Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defining cisplatin eligibility in patients with muscle-invasive bladder cancer

Abstract

The current treatment paradigm for muscle-invasive bladder cancer (MIBC) consists of cisplatin-based neoadjuvant chemotherapy followed by local definitive therapy, or local definitive therapy alone for cisplatin-ineligible patients. Given that MIBC has a high propensity for distant relapse and is a chemotherapy-sensitive disease, under-utilization of chemotherapy is associated with suboptimal cure rates. Cisplatin eligibility criteria are defined for patients with metastatic bladder cancer by the Galsky criteria, which include creatinine clearance ≥60 ml/min. However, consensus is still lacking regarding cisplatin eligibility criteria in the neoadjuvant, curative MIBC setting, which continues to represent a substantial barrier to the standardization of patient care and clinical trial design. Jiang and colleagues accordingly suggest an algorithm for assessing cisplatin eligibility in patients with MIBC. Instead of relying on an absolute renal function threshold, their algorithm emphasizes a multidisciplinary and patient-centred approach. They also propose mitigation strategies to minimize the risk of cisplatin-induced nephrotoxicity in selected patients with impaired renal function. This new framework is aimed at reducing the inappropriate exclusion of some patients from cisplatin-based neoadjuvant chemotherapy (which leads to under-treatment) and harmonizing clinical trial design, which could lead to improved overall outcomes in patients with MIBC.

Key points

  • Current heterogeneous definitions of adequate renal function for cisplatin-based chemotherapy might cause harm by inappropriately excluding patients from neoadjuvant chemotherapy, leading to under-treatment of muscle-invasive bladder cancer.

  • An absolute threshold of creatinine clearance (CrCl) ≥60 ml/min excludes up to 50% of patients with muscle-invasive bladder cancer from receiving cisplatin-based neoadjuvant chemotherapy and might be inappropriate for many patients.

  • Estimation of baseline renal function using the Chronic Kidney Disease–Epidemiology Collaboration equation is preferred for determining cisplatin eligibility, whereas CrCl is preferred to guide cisplatin dosing.

  • Selected patients with baseline CrCl 40–60 ml/min might be safely treated with cisplatin-based neoadjuvant chemotherapy provided that informed patient discussions, multidisciplinary input and appropriate mitigation strategies take place.

  • Further research is urgently needed to fully define the risk of nephrotoxicity from cisplatin-based neoadjuvant chemotherapy and derive optimal dosing and mitigation strategies to improve the outcomes of muscle-invasive bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overlapping renal function thresholds in current clinical trials in muscle-invasive bladder cancer.
Fig. 2: Proposed algorithm for determining eligibility for neoadjuvant cisplatin-based chemotherapy in patients with MIBC.

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Charlton, M. E., Adamo, M. P., Sun, L. & Deorah, S. Bladder cancer collaborative stage variables and their data quality, usage, and clinical implications: a review of SEER data, 2004–2010. Cancer 1, 3815–3825 (2014).

    Article  Google Scholar 

  3. Lynch, C. F. & Cohen, M. B. Urinary system. Cancer 75, 316–329 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Scosyrev, E., Noyes, K., Feng, C. & Messing, E. Sex and racial differences in bladder cancer presentation and mortality in the US. Cancer 115, 68–74 (2009).

    Article  PubMed  Google Scholar 

  5. Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013).

    Article  PubMed  Google Scholar 

  6. Antoni, S. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017).

    Article  PubMed  Google Scholar 

  7. Zhou, J., Kelsey, K. T., Smith, S., Giovannucci, E. & Michaud, D. S. Lower urinary tract symptoms and risk of bladder cancer in men: results from the health professionals follow-up study. Urology 85, 1312–1318 (2015).

    Article  PubMed  Google Scholar 

  8. Rushton, L. et al. Occupation and cancer in Britain. Br. J. Cancer 102, 1428–1437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canter, D. et al. Clinicopathological outcomes after radical cystectomy for clinical T2 urothelial carcinoma: Further evidence to support the use of neoadjuvant chemotherapy. BJU Int. 107, 58–62 (2011).

    Article  PubMed  Google Scholar 

  10. Galsky, M. D. et al. Treatment of patients with metastatic urothelial cancer ‘Unfit’ for cisplatin-based chemotherapy. J. Clin. Oncol. 29, 2432–2438 (2011).

    Article  PubMed  Google Scholar 

  11. Torres, V. et al. Assessment of kidney function in patients with cancer. Adv. Chronic Kidney Dis. 25, 49–56 (2018).

    Article  Google Scholar 

  12. Loh, J. M. et al. Baseline glomerular filtration rate and cisplatin- induced renal toxicity in urothelial cancer patients. Clin. Genitourin. Cancer 16, 90–98 (2018).

    Article  Google Scholar 

  13. Witjes, J. et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 71, 462–475 (2017).

    Article  Google Scholar 

  14. Apolo, A. B. et al. Examining the management of muscle-invasive bladder cancer by medical oncologists in the United States. Urol. Oncol. Semin. Orig. Investig. 32, 637–644 (2014).

    Google Scholar 

  15. Lin, H., Krauss, D. J., Ye, H., Kernen, K. M. & Hafron, J. M. National cancer database comparison of radical cystectomy vs chemoradiotherapy for muscle-invasive bladder cancer: implications of using clinical vs pathologic staging. Cancer Med. 7, 5370–5381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, S. S. et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol. 198, 552–559 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang, D. M. et al. Neoadjuvant chemotherapy before bladder- sparing chemoradiotherapy in patients with nonmetastatic muscle-invasive bladder cancer. Clin. Genitourin. Cancer 17, 38–45 (2018).

    Article  PubMed  Google Scholar 

  18. Song, Y. P., Mcwilliam, A., Hoskin, P. J. & Choudhury, A. Organ preservation in bladder cancer: an opportunity for truly personalized treatment. Nat. Rev. Urol. 16, 511–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths, G. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol. 29, 2171–2177 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Dash, A. et al. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer 113, 2471–2477 (2008).

    Article  PubMed  Google Scholar 

  22. Peyton, C. C. et al. Downstaging and survival outcomes associated with neoadjuvant chemotherapy regimens among patients treated with cystectomy for muscle-invasive bladder cancer. JAMA Oncol. 4, 1535–1542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Advanced Bladder Cancer (ABC) Meta-Analysis Collaborators. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur. Urol. 48, 202–206 (2005).

    Article  Google Scholar 

  24. Yin, M. et al. Neoadjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and two-step meta-analysis. Oncologist 21, 708–715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fedeli, U., Fedewa, S. A. & Ward, E. M. Treatment of muscle invasive bladder cancer: evidence from the National Cancer Database, 2003 to 2007. J. Urol. 185, 72–78 (2011).

    Article  PubMed  Google Scholar 

  26. Gore, J. L. et al. Use of radical cystectomy for patients with invasive bladder cancer. J. Natl. Cancer Inst. 102, 802–811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Williams, S. B. et al. Underutilization of radical cystectomy among patients diagnosed with clinical stage T2 muscle-invasive bladder cancer. Eur. Urol. Focus. 3, 258–264 (2017).

    Article  PubMed  Google Scholar 

  28. Booth, C. M., Siemens, D. R., Peng, Y., Tannock, I. F. & Mackillop, W. J. Delivery of perioperative chemotherapy for bladder cancer in routine clinical practice. Ann. Oncol. 25, 1783–1788 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Galsky, M. D. et al. Cisplatin ineligibility for patients with metastatic urothelial carcinoma: a survey of clinical practice perspectives among US oncologists. Bladder Cancer 5, 281–288 (2019).

    Article  Google Scholar 

  30. Pabla, N. & Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73, 994–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, X. I. N., Panichpisal, K. & Kurtzman, N. Cisplatin Nephrotoxicity: a review. Am. J. Med. Sci. 344, 115–124 (2007).

    Article  Google Scholar 

  32. Manohar, S. & Leung, N. Cisplatin nephrotoxicity: a review of the literature. J. Nephrol. 31, 15–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Kitchlu, A. et al. Acute kidney injury in patients receiving systemic treatment for cancer: a population-based cohort study. J. Natl Cancer Inst. 111, 727–736 (2019).

    Article  PubMed  Google Scholar 

  34. Macleod, P. M., Tyrell, C. J. & Keeling, D. H. The effect of cisplatin on renal function in patients with testicular tumours. Clin. Radiol. 39, 190–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Latcha, S. et al. Long – term renal outcomes after cisplatin treatment. Clin. J. Am. Soc. Nephrol. 11, 1173–1179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandrasekar, T., Pugashetti, N., Durbin-johnson, B. & Dall, M. A. Effect of neoadjuvant chemotherapy on renal function following radical cystectomy: is there a meaningful impact? Bladder Cancer 2, 441–448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. deVere White, R. W. et al. A sequential treatment approach to myoinvasive urothelial cancer: a phase II southwest oncology group trial (S0219). J. Urol. 181, 2476–2481 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bellmunt, J. et al. Carboplatin-based versus cisplatin-based chemotherapy in the treatment of surgically incurable advanced bladder carcinoma. Cancer 80, 1966–1972 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Petrioli, R. et al. Comparison between a cisplatin-containing regimen and a carboplatin-containing regimen for recurrent or metastatic bladder cancer patients. A randomized phase II study. Cancer 77, 344–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Dogliotti, L. et al. Gemcitabine plus cisplatin versus gemcitabine plus carboplatin as first-line chemotherapy in advanced transitional cell carcinoma of the urothelium: results of a randomized phase 2 trial. Eur. Urol. 52, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Galsky, M. D. et al. Comparative effectiveness of cisplatin-based and carboplatin-based chemotherapy for treatment of advanced urothelial carcinoma. Ann. Oncol. 23, 406–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Necchi, A. et al. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur. Urol. 77, 439–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Heijden, M. Van Der et al. Pre-operative ipilimumab and nivolumab in locoregionally advanced, stage III, urothelial cancer (NABUCCO). Ann. Oncol. 30, v356–v402 (2019).

    Google Scholar 

  46. de Wit, R. Overview of bladder cancer trials in the european organization for research and treatment. Cancer Suppl. 97, 2120–2126 (2003).

    Article  CAS  Google Scholar 

  47. Galsky, M. et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 12, 211–214 (2011).

    Article  PubMed  Google Scholar 

  48. Balar, A. V. et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 18, 1483–1492 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Dietrich, B., Srinivas, S. & Yu, E. Y. Systemic therapy for advanced urothelial carcinoma: current standards and treatment considerations. Am. Soc. Clin. Oncol. Educ. B. 38, 342–353 (2018).

    Article  Google Scholar 

  50. Bamias, A. et al. Impact of contemporary patterns of chemotherapy utilization on survival in patients with advanced cancer of the urinary tract: a Retrospective International Study of Invasive/Advanced Cancer of the Urothelium (RISC). Ann. Oncol. 29, 361–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Koshkin, V. S. et al. Feasibility of cisplatin-based neoadjuvant chemotherapy in muscle-invasive bladder cancer patients with diminished renal function. Clin. Genitourin. Cancer 16, e879–e892 (2018).

    Article  PubMed  Google Scholar 

  52. Thompson, R. H. et al. Eligibility for neoadjuvant/adjuvant cisplatin-based chemotherapy among radical cystectomy patients. BJU Int. 113, 17–21 (2014).

    Article  CAS  Google Scholar 

  53. Witjes, J. A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer. https://uroweb.org/guideline/bladder-cancer-muscle (2018).

  54. Flaig, T. W. & NCCN Bladder Cancer Panel. Bladder cancer. NCCN Clin. Pract. Guidel. Oncol. (2019).

  55. Kitchlu, A. et al. Representation of patients with chronic kidney disease in trials of cancer therapy. JAMA 319, 2437–2439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mcmahon, B. A. & Rosner, M. H. GFR measurement and chemotherapy dosing in patients with kidney disease and cancer. Kidney360 1, 141–150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sprangers, B., Jhaveri, K. D. & Perazella, M. A. Improving cancer care for patients with chronic kidney disease. J. Clin. Oncol. 38, 188–193 (2020).

    Article  PubMed  Google Scholar 

  58. Cockcroft, D. & Gault, M. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    Article  CAS  PubMed  Google Scholar 

  59. Foley, R. N., Wang, C., Ishani, A. & Collins, A. J. NHANES III: influence of race on GFR thresholds and detection of metabolic abnormalities. J. Am. Soc. Neprhol. 18, 2575–2582 (2007).

    Article  CAS  Google Scholar 

  60. Levey, A. S., Bosch, J. P., Lewis, J. B. & Greene, T. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann. Intern. Med. 130, 461–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dash, A. et al. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 107, 506–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Horn, T., Ladwein, B. & Maurer, T. The method of GFR determination impacts the estimation of cisplatin eligibility in patients with advanced urothelial cancer. World J. Surg. Oncol. 32, 359–363 (2014).

    CAS  Google Scholar 

  64. Tsao, C. et al. Impact of the CKD-EPI equation for estimating renal function on eligibility for cisplatin-based chemotherapy in patients with urothelial cancer. Clin. Genitourin. Cancer 10, 15–20 (2012).

    Article  PubMed  Google Scholar 

  65. Krimphove, M. et al. Sex-specific differences in the quality of treatment of muscle- invasive bladder cancer do not explain the overall survival. Eur. Urol. Focus. 19, 30156–30157 (2019).

    Google Scholar 

  66. Santos, F., Dragomir, A., Kassouf, W., Franco, E. & Aprikian, A. Urologist referral delay and its impact on survival after radical cystectomy for bladder cancer. Curr. Oncol. 22, e20–e26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willems, J. M. et al. Performance of Cockcroft-Gault, MDRD, and CKD-EPI in estimating prevalence of renal function and predicting survival in the oldest old. BMC Geriatr. 13, 113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Janowitz, T. et al. New model for estimating glomerular filtration rate in patients with cancer. J. Clin. Oncol. 35, 2798–2805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Raj, G. V., Iasonos, A., Herr, H. & Donat, S. M. Formulas calculating creatinine clearance are inadequate for determining eligibility for cisplatin-based chemotherapy in bladder cancer. J. Clin. Oncol. 24, 3095–3100 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Niwa, N. et al. Are the formulas used to estimate renal function adequate for patients treated with cisplatin-based chemotherapy after nephroureterectomy for upper tract urothelial carcinoma? Clin. Genitourin. Cancer 14, e501–e507 (2016).

    Article  PubMed  Google Scholar 

  71. Wang, E. et al. Imprecise kidney function thresholds in cancer clinical trials and the potential for harm. JNCI Cancer Spectr. 2, pky060 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  73. Ogawa, T. et al. Moderate renal dysfunction may not require a cisplatin dose reduction: a retrospective study of cancer patients with renal impairment. Int. J. Clin. Oncol. 18, 977–982 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Motwani, S. S. et al. Development and validation of a risk prediction model for acute kidney injury after the first course of cisplatin. J. Clin. Oncol. 36, 682–688 (2019).

    Article  Google Scholar 

  75. Perazella, M. A. Nephropharmacology for the clinician pharmacology behind common drug nephrotoxicities. Clin. J. Am. Soc. Nephrol. 13, 1897–1908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zazuli, Z. et al. Genetic variations and cisplatin nephrotoxicity: a systematic review. Front. Pharmacol. 9, 1–17 (2018).

    Article  CAS  Google Scholar 

  77. Anari, F. et al. Neoadjuvant dose-dense gemcitabine and cisplatin in muscle-invasive bladder cancer: results of a phase 2 trial. Eur. Urol. Oncol. 1, 54–60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hussain, S. A. et al. A study of split-dose cisplatin-based neo-adjuvant chemotherapy in muscle-invasive bladder cancer. Oncol. Lett. 3, 855–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Morales-Barrera, R. et al. Cisplatin and gemcitabine administered every two weeks in patients with locally advanced or metastatic urothelial carcinoma and impaired renal function. Eur. J. Cancer 48, 1816–1821 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Osterman, C. et al. Efficacy of split schedule versus conventional schedule neoadjuvant cisplatin-based chemotherapy for muscle-invasive bladder cancer. Oncologist 45, 688–690 (2019).

    Article  CAS  Google Scholar 

  81. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

    Google Scholar 

  82. Barton, C., Horwich, A. & Hospital, R. M. The impact of hydronephrosis on renal function in patients treated with cisplatin-based chemotherapy for metastatic nonseminomatous germ cell tumors. Cancer 62, 1439–1443 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Thiruchelvam, N., Ubhayakar, G. & Mostafid, H. The management of hydronephrosis in patients undergoing TURBT. Int. Urol. Nephrol. 38, 483–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Allen, D. J., Longhorn, S. E., Philp, T., Smith, R. D. & Choong, S. Percutaneous urinary drainage and ureteric stenting in malignant disease statement of search strategies used and sources of information technique of percutaneous nephrostomy technique of retrograde JJ stent insertion. Clin. Oncol. 22, 733–739 (2010).

    Article  CAS  Google Scholar 

  85. Sendur, M. A. N. et al. Administration of contrast media just before cisplatin-based chemotherapy increases cisplatin-induced nephrotoxicity. J. BUON 18, 274–280 (2013).

    CAS  PubMed  Google Scholar 

  86. Mehran, R., Dangas, G. D. & Weisbord, S. D. Contrast-associated acute kidney injury. N. Engl. J. Med. 380, 2146–2155 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Mourey, L. et al. Vefora, GETUG-AFU V06 study: Randomized multicenter phase II/III trial of fractionated cisplatin (CI)/gemcitabine (G) or carboplatin (CA)/g in patients (pts) with advanced urothelial cancer (UC) with impaired renal function (IRF) — results of a planned inte. J. Clin. Oncol. 38, 461–461 (2020).

    Article  Google Scholar 

  88. Egorin, M. J. et al. Pharmacokinetics and dosage reduction of cis-diammine (1, 1-cyclobutanedicarboxylato) platinum renal function1 in patients with impaired renal function. Cancer Res. 44, 5432–5438 (1984).

    CAS  PubMed  Google Scholar 

  89. Kintzel, P. E. & Dorrt, R. T. Anticancer guidelines drug renal toxicity and elimination for altered renal function. Cancer Treat. Rev. 21, 33–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Cisplatin, Cancer Care Ontario. https://www.cancercareontario.ca/en/drugformulary/drugs/cisplatin (2018).

  91. Cisplatin, BC Cancer Agency http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Cisplatin_monograph.pdf (2016).

  92. Hendrayana, T., Wilmer, A., Kurth, V. & Schmidt-wolf, I. G. H. Anticancer dose adjustment for patients with renal and hepatic dysfunction: from scientific evidence to clinical application. Sci. Pharm. 85, 1–16 (2017).

    Article  CAS  Google Scholar 

  93. Bennis, Y., Savry, A., Rocca, M., Pisano, L. G. P. & Pourroy, B. Cisplatin dose adjustment in patients with renal impairment, which recommendations should we follow? Int. J. Clin. Pharm. 36, 420–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Lichtman, S. M. et al. International society of geriatric oncology (SIOG) recommendations for the adjustment of dosing in elderly cancer patients with renal insufficiency. Eur. J. Cancer 43, 14–34 (2007).

    Article  PubMed  Google Scholar 

  95. Food and Drug Administration. Guidance for Industry. Pharmacokinetics in Patients with Impared Renal Function — Study Design, Data Analysis, and Impact on Dosing and Labeling. (1998).

  96. Casal, M. A., Nolin, T. D. & Beumer, J. H. Nephropharmacology for the clinician estimation of kidney function in oncology implications for anticancer drug selection and dosing. Clin. J. Am. Soc. Nephrol. 14, 587–595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Janus, N., Thariat, J., Boulanger, H. & Deray, G. Proposal for dosage adjustment and timing of chemotherapy in hemodialyzed patients. Ann. Oncol. 21, 1395–1403 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Latcha, S. Chapter 12: pharmacokinetics of chemotherapeutic agents in kidney disease. ASN https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter12.pdf (2016).

  99. Jennifer, R. E. et al. A pharmacokinetic analysis of cispaltin and 5-fluorouracil in a patient with esophageal cancer on peritoneal dialysis. Cancer Chemother. Pharmacol. 77, 333–338 (2016).

    Article  CAS  Google Scholar 

  100. Golightly, L. K. et al. Renal pharmacotherapy. dosage adjustment of medications eliminated by the kidneys. (Springer, 2013).

  101. Casanova, A. G. et al. Systematic review and meta-analysis of the efficacy of clinically tested protectants of cisplatin nephrotoxicity. Eur. J. Clin. Pharmacol. 76, 23–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Crona, D. et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22, 609–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dhillon, P. et al. A case–control study analyzing mannitol dosing for prevention of cisplatin-induced acute nephrotoxicity. J. Oncol. Pharm. Pract. 25, 875–883 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. da Costa, J. B. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    Article  Google Scholar 

  105. Groenendijk, F. H. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol. 69, 384–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Powles, T. et al. A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in muscle invasive bladder cancer (ABACUS). J. Clin. Oncol. 36, 4506–4506 (2018).

    Article  Google Scholar 

  109. Food and Drug Administration. BALVERSA [package insert]. Janssen Pharmaceutical Companies (2019).

  110. Food and Drug Administration. PADCEV [package insert]. Agensys, Inc. Seattle Genetinc Inc. (2019).

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.M.J. researched data for the article and wrote the first draft. All authors contributed substantially to discussion of its content and participated in review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Srikala S. Sridhar.

Ethics declarations

Competing interests

D.M.J declares that she has received consulting fees from Bayer. N.S.A. declares that she has acted as a consultant and/or advisor for Astellas, AstraZeneca, Janssen, Merck, Pfizer and Sanofi. S.S.S. declares that she has acted as a consultant and/or advisor for AstraZeneca, Janssen, Merck, Roche and Sanofi. S.G., A.K., A.M.-M., S.A.N. and N.B. declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks Y. Loriot, S. Culine and A. Balar for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Society of Nephrology Onco-Nephrology curriculum: https://www.asn-online.org/education/distancelearning/curricula/onco/

National Kidney Foundation GFR calculator: https://www.kidney.org/professionals/kdoqi/gfr_calculator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D.M., Gupta, S., Kitchlu, A. et al. Defining cisplatin eligibility in patients with muscle-invasive bladder cancer. Nat Rev Urol 18, 104–114 (2021). https://doi.org/10.1038/s41585-020-00404-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-00404-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing