Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transient receptor potential channels in sensory mechanisms of the lower urinary tract

Abstract

Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.

Key points

  • Transient receptor potential (TRP) channels are expressed throughout all layers of the bladder wall and their function is closely related to the location of expression.

  • High urothelial expression of TRPM4, TRPM7 and TRPV4 has been observed, the latter of which is considered to be a stretch sensor in urothelial cells.

  • TRPV1, TRPA1 and TRPM8 are expressed on afferent nerves in the bladder and are involved in changes in bladder function during inflammation (TRPV1 and TRPA1) or cold stimulation (TRPM8).

  • Despite involvement of TRP channels in animal models for overactive bladder, underactive bladder and cold-induced LUTS, translation to clinical applications remains limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the shared structure of TRP channels.
Fig. 2: Schematic representation of TRP channels in excitable and non-excitable cells in the bladder wall.
Fig. 3: Single-cell transient receptor potential channel transcriptomics in mouse mucosa.
Fig. 4: Schematic representation of the bladder wall with the presumed cellular localization of TRP channels.

Similar content being viewed by others

References

  1. Griffiths, D. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 12, 695–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Abrams, P. et al. Reviewing the ICS 2002 terminology report: the ongoing debate. Neurourol. Urodyn. 25, 293 (2006).

    Article  PubMed  Google Scholar 

  3. Irwin, D. E., Milsom, I., Kopp, Z., Abrams, P. & Cardozo, L. Impact of overactive bladder symptoms on employment, social interactions and emotional well-being in six European countries. BJU Int. 97, 96–100 (2006).

    Article  PubMed  Google Scholar 

  4. Coyne, K. S. et al. The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the epidemiology of LUTS (EpiLUTS) study. BJU Int. 104, 352–360 (2009).

    Article  PubMed  Google Scholar 

  5. Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108, 1132–1138 (2011).

    Article  PubMed  Google Scholar 

  6. Irwin, D. E. et al. The economic impact of overactive bladder syndrome in six Western countries. BJU Int. 103, 202–209 (2009).

    Article  PubMed  Google Scholar 

  7. Irwin, D. E. et al. Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur. Urol. 50, 1306–1315 (2006).

    Article  PubMed  Google Scholar 

  8. Fujiu, K., Nakayama, Y., Iida, H., Sokabe, M. & Yoshimura, K. Mechanoreception in motile flagella of chlamydomonas. Nat. Cell Biol. 13, 630–632 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Arias-Darraz, L. et al. A transient receptor potential ion channel in chlamydomonas shares key features with sensory transduction-associated trp channels in mammals. Plant Cell 27, 177–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petersen, C. C. H., Berridge, M. J., Borgese, M. F. & Bennett, D. L. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem. J. 311, 41–44 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flockerzi, V. & Nilius, B. in Mammalian Transient Receptor Potential (TRP) Cation Channels, Handbook of Experimental Pharmacology 222, 1–12 (Springer, 2014).

  12. Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3–re3 (2005).

    Article  PubMed  Google Scholar 

  14. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Dhaka, A. et al. TRPV1 is activated by both acidic and basic pH. J. Neurosci. 29, 153–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Servin-Vences, M. R., Moroni, M., Lewin, G. R. & Poole, K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6, e21074 (2017).

    Article  PubMed  Google Scholar 

  19. Hu, H.-Z. et al. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 279, 35741–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Voets, T. Quantifying and modeling the temperature-dependent gating of TRP channels. in Reviews of Physiology, Biochemistry and Pharmacology 162, 91–119 (Springer, Berlin, Heidelberg, 2012).

  21. Launay, P. et al. TRPM4 Is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr. Biol. 13, 1153–1158 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Avelino, A., Cruz, C., Nagy, I. & Cruz Ayb, F. Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109, 787–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, A. C. et al. TRPM4 channel: a new player in urinary bladder smooth muscle function in rats. Am. J. Physiol. Renal Physiol. 304, 918–929 (2013).

    Article  CAS  Google Scholar 

  25. Everaerts, W. et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am. J. Physiol. Physiol. 298, F692–F701 (2010).

    Article  CAS  Google Scholar 

  26. Spencer, N. J. et al. Identifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. J. Comp. Neurol. 526, 707–720 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, L. & Gebhart, G. F. Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J. Neurophysiol. 99, 244–253 (2008).

    Article  PubMed  Google Scholar 

  28. Kanda, H., Clodfelder-Miller, B. J., Gu, J. G., Ness, T. J. & Deberry, J. J. Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Res. 1648, 81–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clodfelder-Miller, B. J. et al. Urothelial bladder afferent neurons in the rat are anatomically and neurochemically distinct from non-urothelial afferents. Brain Res. 1689, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. De Groat, W. C. & Yoshimura, N. Afferent nerve regulation of bladder function in health and disease. Handb. Exp. Pharmacol. 194, 91–138 (2009).

    Article  CAS  Google Scholar 

  31. Vlaskovska, M. et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21, 5670–5677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Apodaca, G., Balestreire, E. & Birder, L. A. The uroepithelial-associated sensory web. Kidney Int. 72, 1057–1064 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Durnin, L. et al. Urothelial purine release during filling of murine and primate bladders. Am. J. Physiol. Physiol. 311, F708–F716 (2016).

    Article  CAS  Google Scholar 

  35. Heppner, T. J., Tykocki, N. R., Hill-Eubanks, D. & Nelson, M. T. Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J. Gen. Physiol. 147, 323–335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, W. & Hill, W. G. Defining protein expression in the urothelium: a problem of more than transitional interest. Am. J. Physiol. Physiol. 301, F932–F942 (2011).

    Article  CAS  Google Scholar 

  37. Everaerts, W. et al. Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch. Pharmacol. 379, 421–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Deruyver, Y., Voets, T., De Ridder, D. & Everaerts, W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 115, 686–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Birder, L. A. et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. PNAS 98, 13396–13401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ost, D., Roskams, T., Van Der Aa, F. & De Ridder, D. Topography of the vanilloid receptor in the human bladder: more than just the nerve fibers. J. Urol. 168, 293–297 (2002).

    Article  PubMed  Google Scholar 

  41. Lazzeri, M. et al. Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder. Eur. Urol. 46, 792–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lazzeri, M. et al. Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur. Urol. 48, 691–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Apostolidis, A. et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65, 400–405 (2005).

    Article  PubMed  Google Scholar 

  44. Liu, H.-T. & Kuo, H.-C. Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity. BJU Int. 100, 1086–1090 (2007).

    CAS  PubMed  Google Scholar 

  45. Heng, Y. J., Saunders, C. I. M., Kunde, D. A. & Geraghty, D. P. TRPV1, NK1 receptor and substance P immunoreactivity and gene expression in the rat lumbosacral spinal cord and urinary bladder after systemic, low dose vanilloid administration. Regul. Pept. 167, 250–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Yamada, T. et al. Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J. Histochem. Cytochem. 57, 277–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mochizuki, T. et al. The TRPV4 cation channel mediates stretch-evoked Ca 2 influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284, 21257–21264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, X. et al. Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells. Channels 3, 156–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. O’Mullane, L. M., Keast, J. R. & Osborne, P. B. Co-cultures provide a new tool to probe communication between adult sensory neurons and urothelium. J. Urol. 190, 737–745 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shabir, S. et al. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium. Am. J. Physiol. Physiol. 305, F396–F406 (2013).

    Article  CAS  Google Scholar 

  51. Kullmann, F. A., Shah, M. A., Birder, L. A. & de Groat, W. C. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am. J. Physiol. Renal Physiol. 296, F892–F901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cavanaugh, D. J. et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 31, 5067–77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Menigoz, A. & Boudes, M. The expression pattern of TRPV1 in brain. J. Neurosci. 31, 13025–13027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, A. J. & Palmiter, R. D. Detecting and avoiding problems when using the Cre/lox system. Trends Genet. 34, 333–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tabula Muris. https://tabula-muris.ds.czbiohub.org/ (2018).

  56. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  57. Streng, T. et al. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur. Urol. 53, 391–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Du, S. et al. Differential expression profile of cold (TRPA1) and cool (TRPM8) receptors in human urogenital organs. Urology 72, 450–455 (2008).

    Article  PubMed  Google Scholar 

  59. Gratzke, C. et al. Transient receptor potential A1 (TRPA1) activity in the human urethra — evidence for a functional role for TRPA1 in the outflow region. Eur. Urol. 55, 696–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Stein, R. J. et al. Cool (TRPM8) and Hot (TRPV1) receptors in the bladder and male genital tract. J. Urol. 172, 1175–1178 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA 107, 19084–19089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thorneloe, K. S. et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J. Pharmacol. Exp. Ther. 326, 432–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Phan, T. X., Ton, H. T., Chen, Y., Basha, M. E. & Ahern, G. P. Sex-dependent expression of TRPV1 in bladder arterioles. Am. J. Physiol. Physiol. 311, F1063–F1073 (2016).

    Article  CAS  Google Scholar 

  66. Yu, W., Hill, W. G., Apodaca, G. & Zeidel, M. L. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am. J. Physiol. Physiol. 300, F49–F59 (2010).

    Article  CAS  Google Scholar 

  67. Vandewauw, I., Owsianik, G. & Voets, T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci. 14, 21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harding, S. D. et al. The GUDMAP database — an online resource for genitourinary research. Development 138, 2845–2853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. GUDMAP. https://www.gudmap.org/id/16-DW7R@2VC-DWXQ-2KDE.

  70. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68, 633–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Güler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Vincent, F. et al. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun. 389, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Thorneloe, K. S. et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4, 159ra148 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Everaerts, W., Nilius, B. & Owsianik, G. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog. Biophys. Mol. Biol. 103, 2–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Tian, W. et al. Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments. Am. J. Physiol. Physiol. 287, F17–F24 (2004).

    Article  Google Scholar 

  79. Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 8, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Casas, S., Novials, A., Reimann, F., Gomis, R. & Gribble, F. M. Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51, 2252–2262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chung, M.-K., Lee, H. & Caterina, M. J. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J. Biol. Chem. 278, 32037–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Fian, R. et al. The contribution of TRPV4-mediated calcium signaling to calcium homeostasis in endothelial cells. J. Recept. Signal. Transduct. 27, 113–124 (2007).

    Article  CAS  Google Scholar 

  83. Lorenzo, I. M., Liedtke, W., Sanderson, M. J. & Valverde, M. A. TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc. Natl Acad. Sci. USA 105, 12611–12616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Birder, L. A. et al. Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J. Pharmacol. Exp. Ther. 323, 227–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Janssen, D. A. W. et al. The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J. Urol. 186, 1121–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Janssen, D. A. W. et al. TRPV4 channels in the human urogenital tract play a role in cell junction formation and epithelial barrier. Acta Physiol. 218, 38–48 (2016).

    CAS  Google Scholar 

  87. Roberts, M. W. G. et al. TRPV4 receptor as a functional sensory molecule in bladder urothelium: stretch-independent, tissue-specific actions and pathological implications. FASEB J. 34, 263–286 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Namasivayam, Eardley & Morrison. Purinergic sensory neurotransmission in the urinary bladder: an in vitro study in the rat. BJU Int. 84, 854–860 (2001).

    Article  Google Scholar 

  89. Rong, W., Spyer, K. M. & Burnstock, G. Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J. Physiol. 541, 591–600 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cockayne, D. A. et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J. Physiol. 567, 621–639 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aizawa, N., Wyndaele, J.-J., Homma, Y. & Igawa, Y. Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol. Urodyn. 31, 148–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Mizuno, A., Matsumoto, N., Imai, M. & Suzuki, M. Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Physiol. 285, C96–C101 (2003).

    Article  CAS  Google Scholar 

  93. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in trpv4-/- mice. PNAS 100, 13698–13703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoshiyama, M. et al. Functional roles of TRPV1 and TRPV4 in control of lower urinary tract activity: dual analysis of behavior and reflex during the micturition cycle. Am. J. Physiol. Physiol. 308, F1128–F1134 (2015).

    Article  CAS  Google Scholar 

  95. Deruyver, Y. et al. Intravesical activation of the cation channel TRPV4 improves bladder function in a rat model for detrusor underactivity. Eur. Urol. 74, 336–345 (2018).

    Article  PubMed  Google Scholar 

  96. Ihara, T. et al. The circadian expression of Piezo1, TRPV4, Connexin26, and VNUT, associated with the expression levels of the clock genes in mouse primary cultured urothelial cells. Neurourol. Urodyn. 37, 942–951 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Ihara, T. et al. The oscillation of intracellular Ca2+ influx associated with the circadian expression of Piezo1 and TRPV4 in the bladder urothelium. Sci. Rep. 8, 5699 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ihara, T. et al. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria. Neurourol. Urodyn. 36, 1034–1038 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Alpizar, Y. A. et al. TRPV4 mediates acute bladder responses to bacterial lipopolysaccharides. Front. Immunol. 11, 799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol. 1, 165–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Muraki, K. et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93, 829–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Bang, S., Kim, K. Y., Yoo, S., Lee, S.-H. & Hwang, S. W. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci. Lett. 425, 120–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Qin, N. et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 28, 6231–6238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shibasaki, K., Murayama, N., Ono, K., Ishizaki, Y. & Tominaga, M. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J. Neurosci. 30, 4601–4612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De Clercq, K. et al. The functional expression of transient receptor potential channels in the mouse endometrium. Hum. Reprod. 32, 615–630 (2017).

    PubMed  Google Scholar 

  108. Katanosaka, Y. et al. TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat. Commun. 5, 3932 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Link, T. M. et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 11, 232–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Park, U. et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31, 11425–11436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Caprodossi, S. et al. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Eur. Urol. 54, 612–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Yamada, T. et al. TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology 76, 509.e1–509.e7 (2010).

    Article  Google Scholar 

  113. Ryazanova, L. V. et al. TRPm7 is essential for Mg2+ homeostasis in mammals. Nat. Commun. 1, 109 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Fonfria, E. et al. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal. Transduct. 26, 159–178 (2006).

    Article  CAS  Google Scholar 

  115. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Watanabe, M. et al. Trpm7 protein contributes to intercellular junction formation in mouse urothelium. J. Biol. Chem. 290, 29882–29892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Nilius, B. & Szallasi, A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 66, 676–814 (2014).

    Article  PubMed  CAS  Google Scholar 

  119. Acs, G., Palkovits, M. & Blumberg, P. M. [3H]Resiniferatoxin binding by the human vanilloid (capsaicin) receptor. Mol. Brain Res. 23, 185–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Baumann, T. K., Burchiel, K. J., Ingram, S. L. & Martenson, M. E. Responses of adult human dorsal root ganglion neurons in culture to capsaicin and low pH. Pain 65, 31–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Denda, M. et al. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem. Biophys. Res. Commun. 285, 1250–1252 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Sanchez, J. F., Krause, J. E. & Cortright, D. N. The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat. Neuroscience 107, 373–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Mouse Brain Atlas. www.mousebrain.org.

  125. Maggi, C. A. The dual function of capsaicin-sensitive sensory nerves in the bladder and urethra. Ciba Found. Symp. 151, 77–83 (1990).

    CAS  PubMed  Google Scholar 

  126. Engel, M. A. et al. The proximodistal aggravation of colitis depends on substance P released from TRPV1-expressing sensory neurons. J. Gastroenterol. 47, 256–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Meng, J. et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J. Neurosci. 29, 4981–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gouin, O. et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8, 644–661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boillat, A., Alijevic, O. & Kellenberger, S. Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Mol. Cell. Neurosci. 61, 13–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Yiangou, Y. et al. Capsaicin receptor VR1 and ATP-gated ion channel P2X3 in human urinary bladder. BJU Int. 87, 774–779 (2002).

    Article  Google Scholar 

  131. Birder, L. A. TRPs in bladder diseases. Biochim. Biophys. Acta 1772, 879–84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Z.-Y., Wang, P., Voznika Merriam, F. & Bjorling, D. E. Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139, 158–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Daly, D., Rong, W., Chess-Williams, R., Chapple, C. & Grundy, D. Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 583, 663–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grundy, L. et al. Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H 1 receptor and TRPV1. Am. J. Physiol. Renal Physiol. 318, 298–314 (2020).

    Article  CAS  Google Scholar 

  135. Grundy, L., Daly, D. M., Chapple, C., Grundy, D. & Chess-Williams, R. TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder. Sci. Rep. 8, 197 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jordt, S.-E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    Article  PubMed  CAS  Google Scholar 

  139. Bessac, B. F. et al. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest. 118, 1899–1910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bautista, D. M., Pellegrino, M. & Tsunozaki, M. TRPA1: a gatekeeper for inflammation. Annu. Rev. Physiol. 75, 181–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Andersson, D. A., Gentry, C., Moss, S. & Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485–2494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Moparthi, L. et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl Acad. Sci. USA 111, 16901–16906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Vandewauw, I. et al. A TRP channel trio mediates acute noxious heat sensing. Nature 555, 662–666 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Nagata, K., Duggan, A., Kumar, G. & García-Añoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 20, 7131–7142 (2005).

    Google Scholar 

  146. Kim, Y. S. et al. Expression of transient receptor potential ankyrin 1 in human dental pulp. J. Endod. 38, 1087–1092 (2012).

    Article  PubMed  Google Scholar 

  147. El Karim, I. A. et al. Human dental pulp fibroblasts express the “Cold-sensing” transient receptor potential channels TRPA1 and TRPM8. J. Endod. 37, 473–478 (2011).

    Article  PubMed  Google Scholar 

  148. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Nassini, R. Materazzi, S., Benemei, S. & Geppetti, P. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev. Physiol. Biochem. Pharmacol. 167, 1–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Moilanen, L. J., Hämäläinen, M., Lehtimäki, L., Nieminen, R. M. & Moilanen, E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice — potential role for transient receptor potential ankyrin 1 in gout. PLoS One 10, e0117770 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Moilanen, L. J. et al. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice — potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 23, 2017–2026 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Du, S., Araki, I., Yoshiyama, M., Nomura, T. & Takeda, M. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70, 826–831 (2007).

    Article  PubMed  Google Scholar 

  153. Everaerts, W. et al. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr. Biol. 21, 316–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Minagawa, T., Aizawa, N., Igawa, Y. & Wyndaele, J.-J. The role of transient receptor potential ankyrin 1 (TRPA1) channel in activation of single unit mechanosensitive bladder afferent activities in the rat. Neurourol. Urodyn. 33, 544–549 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. McNamara, C. R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl Acad. Sci. USA 104, 13525–13530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Eid, S. R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kamei, J. et al. Attenuated lipopolysaccharide-induced inflammatory bladder hypersensitivity in mice deficient of transient receptor potential ankilin1. Sci. Rep. 8, 15622 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Uvin, P. et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur. Urol. 68, 655–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol. 493, 596–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Dhaka, A., Earley, T. J., Watson, J. & Patapoutian, A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci. 28, 566–575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  163. Ma, S. et al. Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J. Mol. Cell Biol. 4, 88–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Rossato, M. et al. Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Mol. Cell. Endocrinol. 383, 137–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Gavva, N. R. et al. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol. Pain 8, 36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lashinger, E. S. R. et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Physiol. 295, F803–F810 (2008).

    Article  CAS  Google Scholar 

  170. Andrews, M. D. et al. Discovery of a selective TRPM8 antagonist with clinical efficacy in cold-related pain. ACS Med. Chem. Lett. 6, 419–424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kobayashi, J. et al. Synthesis and optimization of novel α-phenylglycinamides as selective TRPM8 antagonists. Bioorg. Med. Chem. 25, 727–742 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Aizawa, N. et al. RQ-00434739, a novel TRPM8 antagonist, inhibits prostaglandin E2-induced hyperactivity of the primary bladder afferent nerves in rats. Life Sci. 218, 89–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Gardiner, J. C. et al. The role of TRPM8 in the guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist. Eur. J. Pharmacol. 740, 398–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Hayashi, T. et al. Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci. Res. 65, 245–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Ito, H. et al. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 117, 484–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Jun, J. H. et al. Function of the cold receptor (TRPM8) associated with voiding dysfunction in bladder outlet obstruction in rats. Int. Neurourol. J. 16, 69–76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Dietrich, A., Fahlbusch, M. & Gudermann, T. Classical transient receptor potential 1 (TRPC1): channel or channel regulator? Cells 3, 939–962 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kim, J. et al. Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Arch. 466, 491–504 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Storch, U. et al. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J. Biol. Chem. 287, 3530–3540 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Strübing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001).

    Article  PubMed  Google Scholar 

  181. Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat. Cell Biol. 3, 121–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Strübing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem. 278, 39014–39019 (2003).

    Article  PubMed  Google Scholar 

  183. Tsvilovskyy, V. V. et al. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137, 1415–1424 (2009).

    Article  PubMed  CAS  Google Scholar 

  184. Phelan, K. D. et al. Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol. Pharmacol. 81, 384–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Stroh, O. et al. NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J. Neurosci. 32, 5737–5746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Boudes, M. et al. Crucial role of TRPC1 and TRPC4 in cystitis-induced neuronal sprouting and bladder overactivity. PLoS One 8, e69550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Riccio, A. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gerzanich, V. et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med. 15, 185–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Hof, T., Simard, C., Rouet, R., Sallé, L. & Guinamard, R. Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm. 10, 1683–1689 (2013).

    Article  PubMed  Google Scholar 

  195. Simard, C., Hof, T., Keddache, Z., Launay, P. & Guinamard, R. The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J. Mol. Cell. Cardiol. 59, 11–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest. 120, 3267–3279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Brink, P. A. et al. Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation 91, 1633–1640 (1995).

    Article  CAS  PubMed  Google Scholar 

  198. Liu, H. et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ. Cardiovasc. Genet. 3, 374–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Wang, H. et al. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J. Invest. Dermatol. 139, 1089–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Smith, A. C. et al. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. Am. J. Physiol. Cell Physiol. 304, 467–477 (2013).

    Article  CAS  Google Scholar 

  201. Hristov, K. L. et al. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function. Am. J. Physiol. Physiol. 310, C600–C611 (2016).

    Article  Google Scholar 

  202. Kullmann, F. A. et al. Involvement of TRPM4 in detrusor overactivity following spinal cord transection in mice. Naunyn Schmiedebergs Arch. Pharmacol. 391, 1191–1202 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Guinamard, R., Hof, T. & Del Negro, C. A. The TRPM4 channel inhibitor 9-phenanthrol. Br. J. Pharmacol. 171, 1600–1613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Grand, T. et al. 9-Phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br. J. Pharmacol. 153, 1697–1705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Burris, S. K., Wang, Q., Bulley, S., Neeb, Z. P. & Jaggar, J. H. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels. Br. J. Pharmacol. 172, 2459–2468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Garland, C. J. et al. TRPM4 inhibitor 9-phenanthrol activates endothelial cell intermediate conductance calcium-activated potassium channels in rat isolated mesenteric artery. Br. J. Pharmacol. 172, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Lee, H. et al. Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα+ cells. Sci. Rep. 7, 12245 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Koh, B. H. et al. Platelet-derived growth factor receptor-a cells in mouse urinary bladder: a new class of interstitial cells. J. Cell Mol. Med. 16, 691–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Griffin, C. S. et al. Muscarinic receptor induced contractions of the detrusor are mediated by activation of TRPC4 channels. J. Urol. 196, 1796–1808 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Griffin, C. S., Thornbury, K. D., Hollywood, M. A. & Sergeant, G. P. Muscarinic receptor-induced contractions of the detrusor are impaired in TRPC4 deficient mice. Sci. Rep. 8, 9264 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Morelli, M. B. et al. Cross-talk between alpha 1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation. BMC Cancer 14, 921 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Wissenbach, U. et al. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J. Biol. Chem. 276, 19461–19468 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Sagredo, A. I. et al. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J. Cell. Physiol. 234, 2037–2050 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Holzmann, C. et al. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 6, 41783–41793 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Chen, L. et al. Downregulation of TRPM7 suppressed migration and invasion by regulating epithelial–mesenchymal transition in prostate cancer cells. Med. Oncol. 34, 1–11 (2017).

    Article  CAS  Google Scholar 

  216. Grolez, G. & Gkika, D. TRPM8 puts the chill on prostate cancer. Pharmaceuticals 9, 44 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  217. Thebault, S. et al. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 66, 2038–2047 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Wang, H. P., Pu, X. Y. & Wang, X. H. Distribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat. Asian J. Androl. 9, 634–640 (2007).

    Article  PubMed  CAS  Google Scholar 

  219. Uhlen, M. et al. Tissue-based map of the human proteome. Science. 347, 1260419–1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  220. Human Protein Atlas. http://www.proteinatlas.org.

  221. Dinis, P. et al. The distribution of sensory fibers immunoreactive for the TRPV1 (capsaicin) receptor in the human prostate. Eur. Urol. 48, 162–167 (2005).

    Article  PubMed  Google Scholar 

  222. Roman, K., Hall, C., Schaeffer, A. J. & Thumbikat, P. TRPV1 in experimental autoimmune prostatitis. Prostate 80, 28–37 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, J. et al. Upregulation of TRPV1 in spinal dorsal root ganglion by activating NGF-TrkA pathway contributes to pelvic organ cross-sensitisation in rats with experimental autoimmune prostatitis. Andrologia 51, e13302 (2019).

    Article  PubMed  Google Scholar 

  224. Funahashi, Y. et al. Bladder overactivity and afferent hyperexcitability induced by prostate-to-bladder cross-sensitization in rats with prostatic inflammation. J. Physiol. 597, 2063–2078 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Eggermont, M., De Wachter, S., Eastham, J. & Gillespie, J. Innervation of the epithelium and lamina propria of the urethra of the female rat. Anat. Rec. 302, 201–214 (2019).

    Article  CAS  Google Scholar 

  226. Danziger, Z. C. & Grill, W. M. Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat. J. Physiol. 595, 5687–5698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Birder, L. et al. Activation of urothelial transient receptor potential vanilloid 4 by 4-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J. Pharmacol. Exp. Ther. 323, 227–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Oliveira, M. G. et al. Autonomic dysregulation at multiple sites is implicated in age-associated underactive bladder in female mice. Neurourol. Urodyn. 38, 1212–1221 (2019).

    Article  PubMed  CAS  Google Scholar 

  229. Berrout, J. et al. Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) as a mechanical transducer in flow-sensitive segments of renal collecting duct system. J. Biol. Chem. 287, 8782–8791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Parlani, M., Conte, B., Goso, C., Szallasi, A. & Manzini, S. Capsaicin-induced relaxation in the rat isolated external urethral sphincter: characterization of the vanilloid receptor and mediation by CGRP. Br. J. Pharmacol. 110, 989–994 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Weinhold, P. et al. TRPA1 receptor induced relaxation of the human urethra involves TRPV1 and cannabinoid receptor mediated signals, and cyclooxygenase activation. J. Urol. 183, 2070–2076 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tizzano, M. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl Acad. Sci. USA 107, 3210–3215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Krasteva, G. et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc. Natl Acad. Sci. USA 108, 9478–9483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Liman, E. R. TRPM5. Handb. Exp. Pharmacol. 222, 489–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Yu, Y. & de Groat, W. C. Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. Am. J. Physiol. Physiol. 294, F1146–F1156 (2008).

    Article  CAS  Google Scholar 

  237. Park, B. S. & Lee, J.-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45, e66–e66 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Alpizar, Y. A. et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun. 8, 1059 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Charrua, A., Cruz, C. D., Cruz, F. & Avelino, A. Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J. Urol. 177, 1537–1541 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Vizzard, M. A. Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. Am. J. Physiol. Integr. Comp. Physiol. 278, R1027–R1039 (2000).

    Article  CAS  Google Scholar 

  241. Herrera, D. G. & Robertson, H. A. Activation of c-fos in the brain. Prog. Neurobiol. 50, 83–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  242. Harris, J. A. Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  243. Cox, P. J. Cyclophosphamide cystitis — identification of acrolein as the causative agent. Biochem. Pharmacol. 28, 2045–2049 (1979).

    Article  CAS  PubMed  Google Scholar 

  244. Aizawa, N. et al. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats. Neurourol. Urodyn. 37, 1633–1640 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Franzén, K., Johansson, J.-E., Andersson, G., Pettersson, N. & Nilsson, K. Urinary incontinence in women is not exclusively a medical problem: A population-based study on urinary incontinence and general living conditions. Scand. J. Urol. Nephrol. 43, 226–232 (2009).

    Article  PubMed  Google Scholar 

  246. Rothrock, N. E., Lutgendorf, S. K., Kreder, K. J., Ratliff, T. & Zimmerman, B. Stress and symptoms in patients with interstitial cystitis: a life stress model. Urology 57, 422–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  247. Valentino, R. J., Wood, S. K., Wein, A. J. & Zderic, S. A. The bladder–brain connection: putative role of corticotropin-releasing factor. Nat. Rev. Urol. 8, 19–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  248. Wolfe-Christensen, C., Veenstra, A. L., Kovacevic, L., Elder, J. S. & Lakshmanan, Y. Psychosocial difficulties in children referred to pediatric urology: a closer look. Urology 80, 907–913 (2012).

    Article  PubMed  Google Scholar 

  249. Mingin, G. C., Peterson, A., Erickson, C. S., Nelson, M. T. & Vizzard, M. A. Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice. Am. J. Physiol. Integr. Comp. Physiol. 307, R893–R900 (2014).

    Article  CAS  Google Scholar 

  250. Mingin, G. C. et al. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am. J. Physiol. Integr. Comp. Physiol. 309, R629–R638 (2015).

    Article  CAS  Google Scholar 

  251. Tykocki, N. R. et al. Development of stress-induced bladder insufficiency requires functional TRPV1 channels. Am. J. Physiol. Physiol. 315, F1583–F1591 (2018).

    Article  CAS  Google Scholar 

  252. Wood, S. K., Baez, M. A., Bhatnagar, S. & Valentino, R. J. Social stress-induced bladder dysfunction: potential role of corticotropin-releasing factor. Am. J. Physiol. Integr. Comp. Physiol. 296, R1671–R1678 (2009).

    Article  CAS  Google Scholar 

  253. Merrill, L. & Vizzard, M. A. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R471–R480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Maggi, C. A. et al. The contribution of capsaicin-sensitive innervation to activation of the spinal vesico-vesical reflex in rats: relationship between substance P levels in the urinary bladder and the sensory-efferent function of capsaicin-sensitive sensory neurons. Brain Res. 415, 1–13 (1987).

    Article  CAS  PubMed  Google Scholar 

  255. de Groat, W. C. et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J. Auton. Nerv. Syst. 30, S71–S77 (1990).

    Article  PubMed  Google Scholar 

  256. Simone, D. A., Nolano, M., Johnson, T., Wendelschafer-Crabb, G. & Kennedy, W. R. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J. Neurosci. 18, 8947–8959 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Phé, V. et al. Intravesical vanilloids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis. A report from the Neuro-Urology Promotion Committee of the International Continence Society (ICS). Neurourol. Urodyn. 37, 67–82 (2018).

    Article  PubMed  Google Scholar 

  258. Craft, R. M., Cohen, S. M. & Porreca, F. Long-lasting desensitization of bladder afferents following intravesical resiniferatoxin and capsaicin in the rat. Pain 61, 317–323 (1995).

    Article  CAS  PubMed  Google Scholar 

  259. de Sèze, M. et al. Intravesical instillation of capsaicin in urology: a review of the literature. Eur. Urol. 36, 267–77 (1999).

    Article  PubMed  Google Scholar 

  260. Andrade, E. L. et al. TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am. J. Physiol. Physiol. 300, F1223–F1234 (2011).

    Article  CAS  Google Scholar 

  261. Osman, N. I. & Chapple, C. R. Contemporary concepts in the aetiopathogenesis of detrusor underactivity. Nat. Rev. Urol. 11, 639–648 (2014).

    Article  PubMed  Google Scholar 

  262. Abrams, P. et al. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology 61, 37–49 (2003).

    Article  PubMed  Google Scholar 

  263. Chapple, C. R. et al. The underactive bladder: a new clinical concept? Eur. Urol. 68, 351–353 (2015).

    Article  PubMed  Google Scholar 

  264. Hoag, N. & Gani, J. Underactive bladder: clinical features, urodynamic parameters, and treatment. Int. Neurourol. J. 19, 185–189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Takaoka, E. et al. Effect of TRPV4 activation in a rat model of detrusor underactivity induced by bilateral pelvic nerve crush injury. Neurourol. Urodyn. 37, 2527–2534 (2018).

    Article  CAS  PubMed  Google Scholar 

  266. Mukerji, G. et al. Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders. BMC Urol. 6, 31 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Mukerji, G. et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 6, 6 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Liu, B. et al. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 92, 202–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  269. Dornelles, F. N., Andrade, E. L., Campos, M. M. & Calixto, J. B. Role of CXCR2 and TRPV1 in functional, inflammatory and behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis. Br. J. Pharmacol. 171, 452–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Dinis, P., Charrua, A., Avelino, A. & Cruz, F. Intravesical resiniferatoxin decreases spinal c-fos expression and increases bladder volume to reflex micturition in rats with chronic inflamed urinary bladders. BJU Int. 94, 153–157 (2004).

    Article  PubMed  Google Scholar 

  271. de Sèze, M. et al. Capsaicin and neurogenic detrusor hyperreflexia: a double-blind placebo-controlled study in 20 patients with spinal cord lesions. Neurourol. Urodyn. 17, 513–523 (1998).

    Article  PubMed  Google Scholar 

  272. Lazzeri, M. et al. Intravesical resiniferatoxin for the treatment of hypersensitive disorder: a randomized placebo controlled study. J. Urol. 164, 676–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  273. Ham, B. K., Kim, J. H., Oh, M. M., Lee, J. G. & Bae, J. H. Effects of combination treatment of intravesical resiniferatoxin instillation and hydrodistention in patients with refractory painful bladder syndrome/interstitial cystitis: a pilot study. Int. Neurourol. J. 16, 41–46 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Payne, C. K. et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J. Urol. 173, 1590–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Meotti, F. C., Forner, S., Lima-Garcia, J. F., Viana, A. F. & Calixto, J. B. Antagonism of the transient receptor potential ankyrin 1 (TRPA1) attenuates hyperalgesia and urinary bladder overactivity in cyclophosphamide-induced haemorrhagic cystitis. Chem. Biol. Interact. 203, 440–447 (2013).

    Article  CAS  PubMed  Google Scholar 

  276. Deberry, J. J., Schwartz, E. S. & Davis, B. M. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 155, 1280–1287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Alagiri, M., Chottiner, S., Ratner, V., Slade, D. & Hanno, P. M. Interstitial cystitis: Unexplained associations with other chronic disease and pain syndromes. Urology 49, 52–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  278. Grundy, L. & Brierley, S. M. Cross-organ sensitization between the colon and bladder: to pee or not to pee? Am. J. Physiol. Gastrointest. Liver Physiol. 314, G301–G308 (2018).

    Article  PubMed  CAS  Google Scholar 

  279. Malykhina, A. P. Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 149, 660–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  280. Furuta, A. et al. Cross-sensitization mechanisms between colon and bladder via transient receptor potential A1 stimulation in rats. Int. Urogynecol. J. 25, 1575–1581 (2014).

    Article  PubMed  Google Scholar 

  281. Geirsson, G. et al. Positive bladder cooling test in neurologically normal young children. J. Urol. 151, 446–448 (1994).

    Article  CAS  PubMed  Google Scholar 

  282. Bors, E. H. & Blinn, K. A. Spinal reflex activity from the vesical mucosa in paraplegic patients. Arch. Neurol. Psychiatry 78, 339–354 (1957).

    Article  CAS  Google Scholar 

  283. Ronzoni, G., Menchinelli, P., Manca, A. & De Giovanni, L. The ice-water test in the diagnosis and treatment of the neurogenic bladder. Br. J. Urol. 79, 698–701 (1997).

    Article  CAS  PubMed  Google Scholar 

  284. Geirsson, G., Lindström, S. & Fall, M. The bladder cooling reflex and the use of cooling as stimulus to the lower urinary tract. J. Urol. 162, 1890–1896 (1999).

    Article  CAS  PubMed  Google Scholar 

  285. Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–69 (2014).

    Article  PubMed  CAS  Google Scholar 

  286. Everaerts, W. & De Ridder, D. TRPM8 antagonists to treat lower urinary tract symptoms: don’t lose your cool just yet. BJU Int. 117, 384–385 (2016).

    Article  PubMed  Google Scholar 

  287. Ghei, M. & Malone-Lee, J. Using the circumstances of symptom experience to assess the severity of urgency in the overactive bladder. J. Urol. 174, 972–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  288. Imamura, T. et al. Cold environmental stress induces detrusor overactivity via resiniferatoxin-sensitive nerves in conscious rats. Neurourol. Urodyn. 27, 348–352 (2008).

    Article  PubMed  Google Scholar 

  289. Kondo, A. et al. Prevalence of hand-washing urinary incontinence in healthy subjects in relation to stress and urge incontinence. Neurourol. Urodyn. 11, 519–523 (1992).

    Article  Google Scholar 

  290. Imamura, T., Ishizuka, O. & Nishizawa, O. Cold stress induces lower urinary tract symptoms. Int. J. Urol. 20, 661–669 (2013).

    Article  PubMed  Google Scholar 

  291. Victor, E., O’Connell, K. A. & Blaivas, J. G. Environmental cues to urgency and leakage episodes in patients with overactive bladder syndrome: a pilot study. J. Wound Ostomy Cont. Nurs. 39, 181–186 (2012).

    Article  Google Scholar 

  292. Zinner, N. R. OAB. Are we barking up the wrong tree? A lesson from my dog. Neurourol. Urodyn. 30, 1410–1411 (2011).

    Article  PubMed  Google Scholar 

  293. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  294. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci. Rep. 7, 15865 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Park, J. H. et al. Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction. Sci. Rep. 7, 40872 (2016).

    Article  CAS  Google Scholar 

  297. Yao, J. et al. A corticopontine circuit for initiation of urination. Nat. Neurosci. 21, 1541–1550 (2018).

    Article  CAS  PubMed  Google Scholar 

  298. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. DeBerry, J. J. et al. Differential regulation of bladder pain and voiding function by sensory afferent populations revealed by selective optogenetic activation. Front. Integr. Neurosci. 12, 5 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Smith-Anttila, J. A. et al. Sensory and motor systems identification of a sacral, visceral sensory transcriptome in embryonic and adult mice. eNeuro 7, ENEURO.0397-19.2019 (2020).

  301. Girard, B. M., Merrill, L., Malley, S. & Vizzard, M. A. Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J. Mol. Neurosci. 51, 602–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Sharopov, B. R., Gulak, K. L., Philyppov, I. B., Sotkis, A. V. & Shuba, Y. M. TRPV1 alterations in urinary bladder dysfunction in a rat model of STZ-induced diabetes. Life Sci. 193, 207–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. Shimizu, N. et al. Effects of nerve growth factor neutralization on TRP channel expression in laser-captured bladder afferent neurons in mice with spinal cord injury. Neurosci. Lett. 683, 100–103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Owsianik, G., D’hoedt, D., Voets, T. & Nilius, B. Structure–function relationship of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol. 156, 61–90 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Research Foundation — Flanders (FWO; G0A6113N), and the Research Council of KU Leuven (C1-TRPLe; T.V., and W.E.). W.E. is a senior clinical researcher of the Research Foundation-Flanders (FWO Vlaanderen).

Author information

Authors and Affiliations

Authors

Contributions

W.E., M.V. and A.S. researched data for the article. W.E., M.V. and T.V. wrote the article and reviewed/edited the manuscript before submission. All authors contributed substantially to discussion of the content.

Corresponding author

Correspondence to Wouter Everaerts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Scott Earley, Luke Grundy and Janet Keast for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Tabula Muris database: https://tabula-muris.ds.czbiohub.org/

Glossary

Afferent nerve

A nerve that conveys information from the organs to the central nervous system (as opposed to efferent nerves that send information from the central nervous system to the organs).

Agonist

A chemical compound that activates a receptor or ion channel.

Antagonist

A chemical compound that inhibits a receptor or ion channel.

Neurogenic inflammation

Inflammation caused by the release of inflammatory mediators from nerve endings.

Detrusor–sphincter dyssynergia

Detrusor contraction accompanied by involuntary contraction (instead of relaxation) of the urethral sphincter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanneste, M., Segal, A., Voets, T. et al. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 18, 139–159 (2021). https://doi.org/10.1038/s41585-021-00428-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00428-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing