Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology, definition and treatment of complicated urinary tract infections

Abstract

UTIs are amongst the most frequent bacterial infections. However, the clinical phenotypes of UTI are heterogeneous and range from rather benign, uncomplicated infections to complicated UTIs (cUTIs), pyelonephritis and severe urosepsis. Stratification of patients with UTIs is, therefore, important. Several classification systems exist for the description and classification of UTIs, with the common rationale that cUTIs have a higher risk of recurrence or chronification, progression or severe outcome than uncomplicated UTIs. The pathophysiology and treatment of cUTIs and pyelonephritis are driven more by host factors than by pathogen attributes. cUTIs and pyelonephritis are associated with high antimicrobial resistance rates among causative pathogens. However, antimicrobial resistance rates can differ substantially, depending on the population being studied and whether the data being analysed are from surveillance studies, registry data or interventional studies, in which specific inclusion and exclusion criteria are used for patient selection. For example, antibiotic resistance rates are higher in patients with urosepsis than in those with less severe infections. Thus, treatment outcomes differ substantially among studies, ranging from 50% to almost 100% clearance of infection, depending on the patient population analysed, the UTI entities included and the primary outcome of the study. Pyelonephritis and cUTIs have emerged as infection models for the study of novel antibiotics, including extensive investigation of novel substances active against Gram-negative bacteria.

Key points

  • Complicated UTI (cUTI) is a heterogeneous entity comprising multiple forms.

  • Classifications and definitions of cUTI have evolved over time and are sometimes very different.

  • cUTI is a model infection for evaluating novel antibiotics that are active against Gram-negative bacteria and enterococci.

  • The patients included and evaluated in different clinical trials and trial designs cannot be compared owing to different criteria employed.

  • Standardization of definition and classification criteria for cUTIs are warranted.

  • Evolution of trial designs might include criteria such as the emergence of antimicrobial resistance in various compartments, involving more patients with multidrug-resistant bacteria or superiority designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of uropathogenic bacterial species in various UTI entities.
Fig. 2: The European Section of Infections in Urology classification of UTIs.
Fig. 3: Pathophysiological aspects of complicated UTI and pyelonephritis.

Similar content being viewed by others

References

  1. Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014).

    PubMed  Google Scholar 

  2. Nicolle, L. E. et al. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin. Infect. Dis. 40, 643–654 (2005).

    PubMed  Google Scholar 

  3. Wagenlehner, F. M., Tandogdu, Z. & Bjerklund Johansen, T. E. An update on classification and management of urosepsis. Curr. Opin. Urol. 27, 133–137 (2017).

    PubMed  Google Scholar 

  4. Tandogdu, Z., Cai, T., Koves, B., Wagenlehner, F. & Bjerklund-Johansen, T. E. Urinary tract infections in immunocompromised patients with diabetes, chronic kidney disease, and kidney transplant. Eur. Urol. Focus. 2, 394–399 (2016).

    PubMed  Google Scholar 

  5. Tenke, P., Koves, B. & Johansen, T. E. An update on prevention and treatment of catheter-associated urinary tract infections. Curr. Opin. Infect. Dis. 27, 102–107 (2014).

    PubMed  Google Scholar 

  6. Kunin, C. M. Guidelines for the evaluation of new anti-infective drugs for the treatment of urinary tract infection: additional considerations. Clin. Infect. Dis. 15, 1041–1044 (1992).

    CAS  PubMed  Google Scholar 

  7. Foxman, B. & Brown, P. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect. Dis. Clin. North Am. 17, 227–241 (2003).

    PubMed  Google Scholar 

  8. Brown, P., Ki, M. & Foxman, B. Acute pyelonephritis among adults: cost of illness and considerations for the economic evaluation of therapy. Pharmacoeconomics 23, 1123–1142 (2005).

    PubMed  Google Scholar 

  9. Tandogdu, Z. et al. Resistance patterns of nosocomial urinary tract infections in urology departments: 8-year results of the global prevalence of infections in urology study. World J. Urol. 32, 791–801 (2014).

    CAS  PubMed  Google Scholar 

  10. Wagenlehner, F., Wullt, B., Ballarini, S., Zingg, D. & Naber, K. G. Social and economic burden of recurrent urinary tract infections and quality of life: a patient web-based study (GESPRIT). Expert Rev. Pharmacoecon. Outcomes Res. 18, 107–117 (2018).

    PubMed  Google Scholar 

  11. Gomila, A. et al. Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: the COMBACTE-MAGNET RESCUING study. Antimicrob. Resist. Infect. Control. 8, 198 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015). A very detailed review on the pathophysiology of UTIs.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tandogdu, Z. et al. Antimicrobial resistance in urosepsis: outcomes from the multinational, multicenter global prevalence of infections in urology (GPIU) study 2003–2013. World J. Urol. 34, 1193–1200 (2016). This is the first study dealing specifically with resistance in urosepsis.

    CAS  PubMed  Google Scholar 

  14. Tandogdu, Z., Kakariadis, E. T. A., Naber, K., Wagenlehner, F. & Bjerklund Johansen, T. E. Appropriate empiric antibiotic choices in health care associated urinary tract infections in urology departments in Europe from 2006 to 2015: a Bayesian analytical approach applied in a surveillance study. PLoS One 14, e0214710 (2019). This study reports a novel method for evaluating resistance surveillance.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10, 266–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ragnarsdottir, B., Lutay, N., Gronberg-Hernandez, J., Koves, B. & Svanborg, C. Genetics of innate immunity and UTI susceptibility. Nat. Rev. Urol. 8, 449–468 (2011). This review provides an in-depth description of immunity in UTI.

    PubMed  Google Scholar 

  17. Rubin, R. H., Shapiro, E. D., Andriole, V. T., Davis, R. J. & Stamm, W. E. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Infectious Diseases Society of America and the Food and Drug Administration. Clin. Infect. Dis. 15, S216–S227 (1992).

    PubMed  Google Scholar 

  18. Rubin, R. H. et al. General guidelines for the evaluation of new anti-infective drugs for the treatment of urinary tract infection 240–310 (The European Society of Clinical Microbiology and Infectious Diseases, 1993).

  19. Naber, K. G., Schito, G., Botto, H., Palou, J. & Mazzei, T. Surveillance study in Europe and Brazil on clinical aspects and antimicrobial resistance epidemiology in females with cystitis (ARESC): implications for empiric therapy. Eur. Urol. 54, 1164–1175 (2008).

    PubMed  Google Scholar 

  20. Bjerklund Johansen, T. E. et al. Urogenital Infections Ch. 16 (eds Scaeffer A. J. et al.) 979–993 (International Consultation on Urological Diseases (ICUD) and European Association of Urology, 2010).

  21. Johansen, T. E. et al. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int. J. Antimicrob. Agents 38, 64–70 (2011). This review proposes a new classification system for UTIs.

    CAS  PubMed  Google Scholar 

  22. Devraj, R., Tanneru, K., Reddy, B., Amancherla, H. & Chilumala, R. Renal stone culture and sensitivity is a better predictor of potential urosepsis than pelvic or midstream urine culture and sensitivity. J. NTR Univ. Health Sci. 5, 261–264 (2016).

    Google Scholar 

  23. Bjerklund Johansen, T. E. et al. Brauchen wir eine neue Klassifizierung von Harnwegsinfektionen? Chemotherapie J. 20, 174–180 (2011).

    Google Scholar 

  24. Cek, M. et al. Healthcare-associated urinary tract infections in hospitalized urological patients — a global perspective: results from the GPIU studies 2003–2010. World J. Urol. 32, 1587–1594 (2014).

    PubMed  Google Scholar 

  25. Wagenlehner, F. et al. The global prevalence of infections in urology (GPUI) study: a worldwide surveillance study in urology patients. Eur. Urol. Focus. 2, 345–347 (2016).

    PubMed  Google Scholar 

  26. Wagenlehner, F. et al. The global prevalence of infections in urology study: a long-term, worldwide surveillance study on urological infections. Pathogens 5, 10 (2016).

    PubMed Central  Google Scholar 

  27. Grabe, M. et al. Guidelines on urological infections. European Association of Urology https://uroweb.org/wp-content/uploads/19-Urological-infections_LR2.pdf (2015).

  28. Bonkat, G. et al. Urological infections guidelines. European Association of Urology https://uroweb.org/guideline/urological-infections/? (2020).

  29. The Regulation and Quality Improvement Authority (RQIA). A regional retrospective re-audit of compliance with urinary tract infection guidelines in secondary care. RQIA https://www.rqia.org.uk/what-we-do/rqia-s-funding-programme/rqia-clinical-audit-programme/2018-19/a-regional-retrospective-re-audit-of-compliance-wi/ (2018).

  30. Yasuda, M. et al. Japanese guideline for clinical research of antimicrobial agents on urogenital infections: second edition. J. Infect. Chemother. 22, 651–661 (2016).

    PubMed  Google Scholar 

  31. Hooton, T. M. & Gupta, K. Acute complicated urinary tract infection (including pyelonephritis) in adults. UpToDate https://www.uptodate.com/contents/acute-complicated-urinary-tract-infection-including-pyelonephritis-in-adults#H12414281 (2019).

  32. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Complicated urinary tract infections: developing drugs for treatment. Guidance for industry. Revision 1. FDA https://www.fda.gov/media/71313/download (2018).

  33. Committee for Human Medicinal Products (CHMP). Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections, Rev. 3. (EMA/844951/2018 Rev. 3). European Medicines Agency https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-evaluation-medicinal-products-indicated-treatment-bacterial-infections-revision-3_en.pdf (2018).

  34. Kranz, J. et al. The 2017 update of the German clinical guideline on epidemiology, diagnostics, therapy, prevention, and management of uncomplicated urinary tract infections in adult patients. Part II: therapy and prevention. Urol. Int. 100, 271–278 (2018).

    PubMed  Google Scholar 

  35. Kranz, J. et al. The 2017 update of the German clinical guideline on epidemiology, diagnostics, therapy, prevention, and management of uncomplicated urinary tract infections in adult patients: part 1. Urol. Int. 100, 263–270 (2018).

    PubMed  Google Scholar 

  36. Garner, J. S., Jarvis, W. R., Emori, T. G., Horan, T. C. & Hughes, J. M. CDC definitions for nosocomial infections, 1988. Am. J. Infect. Control. 16, 128–140 (1988).

    CAS  PubMed  Google Scholar 

  37. Horan, T. C., Andrus, M. & Dudeck, M. A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control. 36, 309–332 (2008).

    PubMed  Google Scholar 

  38. Smelov, V., Naber, K. & Bjerklund Johansen, T. E. Letter to the editor: diagnostic criteria in urological diseases do not always match with findings by extended culture techniques and metagenomic sequencing of 16 S rDNA. Open Microbiol. J. 10, 23–26 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McDonald, M. et al. A head-to-head comparative phase II study of standard urine culture and sensitivity versus DNA next-generation sequencing testing for urinary tract infections. Rev. Urol. 19, 213–220 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Smelov, V., Naber, K. & Bjerklund Johansen, T. E. Improved classification of urinary tract infection: future considerations. Eur. Urol. Suppl. 15, 71–78 (2016).

    Google Scholar 

  41. Hibbing, M. E., Conover, M. S. & Hultgren, S. J. The unexplored relationship between urinary tract infections and the autonomic nervous system. Auton. Neurosci. 200, 29–34 (2016).

    PubMed  Google Scholar 

  42. Ragnarsdottir, B. et al. TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur. J. Clin. Invest. 38, 12–20 (2008). This study provides an in-depth analysis of innate immunity in UTI.

    CAS  PubMed  Google Scholar 

  43. Koves, B. & Wullt, B. The roles of the host and the pathogens in urinary tract infections. Eur. Urol. Suppl. 15, 88–94 (2016).

    Google Scholar 

  44. Ambite, I. et al. Susceptibility to urinary tract infection: benefits and hazards of the antibacterial host response. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0019-2014 (2016).

    Article  PubMed  Google Scholar 

  45. Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Leffler, H. & Svanborg-Eden, C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect. Immun. 34, 920–929 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Plos, K. et al. Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J. Infect. Dis. 171, 625–631 (1995).

    CAS  PubMed  Google Scholar 

  48. Vaisanen, V. et al. Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet 2, 1366–1369 (1981).

    CAS  PubMed  Google Scholar 

  49. Dobrindt, U. & Hacker, J. in International Consultation on Urological Diseases (ICUD), Urogenital Infections (ed. Naber K. G. et al.) 4–22 (European Association of Urology, 2010).

  50. McNally, A. et al. Genomic analysis of extra-intestinal pathogenic Escherichia coli urosepsis. Clin. Microbiol. Infect. 19, E328–E334 (2013).

    CAS  PubMed  Google Scholar 

  51. Wagenlehner, F. M., Weidner, W. & Naber, K. G. Pharmacokinetic characteristics of antimicrobials and optimal treatment of urosepsis. Clin. Pharmacokinet. 46, 291–305 (2007).

    CAS  PubMed  Google Scholar 

  52. Cox, C. E. & Hinman, F. Jr. Experiments with induced bacteriuria, vesical emptying and bacterial growth on the mechanism of bladder defense to infection. J. Urol. 86, 739–748 (1961).

    CAS  PubMed  Google Scholar 

  53. Heyns, C. F. Urinary tract infection associated with conditions causing urinary tract obstruction and stasis, excluding urolithiasis and neuropathic bladder. World J. Urol. 30, 77–83 (2012).

    CAS  PubMed  Google Scholar 

  54. Liedl, B. Catheter-associated urinary tract infections. Curr. Opin. Urol. 11, 75–79 (2001).

    CAS  PubMed  Google Scholar 

  55. Wagenlehner, F. M. et al. Epidemiological analysis of the spread of pathogens from a urological ward using genotypic, phenotypic and clinical parameters. Int. J. Antimicrob. Agents 19, 583–591 (2002).

    CAS  PubMed  Google Scholar 

  56. Warren, J. W. Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 17, 299–303 (2001).

    CAS  PubMed  Google Scholar 

  57. Ganderton, L., Chawla, J., Winters, C., Wimpenny, J. & Stickler, D. Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur. J. Clin. Microbiol. Infect. Dis. 11, 789–796 (1992).

    CAS  PubMed  Google Scholar 

  58. Steward, D. K., Wood, G. L., Cohen, R. L., Smith, J. W. & Mackowiak, P. A. Failure of the urinalysis and quantitative urine culture in diagnosing symptomatic urinary tract infections in patients with long-term urinary catheters. Am. J. Infect. Control. 13, 154–160 (1985).

    CAS  PubMed  Google Scholar 

  59. Costerton, J. W. Introduction to biofilm. Int. J. Antimicrob. Agents 11, 217–221 (1999).

    CAS  PubMed  Google Scholar 

  60. Tenke, P. et al. Update on biofilm infections in the urinary tract. World J. Urol. 30, 51–57 (2012).

    PubMed  Google Scholar 

  61. Kimkes, T. E. P. & Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 44, 106–122 (2020).

    CAS  PubMed  Google Scholar 

  62. Colomer-Winter, C., Flores-Mireles, A. L., Kundra, S., Hultgren, S. J. & Lemos, J. A. (p)ppGpp and CodY promote Enterococcus faecalis virulence in a murine model of catheter-associated urinary tract infection. mSphere 4, e00392–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Newman, J. W., Floyd, R. V. & Fothergill, J. L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 364, fnx124 (2017).

    Google Scholar 

  64. Tenke, P., Kovacs, B., Jackel, M. & Nagy, E. The role of biofilm infection in urology. World J. Urol. 24, 13–20 (2006).

    CAS  PubMed  Google Scholar 

  65. Brown, M. R., Allison, D. G. & Gilbert, P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22, 777–780 (1988).

    CAS  PubMed  Google Scholar 

  66. RIVUR Trial Investigators et al. Antimicrobial prophylaxis for children with vesicoureteral reflux. N. Engl. J. Med. 370, 2367–2376 (2014).

    Google Scholar 

  67. Radmayr, C. et al. EAU guidelines on paediatric urology. EAU https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Paediatric-Urology-2018-large-text.pdf (2018).

  68. Lundstedt, A. C. et al. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J. Infect. Dis. 195, 1227–1234 (2007).

    PubMed  Google Scholar 

  69. Lundstedt, A. C. et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2, e825 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Geerlings, S. E., Meiland, R. & Hoepelman, A. I. Pathogenesis of bacteriuria in women with diabetes mellitus. Int. J. Antimicrob. Agents 19, 539–545 (2002).

    CAS  PubMed  Google Scholar 

  71. Bidell, M. R. & Lodise, T. P. Suboptimal clinical response rates with newer antibiotics among patients with moderate renal impairment: review of the literature and potential pharmacokinetic and pharmacodynamic considerations for observed findings. Pharmacotherapy 38, 1205–1215 (2018).

    CAS  PubMed  Google Scholar 

  72. Neal, D. E. Jr. Host defense mechanisms in urinary tract infections. Urol. Clin. North Am. 26, 677–686 (1999).

    PubMed  Google Scholar 

  73. Khan, I. H. & Catto, G. R. Long-term complications of dialysis: infection. Kidney Int. Suppl. 41, S143–S148 (1993).

    CAS  PubMed  Google Scholar 

  74. Kessler, M., Hoen, B., Mayeux, D., Hestin, D. & Fontenaille, C. Bacteremia in patients on chronic hemodialysis. A multicenter prospective survey. Nephron 64, 95–100 (1993).

    CAS  PubMed  Google Scholar 

  75. Saitoh, H., Nakamura, K., Hida, M. & Satoh, T. Urinary tract infection in oliguric patients with chronic renal failure. J. Urol. 133, 990–993 (1985).

    CAS  PubMed  Google Scholar 

  76. Andriole, V. T. Pharmacokinetics of cephalosporins in patients with normal or reduced renal function. J. Infect. Dis. 137, S88–S99 (1978).

    PubMed  Google Scholar 

  77. Fillastre, J. P. et al. Pharmacokinetics of quinolones in renal insufficiency. J. Antimicrob. Chemother. 26, 51–60 (1990).

    PubMed  Google Scholar 

  78. Simon, D. M. & Levin, S. Infectious complications of solid organ transplantations. Infect. Dis. Clin. North Am. 15, 521–549 (2001).

    CAS  PubMed  Google Scholar 

  79. Pelle, G. et al. Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am. J. Transpl. 7, 899–907 (2007).

    CAS  Google Scholar 

  80. Abbott, K. C. et al. Late urinary tract infection after renal transplantation in the United States. Am. J. Kidney Dis. 44, 353–362 (2004).

    PubMed  Google Scholar 

  81. Chuang, P., Parikh, C. R. & Langone, A. Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin. Transplant. 19, 230–235 (2005).

    PubMed  Google Scholar 

  82. Papasotiriou, M. et al. Predisposing factors to the development of urinary tract infections in renal transplant recipients and the impact on the long-term graft function. Ren. Fail. 33, 405–410 (2011).

    PubMed  Google Scholar 

  83. Hill, J. B., Sheffield, J. S., McIntire, D. D. & Wendel, G. D. Jr. Acute pyelonephritis in pregnancy. Obstet. Gynecol. 105, 18–23 (2005).

    PubMed  Google Scholar 

  84. Koves, B. et al. Benefits and harms of treatment of asymptomatic bacteriuria: a systematic review and meta-analysis by the European Association of Urology urological infection guidelines panel. Eur. Urol. 72, 865–868 (2017).

    PubMed  Google Scholar 

  85. Kazemier, B. M. et al. Maternal and neonatal consequences of treated and untreated asymptomatic bacteriuria in pregnancy: a prospective cohort study with an embedded randomised controlled trial. Lancet Infect. Dis. 15, 1324–1333 (2015).

    PubMed  Google Scholar 

  86. Kaul, A. K. et al. Experimental gestational pyelonephritis induces preterm births and low birth weights in C3H/HeJ mice. Infect. Immun. 67, 5958–5966 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bookstaver, P. B. et al. A review of antibiotic use in pregnancy. Pharmacotherapy 35, 1052–1062 (2015).

    CAS  PubMed  Google Scholar 

  88. Zowawi, H. M. et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 12, 570–584 (2015).

    CAS  PubMed  Google Scholar 

  89. Tandogdu, Z. et al. Condition-specific surveillance in health care-associated urinary tract infections as a strategy to improve empirical antibiotic treatment: an epidemiological modelling study. World J. Urol. 38, 27–34 (2020).

    CAS  PubMed  Google Scholar 

  90. Wagenlehner, F. M., Cek, M., Naber, K. G., Kiyota, H. & Bjerklund-Johansen, T. E. Epidemiology, treatment and prevention of healthcare-associated urinary tract infections. World J. Urol. 30, 59–67 (2012).

    CAS  PubMed  Google Scholar 

  91. Naber, K. G. & Wagenlehner, F. M. E. Novel antibiotics in the treatment of urinary tract infections. Eur. Urol. Focus. 5, 10–12 (2019).

    PubMed  Google Scholar 

  92. Naber, K. G., Savov, O. & Salmen, H. C. Piperacillin 2g/tazobactam 0.5g is as effective as imipenem 0.5g/cilastatin 0.5g for the treatment of acute uncomplicated pyelonephritis and complicated urinary tract infections. Int. J. Antimicrob. Agents 19, 95–103 (2002).

    CAS  PubMed  Google Scholar 

  93. Naber, K. G. et al. Intravenous doripenem at 500 milligrams versus levofloxacin at 250 milligrams, with an option to switch to oral therapy, for treatment of complicated lower urinary tract infection and pyelonephritis. Antimicrob. Agents Chemother. 53, 3782–3792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wagenlehner, F. M., Umeh, O., Steenbergen, J., Yuan, G. & Darouiche, R. O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385, 1949–1956 (2015).

    CAS  PubMed  Google Scholar 

  95. Wagenlehner, F. M. et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin. Infect. Dis. 63, 754–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carmeli, Y. et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 16, 661–673 (2016).

    CAS  PubMed  Google Scholar 

  97. Malaisri, C., Phuphuakrat, A., Wibulpolprasert, A., Santanirand, P. & Kiertiburanakul, S. A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Escherichia coli: a pilot study. J. Infect. Chemother. 23, 556–562 (2017).

    CAS  PubMed  Google Scholar 

  98. Seo, Y. B. et al. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect. Dis. 17, 404 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Sims, M. et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J. Antimicrob. Chemother. 72, 2616–2626 (2017).

    CAS  PubMed  Google Scholar 

  100. Kaye, K. S. et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA 319, 788–799 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris, P. N. A. et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA 320, 984–994 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Portsmouth, S. et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 18, 1319–1328 (2018).

    CAS  PubMed  Google Scholar 

  103. Wagenlehner, F. M. E. & Naber, K. G. Cefiderocol for treatment of complicated urinary tract infections. Lancet Infect. Dis. 19, 22–23 (2019).

    PubMed  Google Scholar 

  104. Tetraphase Pharmaceuticals. Tetraphase announces top-line results from IGNITE3 phase 3 clinical trial of eravacycline in complicated urinary tract infections (cUTI). Tetraphase Pharmaceuticals https://ir.tphase.com/news-releases/news-release-details/tetraphase-announces-top-line-results-ignite3-phase-3-clinical (2018).

  105. Kaye, K. S. et al. Fosfomycin for injection (ZTI-01) vs piperacillin-tazobactam (PIP-TAZ) for the treatment of complicated urinary tract infection (cUTI) including acute pyelonephritis (AP): ZEUS, a phase 2/3 randomized trial. Clin. Infect. Dis. 69, 2045–2056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Motsch, J. et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin. Infect. Dis. 70, 1799–1808 (2019).

    PubMed Central  Google Scholar 

  107. Wagenlehner, F. M. E. et al. Once-daily plazomicin for complicated urinary tract infections. N. Engl. J. Med. 380, 729–740 (2019).

    CAS  PubMed  Google Scholar 

  108. Alidjanov, J. F. et al. The acute cystitis symptom score for patient-reported outcome assessment. Urol. Int. 97, 402–409 (2016). A proposal for a symptom assessment score in UTI.

    PubMed  Google Scholar 

  109. Alidjanov, J. F. et al. Evaluation of the draft guidelines proposed by EMA and FDA for the clinical diagnosis of acute uncomplicated cystitis in women. World J. Urol. (2019).

  110. Fritzenwanker, M., Imirzalioglu, C., Chakraborty, T. & Wagenlehner, F. M. Modern diagnostic methods for urinary tract infections. Expert Rev. Anti Infect. Ther. 14, 1047–1063 (2016). This paper provides a review of emerging point-of-care test systems in UTI.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the manuscript, made substantial contributions to discussions of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Florian M. E. Wagenlehner.

Ethics declarations

Competing interests

F.M.E.W. declares personal fees from Achaogen, AstraZeneca, Bionorica, Janssen, Leo Pharma, MerLion, MSD, OM Pharma/Vifor Pharma, Pfizer, RosenPharma, Shionogi, VenatoRx and GSK. F.M.E.W declares research grants from Bionorica, Enteris BioPharma, Helperby Therapeutics, OM Pharma/Vifor Pharma, Shionogi and Deutsches Zentrum für Infektionsforschung (DZIF) (Giessen-Marburg-Langen site). The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagenlehner, F.M.E., Bjerklund Johansen, T.E., Cai, T. et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol 17, 586–600 (2020). https://doi.org/10.1038/s41585-020-0362-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0362-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing