Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surgical ergonomics for urologists: a practical guide

Abstract

Poor ergonomics in the operating room can have detrimental effects on a surgeon’s physical, psychological and economic well-being. This problem is of particular importance to urologists who are trained in nearly all operative approaches (open, laparoscopic, robotic-assisted, microscopic and endoscopic surgery), each with their own ergonomic considerations. The vast majority of urologists have experienced work-related musculoskeletal pain or injury at some point in their career, which can result in leaves of absence, medical and/or surgical treatment, burnout, changes of specialty and even early retirement. Surgical ergonomics in urology has been understudied and underemphasized. In this Review, we characterize the burden of musculoskeletal injury in urologists and focus on various ergonomic considerations relevant to the urology surgeon. Although the strength of evidence remains limited in this space, we highlight several practical recommendations stratified by operative approach that can be incorporated into practice without interrupting workflow whilst minimizing injury to the surgeon. These recommendations might also serve as the foundation for ergonomics training curricula in residency and continuing medical education programmes. With improved awareness of ergonomic principles and the sequelae of injury related to urological surgery, urologists can be more mindful of their operating room environment and identify ways of reducing their own symptoms and risk of injury.

Key points

  • Musculoskeletal pain and injury associated with performing surgery is highly prevalent amongst urologists and might potentiate physician burnout, shorten surgical careers and affect surgical outcomes.

  • Formal training in surgical ergonomics is rare amongst urologists, which has contributed to the high musculoskeletal disease burden in this population.

  • Several studies have identified practical ergonomic recommendations for each operative approach (open, laparoscopic, robotic-assisted, microscopic and endoscopic surgery) that might prevent injury and enhance surgical efficiency. These recommendations emphasize optimization of the operative room layout, surgical instrumentation and surgeon posture.

  • Surgical ergonomics should be incorporated into residency education and continuing medical education programmes to augment career longevity and reduce the risk of injury in urology surgeons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laparoscopic surgery.
Fig. 2: Robotic-assisted surgery.

References

  1. Chavalitsakulchai, P., Ohkubo, T. & Shahnavaz, H. A model of ergonomics intervention in industry: case study in Japan. J. Hum. Ergol. 23, 7–26 (1994).

    CAS  Google Scholar 

  2. Annett, J. The learning of motor skills: sports science and ergonomics perspectives. Ergonomics 37, 5–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Yassi, A. Work-related musculoskeletal disorders. Curr. Opin. Rheumatol. 12, 124–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Plerhoples, T. A., Hernandez-Boussard, T. & Wren, S. M. The aching surgeon: a survey of physical discomfort and symptoms following open, laparoscopic, and robotic surgery. J. Robot. Surg. 6, 65–72 (2012).

    Article  PubMed  Google Scholar 

  5. Ronstrom, C., Hallbeck, S., Lowndes, B. & Chrouser, K. L. in Surgeons as Educators: a Guide for Academic Development and Teaching Excellence (eds Köhler, T. S. & Schwartz, B.) 387–417 (Springer International Publishing, 2018).

  6. Cass, G. K., Vyas, S. & Akande, V. Prolonged laparoscopic surgery is associated with an increased risk of vertebral disc prolapse. J. Obstet. Gynaecol. 34, 74–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Epstein, S. et al. Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis. JAMA Surg. 153, e174947–e174947 (2018).

    Article  PubMed  Google Scholar 

  8. Stucky, C. H. et al. Surgeon symptoms, strain, and selections: systematic review and meta-analysis of surgical ergonomics. Ann. Med. Surg. 27, 1–8 (2018).

    Article  Google Scholar 

  9. Davis, W. T., Fletcher, S. A. & Guillamondegui, O. D. Musculoskeletal occupational injury among surgeons: effects for patients, providers, and institutions. J. Surg. Res. 189, 207–212.e6 (2014).

    Article  PubMed  Google Scholar 

  10. Mizuno, Y., Narimatsu, H., Kodama, Y., Matsumura, T. & Kami, M. Mid-career changes in the occupation or specialty among general surgeons, from youth to middle age, have accelerated the shortage of general surgeons in Japan. Surg. Today 44, 601–606 (2014).

    Article  PubMed  Google Scholar 

  11. Dyrbye, L. N. et al. Association of clinical specialty with symptoms of burnout and career choice regret among US resident physicians. JAMA 320, 1114–1130 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dimou, F. M., Eckelbarger, D. & Riall, T. S. Surgeon burnout: a systematic review. J. Am. Coll. Surg. 222, 1230–1239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Merritt Hawkins. Physician inpatient/outpatient revenue survey. Merritt Hawkins https://www.merritthawkins.com/news-and-insights/thought-leadership/survey/2019-physician-inpatient-outpatient-revenue-survey/ (2019).

  14. Loeb, S. Practicing urology takes a physical toll. Urol. Times 47, 8 (2019).

    Google Scholar 

  15. Lee, M. R. & Lee, G. I. Does a robotic surgery approach offer optimal ergonomics to gynecologic surgeons?: a comprehensive ergonomics survey study in gynecologic robotic surgery. J. Gynecol. Oncol. 28, e70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lawson, E. H., Curet, M. J., Sanchez, B. R., Schuster, R. & Berguer, R. Postural ergonomics during robotic and laparoscopic gastric bypass surgery: a pilot project. J. Robot. Surg. 1, 61–67 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liang, B. et al. Ergonomic status of laparoscopic urologic surgery: survey results from 241 urologic surgeons in China. PLoS One 8, e70423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tjiam, I. M. et al. Ergonomics in endourology and laparoscopy: an overview of musculoskeletal problems in urology. J. Endourol. 28, 605–611 (2014).

    Article  PubMed  Google Scholar 

  19. Berguer, R., Smith, W. D. & Davis, S. An ergonomic study of the optimum operating table height for laparoscopic surgery. Surg. Endosc. 16, 416–421 (2002).

    Article  Google Scholar 

  20. van Det, M. J., Meijerink, W. J., Hoff, C., Totte, E. R. & Pierie, J. P. Optimal ergonomics for laparoscopic surgery in minimally invasive surgery suites: a review and guidelines. Surg. Endosc. 23, 1279–1285 (2009).

    Article  PubMed  Google Scholar 

  21. Tokas, T. et al. Combining of ETHOS operating ergonomic platform, three-dimensional laparoscopic camera, and radius surgical system manipulators improves ergonomy in urologic laparoscopy: comparison with conventional laparoscopy and da Vinci in a pelvi trainer. Eur. Urol. Focus 3, 413–420 (2017).

    Article  PubMed  Google Scholar 

  22. Gofrit, O. N. et al. Surgeons’ perceptions and injuries during and after urologic laparoscopic surgery. Urology 71, 404–407 (2008).

    Article  PubMed  Google Scholar 

  23. Lloyd, G. L. et al. Is your career hurting you? The ergonomic consequences of surgery in 701 urologists worldwide. J. Endourol. 33 (12), 1037–1042 (2019).

    Article  Google Scholar 

  24. Hemal, A. K., Srinivas, M. & Charles, A. R. Ergonomic problems associated with laparoscopy. J. Endourol. 15, 499–503 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wolf, J. S. Jr. et al. Survey of neuromuscular injuries to the patient and surgeon during urologic laparoscopic surgery. Urology 55, 831–836 (2000).

    Article  PubMed  Google Scholar 

  26. Lee, G. I., Lee, M. R., Green, I., Allaf, M. & Marohn, M. R. Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg. Endosc. 31, 1697–1706 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bagrodia, A. & Raman, J. D. Ergonomics considerations of radical prostatectomy: physician perspective of open, laparoscopic, and robot-assisted techniques. J. Endourol. 23, 627–633 (2009).

    Article  PubMed  Google Scholar 

  28. Knudsen, M. L., Ludewig, P. M. & Braman, J. P. Musculoskeletal pain in resident orthopaedic surgeons: results of a novel survey. Iowa Orthop. J. 34, 190–196 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Berguer, R., Rab, G. T., Abu-Ghaida, H., Alarcon, A. & Chung, J. A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg. Endosc. 11, 139–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X., Schall, M. C., Sesek, R., Gallagher, S. & Michel, J. Burnout and its association with musculoskeletal pain among primary care providers. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 61, 1010–1014 (2017).

    Article  Google Scholar 

  31. Kane L. Medscape national physician burnout & suicide report. Medscape https://www.medscape.com/slideshow/2020-lifestyle-burnout-6012460#2 (2020).

  32. Berguer, R. & Smith, W. An ergonomic comparison of robotic and laparoscopic technique: the influence of surgeon experience and task complexity. J. Surg. Res. 134, 87–92 (2006).

    Article  PubMed  Google Scholar 

  33. van Veelen, M. A., Kazemier, G., Koopman, J., Goossens, R. H. & Meijer, D. W. Assessment of the ergonomically optimal operating surface height for laparoscopic surgery. J. Laparoendosc. Adv. Surg. Tech. A. 12, 47–52 (2002).

    Article  PubMed  Google Scholar 

  34. Nguyen, N. T. et al. An ergonomic evaluation of surgeons’ axial skeletal and upper extremity movements during laparoscopic and open surgery. Am. J. Surg. 182, 720–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Watson, A. W. & Mac Donncha, C. A reliable technique for the assessment of posture: assessment criteria for aspects of posture. J. Sports Med. Phys. Fit. 40, 260–270 (2000).

    CAS  Google Scholar 

  36. Cuschieri, A. Whither minimal access surgery: tribulations and expectations. Am. J. Surg. 169, 9–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Van Veelen, M. A. & Meijer, D. W. Ergonomics and design of laparoscopic instruments: results of a survey among laparoscopic surgeons. J. Laparoendosc. Adv. Surg. Tech. A. 9, 481–489 (1999).

    Article  PubMed  Google Scholar 

  38. Manasnayakorn, S., Cuschieri, A. & Hanna, G. B. Ergonomic assessment of optimum operating table height for hand-assisted laparoscopic surgery. Surg. Endosc. 23, 783–789 (2009).

    Article  PubMed  Google Scholar 

  39. van Veelen, M. A., Nederlof, E. A., Goossens, R. H., Schot, C. J. & Jakimowicz, J. J. Ergonomic problems encountered by the medical team related to products used for minimally invasive surgery. Surg. Endosc. 17, 1077–1081 (2003).

    Article  PubMed  Google Scholar 

  40. Omar, A. M., Wade, N. J., Brown, S. I. & Cuschieri, A. Assessing the benefits of “gaze-down” display location in complex tasks. Surg. Endosc. 19, 105–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. NIH. The physiology of the joints. Volume 3. The trunk and the vertebral column. Postgrad. Med. J. 51, 682–683 (1975).

    Article  Google Scholar 

  42. Erfanian, K., Luks, F. I., Kurkchubasche, A. G., Wesselhoeft, C. W. Jr. & Tracy, T. F. Jr. In-line image projection accelerates task performance in laparoscopic appendectomy. J. Pediatr. Surg. 38, 1059–1062 (2003).

    Article  PubMed  Google Scholar 

  43. Hanna, G. B., Shimi, S. M. & Cuschieri, A. Task performance in endoscopic surgery is influenced by location of the image display. Ann. Surg. 227, 481–484 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haveran, L. A. et al. Optimizing laparoscopic task efficiency: the role of camera and monitor positions. Surg. Endosc. 21, 980–984 (2007).

    Article  PubMed  Google Scholar 

  45. Matern, U., Faist, M., Kehl, K., Giebmeyer, C. & Buess, G. Monitor position in laparoscopic surgery. Surg. Endosc. 19, 436–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Jaschinski-Kruza, W. Eyestrain in VDU users: viewing distance and the resting position of ocular muscles. Hum. Factors 33, 69–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Johnston, W. K. III Hollenbeck, B. K. & Wolf, J. S. Jr. Comparison of neuromuscular injuries to the surgeon during hand-assisted and standard laparoscopic urologic surgery. J. Endourol. 19, 377–381 (2005).

    Article  PubMed  Google Scholar 

  48. Frede, T. et al. Geometry of laparoscopic suturing and knotting techniques. J Endourol. 13, 191–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Frede, T., Stock, C. & Rassweiler JJ, P. A. Retroperitoneoscopic and laparoscopic suturing: tips and strategies for improving efficiency. J. Endourol. 14, 905–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Haramis, G. et al. Prospective randomized evaluation of FOOT gel pads for operating room staff COMFORT during laparoscopic renal surgery. Urology 76, 1405–1408 (2010).

    Article  PubMed  Google Scholar 

  51. Graversen, J. A. et al. Prospective randomized evaluation of gel mat foot pads in the endoscopic suite. J. Endourol. 25, 1793–1796 (2011).

    Article  PubMed  Google Scholar 

  52. US Department of Labor Occupational Safety and Health Administration. OSHA guidelines for retail grocery stores: ergonomics for the prevention of musculoskeletal disorders. OSHA https://www.osha.gov/ergonomics/guidelines/retailgrocery/retailgrocery.html (2004).

  53. Leow, J. J. et al. Robot-assisted versus open radical prostatectomy: a contemporary analysis of an all-payer discharge database. Eur. Urol. 70, 837–845 (2016).

    Article  PubMed  Google Scholar 

  54. Jeong, I. G. et al. Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015. JAMA 318, 1561–1568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roberts, M. J. et al. Declining use of radical prostatectomy and pelvic lymphadenectomy despite more robotics: national population data over 15 years. Asia Pac. J. Clin. Oncol. 16, e118–e124 (2020).

    Article  PubMed  Google Scholar 

  56. Hubert, N. et al. Ergonomic assessment of the surgeon’s physical workload during standard and robotic assisted laparoscopic procedures. Int. J. Med. Robot. 9, 142–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Lux, M. M., Marshall, M., Erturk, E. & Joseph, J. V. Ergonomic evaluation and guidelines for use of the daVinci robot system. J. Endourol. 24, 371–375 (2010).

    Article  PubMed  Google Scholar 

  58. Van’t Hullenaar, C. D. P., Hermans, B. & Broeders, I. Ergonomic assessment of the da Vinci console in robot-assisted surgery. Innov. Surg. Sci. 2, 97–104 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. McAtamney, L. & Nigel Corlett, E. RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24, 91–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. BIFMA-G1. Ergonomics guideline for furniture used in office work spaces designed for computer use (Business & Institutional Furniture Manufacturers Association, 2013).

  61. van der Schatte Olivier, R. H., Van’t Hullenaar, C. D., Ruurda, J. P. & Broeders, I. A. Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg. Endosc. 23, 1365–1371 (2009).

    Article  PubMed  Google Scholar 

  62. Luttmann, A., Sokeland, J. & Laurig, W. Muscular strain and fatigue among urologists during transurethral resections using direct and monitor endoscopy. Eur. Urol. 34, 6–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Omar, M., Sultan, M. F., El Sherif, E., Abdallah, M. M. & Monga, M. Ergonomics and musculoskeletal symptoms in surgeons performing endoscopic procedures for benign prostatic hyperplasia. Ther. Adv. Urol. https://doi.org/10.1177/1756287220904806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Luttmann, A., Jager, M. & Sokeland, J. Ergonomic assessment of the posture of surgeons performing endoscopic transurethral resections in urology. J. Occup. Med. Toxicol. 4, 26 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Van Veelen, Jakimowicz & Kazemier Improved physical ergonomics of laparoscopic surgery. Minim. Invasive Ther. Allied Technol. 13, 161–166 (2004).

    Article  PubMed  Google Scholar 

  66. Ludwig, W. W., Lee, G., Ziemba, J. B., Ko, J. S. & Matlaga, B. R. Evaluating the ergonomics of flexible ureteroscopy. J. Endourol. 31, 1062–1066 (2017).

    Article  PubMed  Google Scholar 

  67. Pelz, D. M. Low back pain, lead aprons, and the angiographer. Am. J. Neuroradiol. 21, 1364 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rassweiler, J. et al. Robot-assisted flexible ureteroscopy: an update. Urolithiasis 46, 69–77 (2018).

    Article  PubMed  Google Scholar 

  69. Saglam, R. et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1–2b). Eur. Urol. 66, 1092–1100 (2014).

    Article  PubMed  Google Scholar 

  70. Geavlete, P. et al. Robotic flexible ureteroscopy versus classic flexible ureteroscopy in renal stones: the initial romanian experience. Chirurgia 111, 326–329 (2016).

    PubMed  Google Scholar 

  71. Lakhiani, C., Fisher, S. M., Janhofer, D. E. & Song, D. H. Ergonomics in microsurgery. J. Surg. Oncol. 118, 840–844 (2018).

    Article  PubMed  Google Scholar 

  72. Statham, M. M. et al. Ergonomic analysis of microlaryngoscopy. Laryngoscope 120, 297–305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nimbarte A. D., Zreiqat M., Chapman M. & Sivak-Callcott J. A. Physical risk factors for neck pain among oculoplastic surgeons. 62nd IIE Annual Conference and Expo 2012. 3487–3492 (2012).

  74. Rohrich, R. J. Why I hate the headlight. and other ways to protect your cervical spine. Plast. Reconstr. Surg. 107, 1037–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Dorion, D. & Darveau, S. Do micropauses prevent surgeon’s fatigue and loss of accuracy associated with prolonged surgery? An experimental prospective study. Ann. Surg. 257, 256–259 (2013).

    Article  PubMed  Google Scholar 

  76. Park, A. E. et al. Intraoperative “Micro Breaks” with targeted stretching enhance surgeon physical function and mental focus: a multicenter cohort study. Ann. Surg. 265, 340–346 (2017).

    Article  PubMed  Google Scholar 

  77. Hallbeck, M. S. et al. The impact of intraoperative microbreaks with exercises on surgeons: a multi-center cohort study. Appl. Ergon. 60, 334–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Abdalla, G. et al. The effect of warm-up on surgical performance: a systematic review. Surg. Endosc. 29, 1259–1269 (2015).

    Article  PubMed  Google Scholar 

  79. Kitzmann, A. S. et al. A survey study of musculoskeletal disorders among eye care physicians compared with family medicine physicians. Ophthalmology 119, 213–220 (2012).

    Article  PubMed  Google Scholar 

  80. Zebis, M. K. et al. Implementation of neck/shoulder exercises for pain relief among industrial workers: a randomized controlled trial. BMC Musculoskelet. Disord. 12, 205 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reddy, P. P. et al. The impact of the Alexander technique on improving posture and surgical ergonomics during minimally invasive surgery: pilot study. J. Urol. 186, 1658–1662 (2011).

    Article  PubMed  Google Scholar 

  82. McKibben, M. J. et al. Projecting the urology workforce over the next 20 years. Urology 98, 21–26 (2016).

    Article  PubMed  Google Scholar 

  83. Franasiak, J., Craven, R., Mosaly, P. & Gehrig, P. A. Feasibility and acceptance of a robotic surgery ergonomic training program. JSLS 18, e2014.00166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xiao, D. J., Jakimowicz, J. J., Albayrak, A. & Goossens, R. H. Ergonomic factors on task performance in laparoscopic surgery training. Appl. Ergon. 43, 548–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Anderson, P. L., Lathrop, R. A. & Webster, R. J. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert. Rev. Med. Devices 13, 661–672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Frede, T. et al. The radius surgical system — a new device for complex minimally invasive procedures in urology? Eur. Urol. 51, 1015–1022 (2007).

    Article  PubMed  Google Scholar 

  87. Meltzer, A. J. et al. Measuring ergonomic risk in operating surgeons by using wearable technology. JAMA Surg. 155, 444–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hung, A. J., Chen, J. & Gill, I. S. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 153, 770–771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Jennifer Fairman of the Johns Hopkins Medical Art Department for her assistance in creating the original figures.

Author information

Authors and Affiliations

Authors

Contributions

A.T.G. and Z.R.S. researched data for the article, made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission. M.M.C., M.J.B and M.H. reviewed/edited the manuscript before submission. C.P.P., J.A., P.M.P., B.R.M. and P.B. wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Andrew T. Gabrielson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Juan A. Sanchez-Margallo, Jens Rassweiler, Richard Goossens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fulcrum effect

The point on which a lever rests or is supported and on which it pivots.

Supination

Rotation of the hand or forearm so that the palmar surface is facing upward (opposite to pronation).

Ulnar deviation

Pointing the wrists towards the feet while in the anatomical position.

Lordotic

Inward curve of the lumbar spine.

Working envelope

The area of space that can be reached by some point of a robotic arm.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielson, A.T., Clifton, M.M., Pavlovich, C.P. et al. Surgical ergonomics for urologists: a practical guide. Nat Rev Urol 18, 160–169 (2021). https://doi.org/10.1038/s41585-020-00414-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-00414-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing