Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of naturally occurring stone disease

Abstract

The prevalence of urolithiasis in humans is increasing worldwide; however, non-surgical treatment and prevention options remain limited despite decades of investigation. Most existing laboratory animal models for urolithiasis rely on highly artificial methods of stone induction and, as a result, might not be fully applicable to the study of natural stone initiation and growth. Animal models that naturally and spontaneously form uroliths are an underused resource in the study of human stone disease and offer many potential opportunities for improving insight into stone pathogenesis. These models include domestic dogs and cats, as well as a variety of other captive and wild species, such as otters, dolphins and ferrets, that form calcium oxalate, struvite, uric acid, cystine and other stone types. Improved collaboration between urologists, basic scientists and veterinarians is warranted to further our understanding of how stones form and to consider possible new preventive and therapeutic treatment options.

Key points

  • Common and rare human urolith types also occur naturally in companion and captive animal species, offering diverse opportunities for research.

  • Calcium oxalate uroliths are common in dogs, cats and Asian small-clawed otters; these models are uniquely suited for research on genetic risk factors, Randall’s plaques and dietary hyperoxaluria, respectively.

  • Infection-induced struvite uroliths are common in dogs, whereas sterile struvite uroliths occur frequently in cats and ferrets; these models could be used to investigate medical dissolution therapy.

  • Natural animal models of uric acid uroliths are best suited to the discovery of genetic modifiers (dogs), study of dietary hyperuricaemia (dolphins) and treatment (dogs, cats, dolphins).

  • Other human urolith types occurring in domestic animals include those that form secondary to rare hereditary disorders (cystine, xanthine and 2,8-dihydroxyadenine) or mineral and toxin ingestion (silica and melamine).

  • Companion animal models of urolithiasis are also useful for discovering environmental and lifestyle risk factors and for testing novel devices or therapeutics, which might simultaneously advance veterinary and human medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Similar morphological appearance of naturally occurring calcium oxalate uroliths from four different species.
Fig. 2: X-ray images of naturally occurring calcium oxalate nephrolithiasis in four different species.
Fig. 3: MicroCT scan of naturally occurring calcium oxalate nephroliths.
Fig. 4: Strengths and limitations of naturally occurring animal models for major stone types.

Similar content being viewed by others

References

  1. Sorokin, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017).

    PubMed  Google Scholar 

  2. Scales, C. D. Jr., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Rule, A. D. et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 25, 2878–2886 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Khan, S. in Animal Models for the Study of Stone Disease (ed. Conn, P. M.) 483–498 (Academic, 2013).

  6. Liu, J., Cao, Z., Zhang, Z., Zhou, S. & Ye, Z. A comparative study on several models of experimental renal calcium oxalate stones formation in rats. J. Huazhong Univ. Sci. Technol. Med. Sci 27, 83–87 (2007).

    Google Scholar 

  7. Evan, A. P. et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int. 68, 145–154 (2005).

    CAS  PubMed  Google Scholar 

  8. Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Syme, H. M. Stones in cats and dogs: what can be learnt from them? Arab. J. Urol. 10, 230–239 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Robinson, M. R., Norris, R. D., Sur, R. L. & Preminger, G. M. Urolithiasis: not just a 2-legged animal disease. J. Urol. 179, 46–52 (2008).

    PubMed  Google Scholar 

  11. O’Kell, A. L., Grant, D. C. & Khan, S. R. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis 45, 329–336 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Osborne, C. A., Lulich, J. P., Kruger, J. M., Ulrich, L. K. & Koehler, L. A. Analysis of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007: perspectives from the Minnesota Urolith Center. Vet. Clin. North Am. Small Anim. Pract. 39, 183–197 (2009).

    PubMed  Google Scholar 

  13. Osborne, C. A. et al. Quantitative analysis of 4468 uroliths retrieved from farm animals, exotic species, and wildlife submitted to the Minnesota Urolith Center: 1981 to 2007. Vet. Clin. North Am. Small Anim. Pract. 39, 65–78 (2009).

    PubMed  Google Scholar 

  14. Mandel, N. S., Mandel, I. C. & Kolbach-Mandel, A. M. Accurate stone analysis: the impact on disease diagnosis and treatment. Urolithiasis 45, 3–9 (2017).

    PubMed  Google Scholar 

  15. Singh, P. et al. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 90, 1356–1365 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Taylor, E. N. & Curhan, G. C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 18, 2198–2204 (2007).

    CAS  PubMed  Google Scholar 

  17. Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam era twin (VET) registry. Kidney Int. 67, 1053–1061 (2005).

    PubMed  Google Scholar 

  18. Resnick, M., Pridgen, D. B. & Goodman, H. O. Genetic predisposition to formation of calcium oxalate renal calculi. N. Engl. J. Med. 278, 1313–1318 (1968).

    CAS  PubMed  Google Scholar 

  19. Goldfarb, D. S., Avery, A. R., Beara-Lasic, L., Duncan, G. E. & Goldberg, J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int. Rep. 4, 535–540 (2019).

    PubMed  Google Scholar 

  20. Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 8, 1568–1573 (1997).

    CAS  PubMed  Google Scholar 

  21. Hemminki, K. et al. Familial risks in urolithiasis in the population of Sweden. BJU Int. 121, 479–485 (2018).

    PubMed  Google Scholar 

  22. Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2015).

    CAS  PubMed  Google Scholar 

  23. Braun, D. A. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 11, 664–672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Daga, A. et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 93, 204–213 (2018).

    CAS  PubMed  Google Scholar 

  25. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    CAS  PubMed  Google Scholar 

  26. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones — role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Urabe, Y. et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible loci at 5q35.3, 7p14.3, and 13q14.1. PLoS Genet. 8, e1002541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Tanikawa, C. et al. Novel risk loci identified in a genome-wide association study of urolithiasis in a Japanese population. J. Am. Soc. Nephrol. 30, 855–864 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, S. & Pearle, M. S. Pathophysiology and management of calcium stones. Urol. Clin. North Am. 34, 323–334 (2007).

    PubMed  Google Scholar 

  32. Worcester, E. M. & Coe, F. L. New insights into the pathogenesis of idiopathic hypercalciuria. Semin. Nephrol. 28, 120–132 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lieske, J. C., Turner, S. T., Edeh, S. N., Smith, J. A. & Kardia, S. L. Heritability of urinary traits that contribute to nephrolithiasis. Clin. J. Am. Soc. Nephrol. 9, 943–950 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Hunter, D. J. et al. Genetic contribution to renal function and electrolyte balance: a twin study. Clinical Sci. 103, 259–265 (2002).

    CAS  Google Scholar 

  35. Palsson, R., Indridason, O. S., Edvardsson, V. O. & Oddsson, A. Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis 47, 11–21 (2019).

    PubMed  Google Scholar 

  36. Sayer, J. A. Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol. 28, 748 (2017).

    CAS  PubMed  Google Scholar 

  37. Molin, A. et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J. Clin. Endocrinol. Metab. 100, E1343–1352 (2015).

    CAS  PubMed  Google Scholar 

  38. Ketha, H. et al. Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS ONE 10, e0137350 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Seaghdha, C. M. et al. Meta-analysis of genome-wide association studies identifies six new loci for serum calcium concentrations. PLoS Genet. 9, e1003796 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 9, 260 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Rudman, D. et al. Hypocitraturia in calcium nephrolithiasis. J. Clin. Endocrinol. Metab. 55, 1052–1057 (1982).

    CAS  PubMed  Google Scholar 

  43. Yagisawa, T., Chandhoke, P. S. & Fan, J. Metabolic risk factors in patients with first-time and recurrent stone formations as determined by comprehensive metabolic evaluation. Urology 52, 750–755 (1998).

    CAS  PubMed  Google Scholar 

  44. Pak, C. Y., Poindexter, J. R., Adams-Huet, B. & Pearle, M. S. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am. J. Med. 115, 26–32 (2003).

    CAS  PubMed  Google Scholar 

  45. Domrongkitchaiporn, S., Stitchantrakul, W. & Kochakarn, W. Causes of hypocitraturia in recurrent calcium stone formers: focusing on urinary potassium excretion. Am. J. Kidney Dis. 48, 546–554 (2006).

    CAS  PubMed  Google Scholar 

  46. Nicar, M. J., Hill, K. & Pak, C. Y. Inhibition by citrate of spontaneous precipitation of calcium oxalate in vitro. J. Bone Min. Res. 2, 215–220 (1987).

    CAS  Google Scholar 

  47. Zuckerman, J. M. & Assimos, D. G. Hypocitraturia: pathophysiology and medical management. Rev. Urol. 11, 134–144 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Bhasin, B., Urekli, H. M. & Atta, M. G. Primary and secondary hyperoxaluria: understanding the enigma. World J. Nephrol. 4, 235–244 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Gee, H. Y. et al. Mutations in SLC26A1 cause nephrolithiasis. Am. J. Hum. Genet. 98, 1228–1234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Holmes, R. P., Knight, J. & Assimos, D. G. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis 44, 27–32 (2016).

    CAS  PubMed  Google Scholar 

  51. Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hatch, M. Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Exp. Physiol. 99, 1163–1167 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Siener, R. et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 83, 1144–1149 (2013).

    CAS  PubMed  Google Scholar 

  54. Stern, J. M. et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44, 399–407 (2016).

    PubMed  Google Scholar 

  55. Miller, A. W., Choy, D., Penniston, K. L. & Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 96, 180–188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zampini, A., Nguyen, A. H., Rose, E., Monga, M. & Miller, A. W. Defining dysbiosis in patients with urolithiasis. Sci. Rep. 9, 5425 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Xie, J. et al. Profiling the urinary microbiome in men with calcium-based kidney stones. BMC Microbiol. 20, 41 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009–1027 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Ren. Physiol 315, F1236–F1242 (2018).

    CAS  Google Scholar 

  60. Williams, J. C. Jr. et al. Papillary ductal plugging is a mechanism for early stone retention in brushite stone disease. J. Urol. 199, 186–192 (2018).

    PubMed  Google Scholar 

  61. Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).

    CAS  PubMed  Google Scholar 

  62. Evan, A. P. et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 71, 795–801 (2007).

    CAS  PubMed  Google Scholar 

  63. Ziemba, J. B. & Matlaga, B. R. Guideline of guidelines: kidney stones. BJU Int. 116, 184–189 (2015).

    PubMed  Google Scholar 

  64. Khan, S. R. et al. Kidney stones. Nat. Rev. Dis. Primers 2, 16008 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    PubMed  Google Scholar 

  66. Turk, C. et al. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur. Urol. 69, 468–474 (2016).

    PubMed  Google Scholar 

  67. Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519–533 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Low, W. W., Uhl, J. M., Kass, P. H., Ruby, A. L. & Westropp, J. L. Evaluation of trends in urolith composition and characteristics of dogs with urolithiasis: 25,499 cases (1985–2006). J. Am. Vet. Med. Assoc. 236, 193–200 (2010).

    CAS  PubMed  Google Scholar 

  69. Lekcharoensuk, C. et al. Patient and environmental factors associated with calcium oxalate urolithiasis in dogs. J. Am. Vet. Med. Assoc. 217, 515–519 (2000).

    CAS  PubMed  Google Scholar 

  70. Lulich, J. P. et al. Epidemiology of canine calcium oxalate uroliths. Identifying risk factors. Vet. Clin. North Am. Small Anim. Pract. 29, 113–122 (1999).

    CAS  PubMed  Google Scholar 

  71. Kennedy, S. M., Lulich, J. P., Ritt, M. G. & Furrow, E. Comparison of body condition score and urinalysis variables between dogs with and without calcium oxalate uroliths. J. Am. Vet. Med. Assoc. 249, 1274–1280 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Lekcharoensuk, C. et al. Associations between dry dietary factors and canine calcium oxalate uroliths. Am. J. Vet. Res. 63, 330–337 (2002).

    CAS  PubMed  Google Scholar 

  73. Lekcharoensuk, C. et al. Associations between dietary factors in canned food and formation of calcium oxalate uroliths in dogs. Am. J. Vet. Res. 63, 163–169 (2002).

    CAS  PubMed  Google Scholar 

  74. Lulich, J. P., Osborne, C. A., Lekcharoensuk, C., Kirk, C. A. & Allen, T. A. Effects of hydrochlorothiazide and diet in dogs with calcium oxalate urolithiasis. J. Am. Vet. Med. Assoc. 218, 1583–1586 (2001).

    CAS  PubMed  Google Scholar 

  75. Dijcker, J. C., Kummeling, A., Hagen-Plantinga, E. A. & Hendriks, W. H. Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis. Vet. Rec. 171, 646 (2012).

    CAS  PubMed  Google Scholar 

  76. Stevenson, A. E., Robertson, W. G. & Markwell, P. Risk factor analysis and relative supersaturation as tools for identifying calcium oxalate stone-forming dogs. J. Small Anim. Pract. 44, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  77. Furrow, E., Patterson, E. E., Armstrong, P. J., Osborne, C. A. & Lulich, J. P. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls. J. Vet. Intern. Med. 29, 113–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lulich, J. P., Osborne, C. A., Nagode, L. A., Polzin, D. J. & Parke, M. L. Evaluation of urine and serum metabolites in Miniature Schnauzers with calcium oxalate urolithiasis. Am. J. Vet. Res. 52, 1583–1590 (1991).

    CAS  PubMed  Google Scholar 

  79. Carr, S. V., Grant, D. C., DeMonaco, S. M. & Shepherd, M. Measurement of preprandial and postprandial urine calcium to creatinine ratios in male Miniature Schnauzers with and without urolithiasis. J. Vet. Intern. Med. 34, 754–760 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Luskin, A. C., Lulich, J. P., Gresch, S. C. & Furrow, E. Bone resorption in dogs with calcium oxalate urolithiasis and idiopathic hypercalciuria. Res. Vet. Sci. 123, 129–134 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Groth, E. M., Lulich, J. P., Chew, D. J., Parker, V. J. & Furrow, E. Vitamin D metabolism in dogs with and without hypercalciuric calcium oxalate urolithiasis. J. Vet. Intern. Med. 33, 758–763 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Carvalho, M., Lulich, J. P., Osborne, C. A. & Nakagawa, Y. Defective urinary crystallization inhibition and urinary stone formation. Int. Braz. J. Urol. 32, 342–348 (2006).

    PubMed  Google Scholar 

  83. Danpure, C. J., Jennings, P. R. & Jansen, J. H. Enzymological characterization of a putative canine analogue of primary hyperoxaluria type 1. Biochim. Biophys. Acta 1096, 134–138 (1991).

    CAS  PubMed  Google Scholar 

  84. Vidgren, G. et al. Primary hyperoxaluria in Coton de Tulear. Anim. Genet. 43, 356–361 (2012).

    CAS  PubMed  Google Scholar 

  85. Stevenson, A. E., Blackburn, J. M., Markwell, P. J. & Robertson, W. G. Nutrient intake and urine composition in calcium oxalate stone-forming dogs: comparison with healthy dogs and impact of dietary modification. Vet. Ther. 5, 218–231 (2004).

    PubMed  Google Scholar 

  86. Kruger, J. M., Osborne, C. A. & Lulich, J. P. Canine calcium phosphate uroliths. Etiopathogenesis, diagnosis, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 141–159 (1999).

    CAS  PubMed  Google Scholar 

  87. Gnanandarajah, J. S., Abrahante, J. E., Lulich, J. P. & Murtaugh, M. P. Presence of Oxalobacter formigenes in the intestinal tract is associated with the absence of calcium oxalate urolith formation in dogs. Urol. Res. 40, 467–473 (2012).

    CAS  PubMed  Google Scholar 

  88. Jansen, J. H. & Arnesen, K. Oxalate nephropathy in a Tibetan spaniel litter. A probable case of primary hyperoxaluria. J. Comp. Pathol. 103, 79–84 (1990).

    CAS  PubMed  Google Scholar 

  89. Lulich, J. P. et al. ACVIM small animal consensus recommendations on the treatment and prevention of uroliths in dogs and cats. J. Vet. Intern. Med. 30, 1564–1574 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stevenson, A. E., Hynds, W. K. & Markwell, P. J. The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs. Res. Vet. Sci. 75, 33–41 (2003).

    CAS  PubMed  Google Scholar 

  91. Thumchai, R. et al. Epizootiologic evaluation of urolithiasis in cats: 3,498 cases (1982-1992). J. Am. Vet. Med. Assoc. 208, 547–551 (1996).

    CAS  PubMed  Google Scholar 

  92. Lekcharoensuk, C. et al. Association between patient-related factors and risk of calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J. Am. Vet. Med. Assoc. 217, 520–525 (2000).

    CAS  PubMed  Google Scholar 

  93. Osborne, C. A. et al. Feline urolithiasis. Etiology and pathophysiology. Vet. Clin. North Am. Small Anim. Pract. 26, 217–232 (1996).

    CAS  PubMed  Google Scholar 

  94. Kyles, A. E. et al. Clinical, clinicopathologic, radiographic, and ultrasonographic abnormalities in cats with ureteral calculi: 163 cases (1984–2002). J. Am. Vet. Med. Assoc. 226, 932–936 (2005).

    PubMed  Google Scholar 

  95. Nesser, V. E., Reetz, J. A., Clarke, D. L. & Aronson, L. R. Radiographic distribution of ureteral stones in 78 cats. Vet. Surg. 47, 895–901 (2018).

    PubMed  Google Scholar 

  96. Cleroux, A., Alexander, K., Beauchamp, G. & Dunn, M. Evaluation for association between urolithiasis and chronic kidney disease in cats. J. Am. Vet. Med. Assoc. 250, 770–774 (2017).

    PubMed  Google Scholar 

  97. Brown, C. A., Elliott, J., Schmiedt, C. W. & Brown, S. A. Chronic kidney disease in aged cats: clinical features, morphology, and proposed pathogeneses. Vet. Pathol. 53, 309–326 (2016).

    CAS  PubMed  Google Scholar 

  98. Cannon, A. B., Westropp, J. L., Ruby, A. L. & Kass, P. H. Evaluation of trends in urolith composition in cats: 5,230 cases (1985–2004). J. Am. Vet. Med. Assoc. 231, 570–576 (2007).

    CAS  PubMed  Google Scholar 

  99. Lulich, J. P., Osborne, C. A., Lekcharoensuk, C., Kirk, C. A. & Bartges, J. W. Effects of diet on urine composition of cats with calcium oxalate urolithiasis. J. Am. Anim. Hosp. Assoc. 40, 185–191 (2004).

    PubMed  Google Scholar 

  100. Ross, S. J. et al. Canine and feline nephrolithiasis. Epidemiology, detection, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 231–250 (1999).

    CAS  PubMed  Google Scholar 

  101. Midkiff, A. M., Chew, D. J., Randolph, J. F., Center, S. A. & DiBartola, S. P. Idiopathic hypercalcemia in cats. J. Vet. Intern. Med. 14, 619–626 (2000).

    CAS  PubMed  Google Scholar 

  102. Coady, M., Fletcher, D. J. & Goggs, R. Severity of ionized hypercalcemia and hypocalcemia is associated with etiology in dogs and cats. Front. Vet. Sci. 6, 276 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. McKerrell, R. E. et al. Primary hyperoxaluria (L-glyceric aciduria) in the cat: a newly recognised inherited disease. Vet. Rec. 125, 31–34 (1989).

    CAS  PubMed  Google Scholar 

  104. Gershoff, S. N., Faragalla, F. F., Nelson, D. A. & Andrus, S. B. Vitamin B6 deficiency and oxalate nephrocalcinosis in the cat. Am. J. Med. 27, 72–80 (1959).

    CAS  PubMed  Google Scholar 

  105. Ross, S. J., Osborne, C. A., Lekcharoensuk, C., Koehler, L. A. & Polzin, D. J. A case-control study of the effects of nephrolithiasis in cats with chronic kidney disease. J. Am. Vet. Med. Assoc. 230, 1854–1859 (2007).

    CAS  PubMed  Google Scholar 

  106. Chakrabarti, S., Syme, H. M., Brown, C. A. & Elliott, J. Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction. Vet. Pathol. 50, 147–155 (2013).

    CAS  PubMed  Google Scholar 

  107. Heiene, R. et al. Chronic kidney disease with three cases of oxalate-like nephrosis in Ragdoll cats. J. Feline Med. Surg. 11, 474–480 (2009).

    PubMed  Google Scholar 

  108. Lulich, J. in American College of Veterinary Internal Medicine Forum (ACVIM, 2016).

  109. Lekcharoensuk, C. et al. Association between dietary factors and calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J. Am. Vet. Med. Assoc. 219, 1228–1237 (2001).

    CAS  PubMed  Google Scholar 

  110. Calle, P. P. Asian small-clawed otter (Aonyx cinerea) urolithiasis prevalence in North America. Zoo Biol. 7, 233–242 (1988).

    Google Scholar 

  111. Yoong, Y. T., Fujita, K., Galway, A., Liu, M. H. & Cabana, F. Urolith prevalence and risk factors in Asian small-clawed otters (Aonyx cinereus). J. Zoo Wildl. Med. 49, 863–869 (2018).

    PubMed  Google Scholar 

  112. Sivasothi, N. & Nor, B. H. M. A review of otters (Carnivora: Mustelidae: Lutrinae) in Malaysia and Singapore. Hydrobiologia 285, 151–170 (1994).

    Google Scholar 

  113. Petrini, K. R., Lulich, J. P., Treschel, L. & Nachreiner, R. F. Evaluation of urinary and serum metabolites in Asian small-clawed otters (Aonyx cinerea) with calcium oxalate urolithiasis. J. Zoo Wildl. Med. 30, 54–63 (1999).

    CAS  PubMed  Google Scholar 

  114. Sutton, R. A. & Walker, V. R. Enteric and mild hyperoxaluria. Miner. Electrolyte Metab. 20, 352–360 (1994).

    CAS  PubMed  Google Scholar 

  115. Sabater Gonzalez, M., Osterwind, M. & Fernandez Colome, J. Management of nephrolithiasis by pyelotomy and pyeloscopy in an Asian small-clawed otter (Aonyx cinereus). J. Am. Vet. Med. Assoc. 255, 1057–1063 (2019).

    PubMed  Google Scholar 

  116. Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones — pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333 (2014).

    CAS  PubMed  Google Scholar 

  117. Koga, S., Arakaki, Y., Matsuoka, M. & Ohyama, C. Staghorn calculi — long-term results of management. Br. J. Urol. 68, 122–124 (1991).

    CAS  PubMed  Google Scholar 

  118. Bichler, K. H. et al. Urinary infection stones. Int. J. Antimicrob. Agents 19, 488–498 (2002).

    CAS  PubMed  Google Scholar 

  119. Espinosa-Ortiz, E. J., Eisner, B. H., Lange, D. & Gerlach, R. Current insights into the mechanisms and management of infection stones. Nat. Rev. Urol. 16, 35–53 (2019).

    PubMed  Google Scholar 

  120. Cook, A. R. The elimination of urease activity in Streptococcus faecium as evidence for plasmid-coded urease. J. Gen. Microbiol. 92, 49–58 (1976).

    CAS  PubMed  Google Scholar 

  121. Collins, C. M. & Falkow, S. Genetic analysis of Escherichia coli urease genes: evidence for two distinct loci. J. Bacteriol. 172, 7138–7144 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Margel, D. et al. Clinical implication of routine stone culture in percutaneous nephrolithotomy — a prospective study. Urology 67, 26–29 (2006).

    CAS  PubMed  Google Scholar 

  123. Flannigan, R. K. et al. Evaluating factors that dictate struvite stone composition: a multi-institutional clinical experience from the EDGE research consortium. Can. Urol. Assoc. J. 12, 131–136 (2018).

    PubMed  Google Scholar 

  124. Cicerello, E., Mangano, M., Cova, G. D., Merlo, F. & Maccatrozzo, L. Metabolic evaluation in patients with infected nephrolithiasis: is it necessary? Arch. Ital. Urol. Androl. 88, 208–211 (2016).

    PubMed  Google Scholar 

  125. Jaeger, C. D. et al. Endoscopic and pathologic characterization of papillary architecture in struvite stone formers. Urology 90, 39–44 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological society guideline, Part I. J. Urol. 196, 1153–1160 (2016).

    PubMed  Google Scholar 

  127. Morgan, T. N. et al. Conservative management of Staghorn calculi: when is it safe? J. Endourol. 32, 541–545 (2018).

    PubMed  Google Scholar 

  128. Griffith, D. P. et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol. 20, 243–247 (1991).

    CAS  PubMed  Google Scholar 

  129. Okafor, C. C. et al. Risk factors associated with struvite urolithiasis in dogs evaluated at general care veterinary hospitals in the United States. J. Am. Vet. Med. Assoc. 243, 1737–1745 (2013).

    PubMed  Google Scholar 

  130. Osborne, C. A. et al. Medical dissolution and prevention of canine struvite urolithiasis. Twenty years of experience. Vet. Clin. North Am. Small Anim. Pract. 29, 73–111 (1999).

    CAS  PubMed  Google Scholar 

  131. Bartges, J. W. Recurrent sterile struvite urocystolithiasis in three related English Cocker Spaniels. J. Am. Anim. Hosp. Assoc. 28, 459–469 (1992).

    Google Scholar 

  132. Stiller, A. T., Lulich, J. P. & Furrow, E. Urethral plugs in dogs. J. Vet. Intern. Med. 28, 324–330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Palma, D., Langston, C., Gisselman, K. & McCue, J. Canine struvite urolithiasis. Compend. Contin. Educ. Vet. 35, E1 (2013).

    PubMed  Google Scholar 

  134. Dear, J. D. et al. Evaluation of a dry therapeutic urinary diet and concurrent administration of antimicrobials for struvite cystolith dissolution in dogs. BMC Vet. Res. 15, 273 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Krawiec, D. R., Osborne, C. A., Leininger, J. R. & Griffith, D. P. Effect of acetohydroxamic acid on dissolution of canine struvite uroliths. Am. J. Vet. Res. 45, 1266–1275 (1984).

    CAS  PubMed  Google Scholar 

  136. Fowler, J. E. Bacteriology of branched renal calculi and accompanying urinary tract infection. J. Urol. 131, 213–215 (1984).

    PubMed  Google Scholar 

  137. Tarttelin, M. F. Feline struvite urolithiasis: factors affecting urine pH may be more important than magnesium levels in food. Vet. Rec. 121, 227–230 (1987).

    CAS  PubMed  Google Scholar 

  138. Osborne, C. A. et al. Medical dissolution of feline struvite urocystoliths. J. Am. Vet. Med. Assoc. 196, 1053–1063 (1990).

    CAS  PubMed  Google Scholar 

  139. Torres-Henderson, C., Bunkers, J., Contreras, E. T., Cross, E. & Lappin, M. R. Use of purina pro plan veterinary diet UR urinary St/Ox to dissolve struvite cystoliths. Top. Companion Anim. Med. 32, 49–54 (2017).

    PubMed  Google Scholar 

  140. Lulich, J. P. et al. Efficacy of two commercially available, low-magnesium, urine-acidifying dry foods for the dissolution of struvite uroliths in cats. J. Am. Vet. Med. Assoc. 243, 1147–1153 (2013).

    CAS  PubMed  Google Scholar 

  141. Nguyen, H. T., Moreland, A. F. & Shields, R. P. Urolithiasis in ferrets (Mustela putorius). Lab. Anim. Sci. 29, 243–245 (1979).

    CAS  PubMed  Google Scholar 

  142. Nwaokorie, E. E., Osborne, C. A., Lulich, J. P., Albasan, H. & Lekcharoensuk, C. Epidemiology of struvite uroliths in ferrets: 272 cases (1981–2007). J. Am. Vet. Med. Assoc. 239, 1319–1324 (2011).

    PubMed  Google Scholar 

  143. Trinchieri, A. & Montanari, E. Prevalence of renal uric acid stones in the adult. Urolithiasis 45, 553–562 (2017).

    CAS  PubMed  Google Scholar 

  144. Sakhaee, K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J. Nephrol. 27, 241–245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pak, C. Y. et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology 61, 523–527 (2003).

    PubMed  Google Scholar 

  146. Soble, J. J., Hamilton, B. D. & Streem, S. B. Ammonium acid urate calculi: a reevaluation of risk factors. J. Urol. 161, 869–873 (1999).

    CAS  PubMed  Google Scholar 

  147. Pichette, V. et al. Ammonium acid urate crystal formation in adult North American stone-formers. Am. J. Kidney Dis. 30, 237–242 (1997).

    CAS  PubMed  Google Scholar 

  148. Lomas, D. J., Jaeger, C. D. & Krambeck, A. E. Profile of the ammonium acid urate stone former based on a large contemporary cohort. Urology 102, 43–47 (2017).

    PubMed  Google Scholar 

  149. Klohn, M. et al. Ammonium urate urinary stones. Urol. Res. 14, 315–318 (1986).

    CAS  PubMed  Google Scholar 

  150. Hodgkinson, A. Composition of urinary tract Calculi from some developing countries. Urol. Int. 34, 26–35 (1979).

    CAS  PubMed  Google Scholar 

  151. Maalouf, N. M., Cameron, M. A., Moe, O. W. & Sakhaee, K. Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 5, 1277–1281 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Abou-Elela, A. Epidemiology, pathophysiology, and management of uric acid urolithiasis: a narrative review. J. Adv. Res. 8, 513–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ichida, K. et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15, 164–173 (2004).

    PubMed  Google Scholar 

  154. Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. York, N. E., Borofsky, M. S. & Lingeman, J. E. Risks associated with drug treatments for kidney stones. Expert Opin. Drug Saf. 14, 1865–1877 (2015).

    CAS  PubMed  Google Scholar 

  156. Bartges, J. W. et al. Canine urate urolithiasis. Etiopathogenesis, diagnosis, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 161–191 (1999).

    CAS  PubMed  Google Scholar 

  157. Folin, O., Berglund, H. & Derick, C. The uric acid problem: an experimental study on animals and man, including gouty subjects. J. Biol. Chem. 60, 361–471 (1924).

    CAS  Google Scholar 

  158. Bannasch, D. et al. Mutations in the SLC2A9 gene cause hyperuricosuria and hyperuricemia in the dog. PLoS Genet. 4, e1000246 (2008).

    PubMed  PubMed Central  Google Scholar 

  159. Donner, J. et al. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet. 14, e1007361 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. Roch-Ramel, F., Wong, N. L. & Dirks, J. H. Renal excretion of urate in mongrel and Dalmatian dogs: a micropuncture study. Am. J. Physiol. 231, 326–331 (1976).

    CAS  PubMed  Google Scholar 

  161. Bannasch, D. & Henthorn, P. S. Changing paradigms in diagnosis of inherited defects associated with urolithiasis. Vet. Clin. North Am. Small Anim. Pract. 39, 111–125 (2009).

    PubMed  PubMed Central  Google Scholar 

  162. Moulin, B., Vinay, P., Duong, N., Gougoux, A. & Lemieux, G. Net urate reabsorption in the Dalmatian coach hound with a note on automated measurement of urate in species with low plasma urate. Can. J. Physiol. Pharmacol. 60, 1499–1504 (1982).

    CAS  PubMed  Google Scholar 

  163. Albasan, H., Lulich, J. P., Osborne, C. A. & Lekcharoensuk, C. Evaluation of the association between sex and risk of forming urate uroliths in Dalmatians. J. Am. Vet. Med. Assoc. 227, 565–569 (2005).

    PubMed  Google Scholar 

  164. Bannasch, D. L., Ling, G. V., Bea, J. & Famula, T. R. Inheritance of urinary calculi in the Dalmatian. J. Vet. Intern. Med. 18, 483–487 (2004).

    CAS  PubMed  Google Scholar 

  165. Westropp, J. L. et al. Evaluation of dogs with genetic hyperuricosuria and urate urolithiasis consuming a purine restricted diet: a pilot study. BMC Vet. Res. 13, 45 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Albasan, H., Osborne, C. A., Lulich, J. P. & Lekcharoensuk, C. Risk factors for urate uroliths in cats. J. Am. Vet. Med. Assoc. 240, 842–847 (2012).

    PubMed  Google Scholar 

  167. Dear, J. D., Shiraki, R., Ruby, A. L. & Westropp, J. L. Feline urate urolithiasis: a retrospective study of 159 cases. J. Feline Med. Surg. 13, 725–732 (2011).

    PubMed  Google Scholar 

  168. Venn-Watson, S. K. et al. Hypocitraturia in common bottlenose dolphins (Tursiops truncatus): assessing a potential risk factor for urate nephrolithiasis. Comp. Med. 60, 149–153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Venn-Watson, S., Smith, C. R., Johnson, S., Daniels, R. & Townsend, F. Clinical relevance of urate nephrolithiasis in bottlenose dolphins Tursiops truncatus. Dis. Aquat. Org. 89, 167–177 (2010).

    CAS  Google Scholar 

  170. Le-Bert, C. R. et al. Comparison of potential dietary and urinary risk factors for ammonium urate nephrolithiasis in two bottlenose dolphin (Tursiops truncatus) populations. Am. J. Physiol. Ren. Physiol. 315, F231–F237 (2018).

    CAS  Google Scholar 

  171. Wells, R. S. et al. Evaluation of potential protective factors against metabolic syndrome in bottlenose dolphins: feeding and activity patterns of dolphins in sarasota bay, Florida. Front. Endocrinol. 4, 139 (2013).

    Google Scholar 

  172. Venn-Watson, S. et al. Blood-based indicators of insulin resistance and metabolic syndrome in bottlenose dolphins (Tursiops truncatus). Front. Endocrinol. 4, 136 (2013).

    Google Scholar 

  173. Smith, C. R. et al. Comparison of nephrolithiasis prevalence in two bottlenose dolphin (Tursiops truncatus) populations. Front. Endocrinol. 4, 145 (2013).

    Google Scholar 

  174. Ardente, A. J. et al. A targeted metabolomics assay to measure eight purines in the diet of common bottlenose dolphins, tursiops truncatus. J. Chromatogr. Sep. Tech. 7, 334 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. Schmitt, T. L. & Sur, R. L. Treatment of ureteral calculus obstruction with laser lithotripsy in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 43, 101–109 (2012).

    PubMed  Google Scholar 

  176. Sahota, A., Tischfield, J. A., Goldfarb, D. S., Ward, M. D. & Hu, L. Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis 47, 57–66 (2019).

    PubMed  Google Scholar 

  177. Martell, H. J. et al. Associating mutations causing cystinuria with disease severity with the aim of providing precision medicine. BMC Genomics 18, 550 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Goldstein, B. & Goldfarb, D. S. Early recognition and management of rare kidney stone disorders. Urol. Nurs. 37, 81–102 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Dello Strologo, L. et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J. Am. Soc. Nephrol. 13, 2547–2553 (2002).

    PubMed  Google Scholar 

  180. Usawachintachit, M. et al. Clinical outcomes for cystinuria patients with unilateral versus bilateral cystine stone disease. J. Endourol. 32, 148–153 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Pareek, G., Steele, T. H. & Nakada, S. Y. Urological intervention in patients with cystinuria is decreased with medical compliance. J. Urol. 174, 2250–2252 (2005).

    PubMed  Google Scholar 

  182. Kum, F., Wong, K., Game, D., Bultitude, M. & Thomas, K. Hypertension and renal impairment in patients with cystinuria: findings from a specialist cystinuria centre. Urolithiasis 47, 357–363 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Osborne, C. A. et al. Canine cystine urolithiasis. Cause, detection, treatment, and prevention. Vet. Clin. North Am. Small Anim. Pract. 29, 193–211 (1999).

    CAS  PubMed  Google Scholar 

  184. Roe, K., Pratt, A., Lulich, J., Osborne, C. & Syme, H. M. Analysis of 14,008 uroliths from dogs in the UK over a 10-year period. J. Small Anim. Pract. 53, 634–640 (2012).

    CAS  PubMed  Google Scholar 

  185. Brons, A. K. et al. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system. J. Vet. Intern. Med. 27, 1400–1408 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. Florey, J., Ewen, V. & Syme, H. Association between cystine urolithiasis and neuter status of dogs within the UK. J. Small Anim. Pract. 58, 531–535 (2017).

    CAS  PubMed  Google Scholar 

  187. Hesse, A., Hoffmann, J., Orzekowsky, H. & Neiger, R. Canine cystine urolithiasis: a review of 1760 submissions over 35 years (1979–2013). Can. Vet. J. 57, 277–281 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Lulich, J. P. et al. Recent shifts in the global proportions of canine uroliths. Vet. Rec. 172, 363 (2013).

    CAS  PubMed  Google Scholar 

  189. Hoppe, A. & Denneberg, T. Cystinuria in the dog: clinical studies during 14 years of medical treatment. J. Vet. Intern. Med. 15, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  190. Mizukami, K., Raj, K., Osborne, C. & Giger, U. Cystinuria associated with different SLC7A9 gene variants in the cat. PLoS ONE 11, e0159247 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Hilton, S., Mizukami, K. & Giger, U. Cystinuria caused by a SLC7A9 missense mutation in Siamese-crossbred littermates in Germany. Tierarztl. Prax. Ausg. K. Kleintiere Heimtiere 45, 265–272 (2017).

    PubMed  PubMed Central  Google Scholar 

  192. Gustafson, K. D. et al. Founder events, isolation, and inbreeding: intercontinental genetic structure of the domestic ferret. Evolut. Appl. 11, 694–704 (2018).

    Google Scholar 

  193. Nwaokorie, E. E., Osborne, C. A., Lulich, J. P. & Albasan, H. Epidemiological evaluation of cystine urolithiasis in domestic ferrets (Mustela putorius furo): 70 cases (1992–2009). J. Am. Vet. Med. Assoc. 242, 1099–1103 (2013).

    PubMed  Google Scholar 

  194. Johnson-Delaney, C. A. Ferret nutrition. Vet. Clin. North Am. Exotic Anim. Pract. 17, 449–470 (2014).

    Google Scholar 

  195. Ichida, K., Amaya, Y., Okamoto, K. & Nishino, T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int. J. Mol. Sci. 13, 15475–15495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Sebesta, I., Stiburkova, B. & Krijt, J. Hereditary xanthinuria is not so rare disorder of purine metabolism. Nucleosides Nucleotides Nucleic Acids 37, 324–328 (2018).

    CAS  PubMed  Google Scholar 

  197. Yakubov, R., Nir, V., Kassem, E. & Klein-Kremer, A. [Asymptomatic classical hereditary xanthinuria type 1]. Harefuah 151, 330–331, 380 (2012).

    PubMed  Google Scholar 

  198. Sighinolfi, M. C. et al. Drug-induced urolithiasis in pediatric patients. Pediatr. Drugs 21, 323–344 (2019).

    Google Scholar 

  199. Seegmiller, J. E. Xanthine stone formation. Am. J. Med. 45, 780–783 (1968).

    CAS  PubMed  Google Scholar 

  200. Tate, N. M. et al. P6030 Three diverse mutations underlying canine xanthine urolithiasis. J. Anim. Sci. 94, 163–163 (2016).

    Google Scholar 

  201. Delbarre, F., Holtzer, A. & Auscher, C. [Xanthine urinary lithiasis and xanthinuria in a dachshund. Deficiency, probably genetic, of the xanthine oxidase system]. C. R. Acad. Hebd. Seances. Acad. Sci. D 269, 1449–1452 (1969).

    CAS  PubMed  Google Scholar 

  202. van Zuilen, C. D., Nickel, R. F., van Dijk, T. H. & Reijngoud, D. J. Xanthinuria in a family of Cavalier King Charles spaniels. Vet. Q. 19, 172–174 (1997).

    PubMed  Google Scholar 

  203. Kucera, J., Bulkova, T., Rychla, R. & Jahn, P. Bilateral xanthine nephrolithiasis in a dog. J. Small Anim. Pract. 38, 302–305 (1997).

    CAS  PubMed  Google Scholar 

  204. Flegel, T., Freistadt, R. & Haider, W. Xanthine urolithiasis in a dachshund. Vet. Rec. 143, 420 (1998).

    CAS  PubMed  Google Scholar 

  205. Gow, A. G., Fairbanks, L. D., Simpson, J. W., Jacinto, A. M. & Ridyard, A. E. Xanthine urolithiasis in a Cavalier King Charles spaniel. Vet. Rec. 169, 209 (2011).

    CAS  PubMed  Google Scholar 

  206. White, R. N., Tick, N. T. & White, H. L. Naturally occurring xanthine urolithiasis in a domestic shorthair cat. J. Small Anim. Pract. 38, 299–301 (1997).

    CAS  PubMed  Google Scholar 

  207. Tsuchida, S., Kagi, A., Koyama, H. & Tagawa, M. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase. J. Feline Med. Surg. 9, 503–508 (2007).

    PubMed  Google Scholar 

  208. Furman, E. et al. Hereditary xanthinuria and urolithiasis in a domestic shorthair cat. Comp. Clin. Path 24, 1325–1329 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Mestrinho, L. A., Goncalves, T., Parreira, P. B., Niza, M. M. & Hamaide, A. J. Xanthine urolithiasis causing bilateral ureteral obstruction in a 10-month-old cat. J. Feline Med. Surg. 15, 911–916 (2013).

    PubMed  Google Scholar 

  210. Bollee, G. et al. Adenine phosphoribosyltransferase deficiency. Clin. J. Am. Soc. Nephrol. 7, 1521–1527 (2012).

    CAS  PubMed  Google Scholar 

  211. Kamatani, N., Terai, C., Kuroshima, S., Nishioka, K. & Mikanagi, K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum. Genet. 75, 163–168 (1987).

    CAS  PubMed  Google Scholar 

  212. Furrow, E., Pfeifer, R. J., Osborne, C. A. & Lulich, J. P. An APRT mutation is strongly associated with and likely causative for 2,8-dihydroxyadenine urolithiasis in dogs. Mol. Genet. Metab. 111, 399–403 (2014).

    CAS  PubMed  Google Scholar 

  213. Haddad, F. S. & Kouyoumdjian, A. Silica stones in humans. Urol. Int. 41, 70–76 (1986).

    CAS  PubMed  Google Scholar 

  214. Lee, M. H., Lee, Y. H., Hsu, T. H., Chen, M. T. & Chang, L. S. Silica stone — development due to long time oral trisilicate intake. Scand. J. Urol. Nephrol. 27, 267–269 (1993).

    CAS  PubMed  Google Scholar 

  215. Nishizono, T. et al. Renal silica calculi in an infant. Int. J. Urol. 11, 119–121 (2004).

    PubMed  Google Scholar 

  216. Flythe, J. E., Rueda, J. F., Riscoe, M. K. & Watnick, S. Silicate nephrolithiasis after ingestion of supplements containing silica dioxide. Am. J. Kidney Dis. 54, 127–130 (2009).

    PubMed  Google Scholar 

  217. Osborne, C. A. et al. Canine silica urolithiasis: risk factors, detection, treatment, and prevention. Vet. Clin. North Am. Small Anim. Pract. 29, 213–230 (1999).

    CAS  PubMed  Google Scholar 

  218. Legendre, A. M. Silica urolithiasis in a dog. J. Am. Vet. Med. Assoc. 168, 418–419 (1976).

    CAS  PubMed  Google Scholar 

  219. Guan, X. & Deng, Y. Melamine-associated urinary stone. Int. J. Surg. 36, 613–617 (2016).

    PubMed  Google Scholar 

  220. Zheng, X. et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 5, 172ra122 (2013).

    Google Scholar 

  221. Dalal, R. P. & Goldfarb, D. S. Melamine-related kidney stones and renal toxicity. Nat. Rev. Nephrol. 7, 267–274 (2011).

    CAS  PubMed  Google Scholar 

  222. Lu, X. et al. Gender and urinary pH affect melamine-associated kidney stone formation risk. Urol. Ann. 3, 71–74 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Osborne, C. A. et al. Melamine and cyanuric acid-induced crystalluria, uroliths, and nephrotoxicity in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 39, 1–14 (2009).

    PubMed  Google Scholar 

  224. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    CAS  PubMed  Google Scholar 

  225. Tsai, K. L., Clark, L. A. & Murphy, K. E. Understanding hereditary diseases using the dog and human as companion model systems. Mamm. Genome 18, 444–451 (2007).

    PubMed  PubMed Central  Google Scholar 

  226. Ostrander, E. A. & Franklin, H. Epstein lecture. Both ends of the leash — the human links to good dogs with bad genes. N. Engl. J. Med. 367, 636–646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Karlsson, E. K. & Lindblad-Toh, K. Leader of the pack: gene mapping in dogs and other model organisms. Nat. Rev. Genet. 9, 713–725 (2008).

    CAS  PubMed  Google Scholar 

  228. Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6, 72 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Alhaddad, H. et al. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds. PLoS ONE 8, e53537 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Wu, X.-R. Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall’s plaques. Urolithiasis 43, 65–76 (2015).

    CAS  PubMed  Google Scholar 

  231. Chen, T. T., Samson, P. C., Sorensen, M. D. & Bailey, M. R. Burst wave lithotripsy and acoustic manipulation of stones. Curr. Opin. Urol. 30, 149–156 (2020).

    PubMed  Google Scholar 

  232. Childs, M. A. et al. Pathogenesis of bladder calculi in the presence of urinary stasis. J. Urol. 189, 1347–1351 (2013).

    PubMed  Google Scholar 

  233. Borges, N. C., Pereira-Sampaio, M. A., Pereira, V. A., Abidu-Figueiredo, M. & Chagas, M. A. Effects of castration on penile extracellular matrix morphology in domestic cats. J. Feline Med. Surg. 19, 1261–1266 (2017).

    PubMed  Google Scholar 

  234. Atalan, G., Barr, F. J. & Holt, P. E. Frequency of urination and ultrasonographic estimation of residual urine in normal and dysuric dogs. Res. Vet. Sci. 67, 295–299 (1999).

    CAS  PubMed  Google Scholar 

  235. Thiel, C., Häußler, T. C., Kramer, M. & Tacke, S. [Urethrolithiasis in the dog — a retrospective evaluation of 83 male dogs]. Tierarztl. Prax. Ausg. K. Kleintiere Heimtiere 47, 394–401 (2019).

    PubMed  Google Scholar 

  236. Albrecht, R. A. et al. Moving forward: recent developments for the ferret biomedical research model. mBio 9, e01113–01118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Smith, C. R. et al. Pathophysiological and physicochemical basis of ammonium urate stone formation in dolphins. J. Urol. 192, 260–266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Okafor, C. C. et al. Risk factors associated with calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States. Prev. Vet. Med. 115, 217–228 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

Partial support for E.F. was provided by the Office of the Director, National Institutes of Health (NIH) under award number K01-OD019912.

Author information

Authors and Affiliations

Authors

Contributions

A.A., E.F., J.L. and M.B. researched data for the article and made substantial contributions to the discussion of content. A.A. and E.F. wrote the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ashley Alford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks M. Bultitude, S. Howles and H. Syme for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alford, A., Furrow, E., Borofsky, M. et al. Animal models of naturally occurring stone disease. Nat Rev Urol 17, 691–705 (2020). https://doi.org/10.1038/s41585-020-00387-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-00387-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing