Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Autonomous surgery in the era of robotic urology: friend or foe of the future surgeon?

Abstract

Despite advances in robotic-assisted surgery (RAS) in the past two decades, control of the robotic system currently remains under the command of a human surgeon. Historically, urology has pioneered new surgical techniques and technologies. Now, autonomous RAS is on the horizon and the first data from clinical trials of autonomous RAS in urology are being published. Automation takes control away from the surgeon but promises standardization of techniques, increased efficiency, potentially reduced complication rates and new ways of integrating intra-operative imaging. Preclinical and clinical evidence is emerging that supports the use of autonomous robotic-assisted urological surgery. Use of autonomous technologies in the operating theatre will directly affect the role of the urological surgeon. Integration of autonomous RAS can be viewed as a positive aid, but it might also be perceived as a threat to the future urological surgeon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The AquaBeam platform.
Fig. 2: The EUCLIDIAN system for autonomous robotic-assisted prostate brachytherapy.
Fig. 3: Automating soft-tissue surgery using the STAR system.

Similar content being viewed by others

References

  1. Khadhouri, S. et al. The British Association of Urological Surgeons (BAUS) radical prostatectomy audit 2014/2015 — an update on current practice and outcomes by centre and surgeon case-volume. BJU Int. 121, 886–892 (2018).

    Article  PubMed  Google Scholar 

  2. Rassweiler, J. J. et al. Future of robotic surgery in urology. BJU Int. 120, 822–841 (2017).

    Article  PubMed  Google Scholar 

  3. Gilling, P., Reuther, R., Kahokehr, A. & Fraundorfer, M. Aquablation–image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int. 117, 923–929 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Gilling, P. et al. WATER: a double-blind, randomized, controlled trial of aquablation® vs transurethral resection of the prostate in benign prostatic hyperplasia. J. Urol. 199, 1252–1261 (2018).

    Article  PubMed  Google Scholar 

  5. International Organization for Standardization. ISO 8373:2012 Robots and robotic devices — vocabulary. ISO https://www.iso.org/standard/55890.html (2012).

  6. Yang, G. et al. Medical robotics — regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot. 2, 8638 (2017).

    Article  Google Scholar 

  7. Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl Med. 8, 337ra64 (2016).

    Article  PubMed  Google Scholar 

  8. Santoni de Sio, F. & Van den Hoven, J. Meaningful human control over autonomous systems: a philosophical account. Front. Robot. AI 5, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris, S. J. et al. The Probot — an active robot for prostate resection. Proc. Inst. Mech. Eng. H. 211, 317–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Cornu, J. et al. A systematic review and meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic obstruction: an update. Eur. Urol. 67, 1066–1096 (2015).

    Article  PubMed  Google Scholar 

  11. Faber, K. et al. Image-guided robot-assisted prostate ablation using water jet-hydrodissection: initial study of a novel technology for benign prostatic hyperplasia. J. Endourol. 29, 63–69 (2015).

    Article  PubMed  Google Scholar 

  12. Desai, M. et al. WATER II (80–150 mL) procedural outcomes. BJU Int. 123, 106–112 (2019).

    Article  PubMed  Google Scholar 

  13. Podder, T. K. et al. AAPM and GEC–ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192. Med. Phys. 41, 101501 (2014).

    Article  PubMed  Google Scholar 

  14. Patriciu, A. et al. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans. Biomed. Eng. 54, 1499–1506 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Muntener, M. et al. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68, 1313–1317 (2006).

    Article  PubMed  Google Scholar 

  16. Hempel, E. et al. An MRI-compatible surgical robot for precise radiological interventions. Comput. Aided Surg. 8, 180–191 (2003).

    Article  PubMed  Google Scholar 

  17. Stoianovici, D. et al. “MRI Stealth” robot for prostate interventions. Minim. Invasive Ther. Allied Technol. 16, 241–248 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Podder, T. K. et al. Reliability of EUCLIDIAN: an autonomous robotic system for image-guided prostate brachytherapy. Med. Phys. 38, 96–106 (2011).

    Article  PubMed  Google Scholar 

  19. Popescu, T., Kacsó, A. C., Pisla, D. & Kacsó, A. P. G. Brachytherapy next generation: robotic systems. J. Contemp. Brachytherapy 7, 510–514 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shah, T. T. et al. Early-medium-term outcomes of primary focal cryotherapy to treat nonmetastatic clinically significant prostate cancer from a prospective multicentre registry. Eur. Urol. 76, 98–105 (2019).

    Article  PubMed  Google Scholar 

  21. Catto, J. W. et al. Robot-assisted radical cystectomy with intracorporeal urinary diversion versus open radical cystectomy (iROC): protocol for a randomised controlled trial with internal feasibility study. BMJ Open 8, e020500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oleari, E. et al. Enhancing Surgical Process Modeling for Artificial Intelligence Development in Robotics: the SARAS case study for Minimally Invasive Procedures (2019 13th International Symposium on Medical Information and Communication Technology (ISMICT)) (IEEE, 2019)

  23. Chang, K. D., Abdel Raheem, A., Choi, Y. D., Chung, B. H. & Rha, K. H. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: surgical technique and results of the first human trial. BJU Int. 122, 441–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Ferng, A. Meet Versius, Cambridge Medical Robotics’ portable and cost effective robot for minimal access surgery. Medgadget https://www.medgadget.com/2017/11/cambridge-medical-robotics-minimal-access-surgery-versius.html (2017).

  25. Gagnon, L., Goldenberg, S. L., Lynch, K., Hurtado, A. & Gleave, M. E. Comparison of open and robotic-assisted prostatectomy: The University of British Columbia experience. Can. Urol. Assoc. J. 8, 92–97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Forsmark, A. et al. Health economic analysis of open and robot-assisted laparoscopic surgery for prostate cancer within the prospective multicentre LAPPRO trial. Eur. Urol. 74, 816–824 (2018).

    Article  PubMed  Google Scholar 

  27. Lee, N. Robotic surgery: where are we now? Lancet 384, 1417 (2014).

    Article  PubMed  Google Scholar 

  28. Udwadia, T. E. Robotic surgery is ready for prime time in India: against the motion. J. Minim. Access. Surg. 11, 5–9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Manny, T. B., Krane, L. S. & Hemal, A. K. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J. Endourol. 27, 918–921 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cacciamani, G. E. et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J. Urol. 38, 883–896 (2020).

    Article  PubMed  Google Scholar 

  31. Qian, L., Wu, J. Y., DiMaio, S. P., Navab, N. & Kazanzides, P. A review of augmented reality in robotic-assisted surgery. IEEE Trans. Med. Robot. Bionics 2, 1–16 (2020).

    Article  Google Scholar 

  32. Elmi-Terander, A. et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine 44, 517–525 (2019).

    Article  PubMed  Google Scholar 

  33. Porpiglia, F. et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur. Urol. 76, 505–514 (2019).

    Article  PubMed  Google Scholar 

  34. Chen, J. et al. Use of automated performance metrics to measure surgeon performance during robotic vesicourethral anastomosis and methodical development of a training tutorial. J. Urol. 200, 895–902 (2018).

    Article  PubMed  Google Scholar 

  35. Landro, L. The Operating Room of the Future. (The Wall Street Journal, 2018).

  36. Alemzadeh, H., Raman, J., Leveson, N., Kalbarczyk, Z. & Iyer, R. K. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS ONE 11, e0151470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pierce, H. et al. Patient injuries and malfunctions associated with robotic prostatectomy: review of the manufacturer and user facility device experience database. J. Robot. Surg. https://doi.org/10.1007/s11701-020-01088-1 (2020).

    Article  PubMed  Google Scholar 

  38. Dyer, C. Senior surgeon’s conviction for manslaughter is quashed. BMJ 355, i6178 (2016).

    Article  PubMed  Google Scholar 

  39. Gless, S., Silverman, E. & Weigend, T. If robots cause harm, who is to blame? Self-driving cars and criminal liability. N. Crim. Law Rev. 19, 412–436 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.R. and M.J.C. researched data for the article and made substantial contributions to discussion of its content. All authors participated in writing and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Martin J. Connor.

Ethics declarations

Competing interests

M.J.C. receives funding from the Wellcome Trust & University College London Hospitals (UCLH) Charity. P.D. receives funding from MRC, Wellcome Trust, NIHR BRC, EPSRC, EUFP7, Vattikuti Foundation, PCRC and TUF. H.U.A. receives funding from Sonacare Medical, Sophiris Inc. and Trod Medical for trials, personal fees for trial/research consultancy from Sophiris Inc, funding for travel, lectures and proctoring fees from Sonacare Inc. and BTG Medical (previously Galil), funding from the Wellcome Trust, and he receives infrastructure support provided by the NIHR Imperial Biomedical Research Centre. A.R. declares no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks R. Autorino and K. Zorn for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connor, M.J., Dasgupta, P., Ahmed, H.U. et al. Autonomous surgery in the era of robotic urology: friend or foe of the future surgeon?. Nat Rev Urol 17, 643–649 (2020). https://doi.org/10.1038/s41585-020-0375-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0375-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing