-generation antiandrogens: from discovery to standard of care in castration resistant prostate cancer. Front. Oncol. 9, 801 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Masiello, D., Cheng, S., Bubley, G. J., Lu, M. L. & Balk, S. P. Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J. Biol. Chem. 277, 26321–26326 (2002).

    CAS  PubMed  Google Scholar 

  64. Schellhammer, P. F. et al. Clinical benefits of bicalutamide compared with flutamide in combined androgen blockade for patients with advanced prostatic carcinoma: final report of a double-blind, randomized, multicenter trial. Casodex Combination Study Group. Urology 50, 330–336 (1997).

    CAS  PubMed  Google Scholar 

  65. Sarosdy, M. F. Which is the optimal antiandrogen for use in combined androgen blockade of advanced prostate cancer? The transition from a first- to second-generation antiandrogen. Anticancer. Drugs 10, 791–796 (1999).

    CAS  PubMed  Google Scholar 

  66. Hotte, S. J. & Saad, F. Current management of castrate-resistant prostate cancer. Curr. Oncol. 17, S72 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Patel, V., Liaw, B. & Oh, W. The role of ketoconazole in current prostate cancer care. Nat. Rev. Urol. 15, 643–651 (2018).

    CAS  PubMed  Google Scholar 

  68. Thakur, A., Roy, A., Ghosh, A., Chhabra, M. & Banerjee, S. Abiraterone acetate in the treatment of prostate cancer. Biomed. Pharmacother. 101, 211–218 (2018).

    CAS  PubMed  Google Scholar 

  69. Klaassen, Z., Wallis, C. J. D. & Fleshner, N. E. Abiraterone acetate for nonmetastatic castration-resistant prostate cancer — the forgotten dance partner? JAMA Oncol. 5, 144–145 (2019).

    PubMed  Google Scholar 

  70. Ryan, C. J. et al. The IMAAGEN study: effect of abiraterone acetate and prednisone on prostate specific antigen and radiographic disease progression in patients with nonmetastatic castration resistant prostate cancer. J. Urol. 200, 344–352 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dhillon, S. Zoledronic acid (Reclast®, Aclasta®): a review in osteoporosis. Drugs 76, 1683–1697 (2016).

    CAS  PubMed  Google Scholar 

  72. Smith, M. R. et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J. Clin. Oncol. 23, 2918–2925 (2005).

    PubMed  Google Scholar 

  73. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat. Med. 1, 944–949 (1995).

    CAS  PubMed  Google Scholar 

  74. Nelson, J. B. et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 113, 2478–2487 (2008).

    CAS  PubMed  Google Scholar 

  75. Miller, K. et al. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 16, 187–192 (2013).

    CAS  PubMed  Google Scholar 

  76. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    CAS  PubMed  Google Scholar 

  77. Smith, M. R. et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J. Clin. Oncol. 31, 3800–3806 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Sternberg, C. N. et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 382, 2197–2206 (2020).

    CAS  PubMed  Google Scholar 

  79. Smith, M. R. et al. Apalutamide and overall survival in prostate cancer. Eur. Urol. 30, 1813–1820 (2020).

    Google Scholar 

  80. Small, E. J. et al. Final survival results from SPARTAN, a phase III study of apalutamide (APA) versus placebo (PBO) in patients (pts) with nonmetastatic castration-resistant prostate cancer (nmCRPC). J. Clin. Oncol. 38, 5516–5516 (2020).

    Google Scholar 

  81. Fizazi, K. et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N. Engl. J. Med. 383, 1040–1049 (2020).

    CAS  PubMed  Google Scholar 

  82. Wallis, C. J. D. et al. Advanced androgen blockage in nonmetastatic castration-resistant prostate cancer: an indirect comparison of apalutamide and enzalutamide. Eur. Urol. Oncol. 1, 238–241 (2018).

    PubMed  Google Scholar 

  83. Tombal, B. et al. Patient-reported outcomes following enzalutamide or placebo in men with non-metastatic, castration-resistant prostate cancer (PROSPER): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 20, 556–569 (2019).

    CAS  PubMed  Google Scholar 

  84. Saad, F. et al. Effect of apalutamide on health-related quality of life in patients with non-metastatic castration-resistant prostate cancer: an analysis of the SPARTAN randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 19, 1404–1416 (2018).

    CAS  PubMed  Google Scholar 

  85. Gillessen, S. et al. Management of patients with advanced prostate cancer: report of the advanced prostate cancer consensus conference 2019. Eur. Urol. 77, 508–547 (2020).

    CAS  PubMed  Google Scholar 

  86. Unger, J. M., Cook, E., Tai, E. & Bleyer, A. The role of clinical trial participation in cancer research: barriers, evidence, and strategies. Am. Soc. Clin. Oncol. Educ. Book 35, 185–198 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. El-Amm, J. & Aragon-Ching, J. B. The current landscape of treatment in non-metastatic castration-resistant prostate cancer. Clin. Med. Insights Oncol. 13, 1179554919833927 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Higano, C. Enzalutamide, apalutamide, or darolutamide: are apples or bananas best for patients? Nat. Rev. Urol. 16, 335–336 (2019).

    PubMed  Google Scholar 

  89. Sung, W. W., Choi, H. C., Luk, P. H. & So, T. H. A cost-effectiveness analysis of systemic therapy for metastatic hormone-sensitive prostate cancer. Front. Oncol. 11, 144 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Fred Saad.

Ethics declarations

Competing interests

The authors declare consultancy fees and honoraria as well as institution research funding from Astellas, Bayer and Janssen.

Additional information

Peer review information

Nature Reviews Urology thanks V. Conteduca, D. Quinn and T. Friedlander for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokeshwar, S.D., Klaassen, Z. & Saad, F. Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat Rev Urol 18, 433–442 (2021). https://doi.org/10.1038/s41585-021-00470-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00470-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing