Abstract
The prevalence of urolithiasis in humans is increasing worldwide; however, non-surgical treatment and prevention options remain limited despite decades of investigation. Most existing laboratory animal models for urolithiasis rely on highly artificial methods of stone induction and, as a result, might not be fully applicable to the study of natural stone initiation and growth. Animal models that naturally and spontaneously form uroliths are an underused resource in the study of human stone disease and offer many potential opportunities for improving insight into stone pathogenesis. These models include domestic dogs and cats, as well as a variety of other captive and wild species, such as otters, dolphins and ferrets, that form calcium oxalate, struvite, uric acid, cystine and other stone types. Improved collaboration between urologists, basic scientists and veterinarians is warranted to further our understanding of how stones form and to consider possible new preventive and therapeutic treatment options.
Key points
-
Common and rare human urolith types also occur naturally in companion and captive animal species, offering diverse opportunities for research.
-
Calcium oxalate uroliths are common in dogs, cats and Asian small-clawed otters; these models are uniquely suited for research on genetic risk factors, Randall’s plaques and dietary hyperoxaluria, respectively.
-
Infection-induced struvite uroliths are common in dogs, whereas sterile struvite uroliths occur frequently in cats and ferrets; these models could be used to investigate medical dissolution therapy.
-
Natural animal models of uric acid uroliths are best suited to the discovery of genetic modifiers (dogs), study of dietary hyperuricaemia (dolphins) and treatment (dogs, cats, dolphins).
-
Other human urolith types occurring in domestic animals include those that form secondary to rare hereditary disorders (cystine, xanthine and 2,8-dihydroxyadenine) or mineral and toxin ingestion (silica and melamine).
-
Companion animal models of urolithiasis are also useful for discovering environmental and lifestyle risk factors and for testing novel devices or therapeutics, which might simultaneously advance veterinary and human medicine.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sorokin, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017).
Scales, C. D. Jr., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).
Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).
Rule, A. D. et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 25, 2878–2886 (2014).
Khan, S. in Animal Models for the Study of Stone Disease (ed. Conn, P. M.) 483–498 (Academic, 2013).
Liu, J., Cao, Z., Zhang, Z., Zhou, S. & Ye, Z. A comparative study on several models of experimental renal calcium oxalate stones formation in rats. J. Huazhong Univ. Sci. Technol. Med. Sci 27, 83–87 (2007).
Evan, A. P. et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int. 68, 145–154 (2005).
Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).
Syme, H. M. Stones in cats and dogs: what can be learnt from them? Arab. J. Urol. 10, 230–239 (2012).
Robinson, M. R., Norris, R. D., Sur, R. L. & Preminger, G. M. Urolithiasis: not just a 2-legged animal disease. J. Urol. 179, 46–52 (2008).
O’Kell, A. L., Grant, D. C. & Khan, S. R. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis 45, 329–336 (2017).
Osborne, C. A., Lulich, J. P., Kruger, J. M., Ulrich, L. K. & Koehler, L. A. Analysis of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007: perspectives from the Minnesota Urolith Center. Vet. Clin. North Am. Small Anim. Pract. 39, 183–197 (2009).
Osborne, C. A. et al. Quantitative analysis of 4468 uroliths retrieved from farm animals, exotic species, and wildlife submitted to the Minnesota Urolith Center: 1981 to 2007. Vet. Clin. North Am. Small Anim. Pract. 39, 65–78 (2009).
Mandel, N. S., Mandel, I. C. & Kolbach-Mandel, A. M. Accurate stone analysis: the impact on disease diagnosis and treatment. Urolithiasis 45, 3–9 (2017).
Singh, P. et al. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 90, 1356–1365 (2015).
Taylor, E. N. & Curhan, G. C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 18, 2198–2204 (2007).
Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam era twin (VET) registry. Kidney Int. 67, 1053–1061 (2005).
Resnick, M., Pridgen, D. B. & Goodman, H. O. Genetic predisposition to formation of calcium oxalate renal calculi. N. Engl. J. Med. 278, 1313–1318 (1968).
Goldfarb, D. S., Avery, A. R., Beara-Lasic, L., Duncan, G. E. & Goldberg, J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int. Rep. 4, 535–540 (2019).
Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 8, 1568–1573 (1997).
Hemminki, K. et al. Familial risks in urolithiasis in the population of Sweden. BJU Int. 121, 479–485 (2018).
Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2015).
Braun, D. A. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 11, 664–672 (2016).
Daga, A. et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 93, 204–213 (2018).
Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).
Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones — role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).
Urabe, Y. et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible loci at 5q35.3, 7p14.3, and 13q14.1. PLoS Genet. 8, e1002541 (2012).
Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).
Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).
Tanikawa, C. et al. Novel risk loci identified in a genome-wide association study of urolithiasis in a Japanese population. J. Am. Soc. Nephrol. 30, 855–864 (2019).
Park, S. & Pearle, M. S. Pathophysiology and management of calcium stones. Urol. Clin. North Am. 34, 323–334 (2007).
Worcester, E. M. & Coe, F. L. New insights into the pathogenesis of idiopathic hypercalciuria. Semin. Nephrol. 28, 120–132 (2008).
Lieske, J. C., Turner, S. T., Edeh, S. N., Smith, J. A. & Kardia, S. L. Heritability of urinary traits that contribute to nephrolithiasis. Clin. J. Am. Soc. Nephrol. 9, 943–950 (2014).
Hunter, D. J. et al. Genetic contribution to renal function and electrolyte balance: a twin study. Clinical Sci. 103, 259–265 (2002).
Palsson, R., Indridason, O. S., Edvardsson, V. O. & Oddsson, A. Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis 47, 11–21 (2019).
Sayer, J. A. Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol. 28, 748 (2017).
Molin, A. et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J. Clin. Endocrinol. Metab. 100, E1343–1352 (2015).
Ketha, H. et al. Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS ONE 10, e0137350 (2015).
Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).
O’Seaghdha, C. M. et al. Meta-analysis of genome-wide association studies identifies six new loci for serum calcium concentrations. PLoS Genet. 9, e1003796 (2013).
Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 9, 260 (2018).
Rudman, D. et al. Hypocitraturia in calcium nephrolithiasis. J. Clin. Endocrinol. Metab. 55, 1052–1057 (1982).
Yagisawa, T., Chandhoke, P. S. & Fan, J. Metabolic risk factors in patients with first-time and recurrent stone formations as determined by comprehensive metabolic evaluation. Urology 52, 750–755 (1998).
Pak, C. Y., Poindexter, J. R., Adams-Huet, B. & Pearle, M. S. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am. J. Med. 115, 26–32 (2003).
Domrongkitchaiporn, S., Stitchantrakul, W. & Kochakarn, W. Causes of hypocitraturia in recurrent calcium stone formers: focusing on urinary potassium excretion. Am. J. Kidney Dis. 48, 546–554 (2006).
Nicar, M. J., Hill, K. & Pak, C. Y. Inhibition by citrate of spontaneous precipitation of calcium oxalate in vitro. J. Bone Min. Res. 2, 215–220 (1987).
Zuckerman, J. M. & Assimos, D. G. Hypocitraturia: pathophysiology and medical management. Rev. Urol. 11, 134–144 (2009).
Bhasin, B., Urekli, H. M. & Atta, M. G. Primary and secondary hyperoxaluria: understanding the enigma. World J. Nephrol. 4, 235–244 (2015).
Gee, H. Y. et al. Mutations in SLC26A1 cause nephrolithiasis. Am. J. Hum. Genet. 98, 1228–1234 (2016).
Holmes, R. P., Knight, J. & Assimos, D. G. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis 44, 27–32 (2016).
Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).
Hatch, M. Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Exp. Physiol. 99, 1163–1167 (2014).
Siener, R. et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 83, 1144–1149 (2013).
Stern, J. M. et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44, 399–407 (2016).
Miller, A. W., Choy, D., Penniston, K. L. & Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 96, 180–188 (2019).
Zampini, A., Nguyen, A. H., Rose, E., Monga, M. & Miller, A. W. Defining dysbiosis in patients with urolithiasis. Sci. Rep. 9, 5425 (2019).
Xie, J. et al. Profiling the urinary microbiome in men with calcium-based kidney stones. BMC Microbiol. 20, 41 (2020).
Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009–1027 (1937).
Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Ren. Physiol 315, F1236–F1242 (2018).
Williams, J. C. Jr. et al. Papillary ductal plugging is a mechanism for early stone retention in brushite stone disease. J. Urol. 199, 186–192 (2018).
Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).
Evan, A. P. et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 71, 795–801 (2007).
Ziemba, J. B. & Matlaga, B. R. Guideline of guidelines: kidney stones. BJU Int. 116, 184–189 (2015).
Khan, S. R. et al. Kidney stones. Nat. Rev. Dis. Primers 2, 16008 (2016).
Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).
Turk, C. et al. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur. Urol. 69, 468–474 (2016).
Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519–533 (2016).
Low, W. W., Uhl, J. M., Kass, P. H., Ruby, A. L. & Westropp, J. L. Evaluation of trends in urolith composition and characteristics of dogs with urolithiasis: 25,499 cases (1985–2006). J. Am. Vet. Med. Assoc. 236, 193–200 (2010).
Lekcharoensuk, C. et al. Patient and environmental factors associated with calcium oxalate urolithiasis in dogs. J. Am. Vet. Med. Assoc. 217, 515–519 (2000).
Lulich, J. P. et al. Epidemiology of canine calcium oxalate uroliths. Identifying risk factors. Vet. Clin. North Am. Small Anim. Pract. 29, 113–122 (1999).
Kennedy, S. M., Lulich, J. P., Ritt, M. G. & Furrow, E. Comparison of body condition score and urinalysis variables between dogs with and without calcium oxalate uroliths. J. Am. Vet. Med. Assoc. 249, 1274–1280 (2016).
Lekcharoensuk, C. et al. Associations between dry dietary factors and canine calcium oxalate uroliths. Am. J. Vet. Res. 63, 330–337 (2002).
Lekcharoensuk, C. et al. Associations between dietary factors in canned food and formation of calcium oxalate uroliths in dogs. Am. J. Vet. Res. 63, 163–169 (2002).
Lulich, J. P., Osborne, C. A., Lekcharoensuk, C., Kirk, C. A. & Allen, T. A. Effects of hydrochlorothiazide and diet in dogs with calcium oxalate urolithiasis. J. Am. Vet. Med. Assoc. 218, 1583–1586 (2001).
Dijcker, J. C., Kummeling, A., Hagen-Plantinga, E. A. & Hendriks, W. H. Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis. Vet. Rec. 171, 646 (2012).
Stevenson, A. E., Robertson, W. G. & Markwell, P. Risk factor analysis and relative supersaturation as tools for identifying calcium oxalate stone-forming dogs. J. Small Anim. Pract. 44, 491–496 (2003).
Furrow, E., Patterson, E. E., Armstrong, P. J., Osborne, C. A. & Lulich, J. P. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls. J. Vet. Intern. Med. 29, 113–119 (2015).
Lulich, J. P., Osborne, C. A., Nagode, L. A., Polzin, D. J. & Parke, M. L. Evaluation of urine and serum metabolites in Miniature Schnauzers with calcium oxalate urolithiasis. Am. J. Vet. Res. 52, 1583–1590 (1991).
Carr, S. V., Grant, D. C., DeMonaco, S. M. & Shepherd, M. Measurement of preprandial and postprandial urine calcium to creatinine ratios in male Miniature Schnauzers with and without urolithiasis. J. Vet. Intern. Med. 34, 754–760 (2020).
Luskin, A. C., Lulich, J. P., Gresch, S. C. & Furrow, E. Bone resorption in dogs with calcium oxalate urolithiasis and idiopathic hypercalciuria. Res. Vet. Sci. 123, 129–134 (2019).
Groth, E. M., Lulich, J. P., Chew, D. J., Parker, V. J. & Furrow, E. Vitamin D metabolism in dogs with and without hypercalciuric calcium oxalate urolithiasis. J. Vet. Intern. Med. 33, 758–763 (2019).
Carvalho, M., Lulich, J. P., Osborne, C. A. & Nakagawa, Y. Defective urinary crystallization inhibition and urinary stone formation. Int. Braz. J. Urol. 32, 342–348 (2006).
Danpure, C. J., Jennings, P. R. & Jansen, J. H. Enzymological characterization of a putative canine analogue of primary hyperoxaluria type 1. Biochim. Biophys. Acta 1096, 134–138 (1991).
Vidgren, G. et al. Primary hyperoxaluria in Coton de Tulear. Anim. Genet. 43, 356–361 (2012).
Stevenson, A. E., Blackburn, J. M., Markwell, P. J. & Robertson, W. G. Nutrient intake and urine composition in calcium oxalate stone-forming dogs: comparison with healthy dogs and impact of dietary modification. Vet. Ther. 5, 218–231 (2004).
Kruger, J. M., Osborne, C. A. & Lulich, J. P. Canine calcium phosphate uroliths. Etiopathogenesis, diagnosis, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 141–159 (1999).
Gnanandarajah, J. S., Abrahante, J. E., Lulich, J. P. & Murtaugh, M. P. Presence of Oxalobacter formigenes in the intestinal tract is associated with the absence of calcium oxalate urolith formation in dogs. Urol. Res. 40, 467–473 (2012).
Jansen, J. H. & Arnesen, K. Oxalate nephropathy in a Tibetan spaniel litter. A probable case of primary hyperoxaluria. J. Comp. Pathol. 103, 79–84 (1990).
Lulich, J. P. et al. ACVIM small animal consensus recommendations on the treatment and prevention of uroliths in dogs and cats. J. Vet. Intern. Med. 30, 1564–1574 (2016).
Stevenson, A. E., Hynds, W. K. & Markwell, P. J. The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs. Res. Vet. Sci. 75, 33–41 (2003).
Thumchai, R. et al. Epizootiologic evaluation of urolithiasis in cats: 3,498 cases (1982-1992). J. Am. Vet. Med. Assoc. 208, 547–551 (1996).
Lekcharoensuk, C. et al. Association between patient-related factors and risk of calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J. Am. Vet. Med. Assoc. 217, 520–525 (2000).
Osborne, C. A. et al. Feline urolithiasis. Etiology and pathophysiology. Vet. Clin. North Am. Small Anim. Pract. 26, 217–232 (1996).
Kyles, A. E. et al. Clinical, clinicopathologic, radiographic, and ultrasonographic abnormalities in cats with ureteral calculi: 163 cases (1984–2002). J. Am. Vet. Med. Assoc. 226, 932–936 (2005).
Nesser, V. E., Reetz, J. A., Clarke, D. L. & Aronson, L. R. Radiographic distribution of ureteral stones in 78 cats. Vet. Surg. 47, 895–901 (2018).
Cleroux, A., Alexander, K., Beauchamp, G. & Dunn, M. Evaluation for association between urolithiasis and chronic kidney disease in cats. J. Am. Vet. Med. Assoc. 250, 770–774 (2017).
Brown, C. A., Elliott, J., Schmiedt, C. W. & Brown, S. A. Chronic kidney disease in aged cats: clinical features, morphology, and proposed pathogeneses. Vet. Pathol. 53, 309–326 (2016).
Cannon, A. B., Westropp, J. L., Ruby, A. L. & Kass, P. H. Evaluation of trends in urolith composition in cats: 5,230 cases (1985–2004). J. Am. Vet. Med. Assoc. 231, 570–576 (2007).
Lulich, J. P., Osborne, C. A., Lekcharoensuk, C., Kirk, C. A. & Bartges, J. W. Effects of diet on urine composition of cats with calcium oxalate urolithiasis. J. Am. Anim. Hosp. Assoc. 40, 185–191 (2004).
Ross, S. J. et al. Canine and feline nephrolithiasis. Epidemiology, detection, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 231–250 (1999).
Midkiff, A. M., Chew, D. J., Randolph, J. F., Center, S. A. & DiBartola, S. P. Idiopathic hypercalcemia in cats. J. Vet. Intern. Med. 14, 619–626 (2000).
Coady, M., Fletcher, D. J. & Goggs, R. Severity of ionized hypercalcemia and hypocalcemia is associated with etiology in dogs and cats. Front. Vet. Sci. 6, 276 (2019).
McKerrell, R. E. et al. Primary hyperoxaluria (L-glyceric aciduria) in the cat: a newly recognised inherited disease. Vet. Rec. 125, 31–34 (1989).
Gershoff, S. N., Faragalla, F. F., Nelson, D. A. & Andrus, S. B. Vitamin B6 deficiency and oxalate nephrocalcinosis in the cat. Am. J. Med. 27, 72–80 (1959).
Ross, S. J., Osborne, C. A., Lekcharoensuk, C., Koehler, L. A. & Polzin, D. J. A case-control study of the effects of nephrolithiasis in cats with chronic kidney disease. J. Am. Vet. Med. Assoc. 230, 1854–1859 (2007).
Chakrabarti, S., Syme, H. M., Brown, C. A. & Elliott, J. Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction. Vet. Pathol. 50, 147–155 (2013).
Heiene, R. et al. Chronic kidney disease with three cases of oxalate-like nephrosis in Ragdoll cats. J. Feline Med. Surg. 11, 474–480 (2009).
Lulich, J. in American College of Veterinary Internal Medicine Forum (ACVIM, 2016).
Lekcharoensuk, C. et al. Association between dietary factors and calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J. Am. Vet. Med. Assoc. 219, 1228–1237 (2001).
Calle, P. P. Asian small-clawed otter (Aonyx cinerea) urolithiasis prevalence in North America. Zoo Biol. 7, 233–242 (1988).
Yoong, Y. T., Fujita, K., Galway, A., Liu, M. H. & Cabana, F. Urolith prevalence and risk factors in Asian small-clawed otters (Aonyx cinereus). J. Zoo Wildl. Med. 49, 863–869 (2018).
Sivasothi, N. & Nor, B. H. M. A review of otters (Carnivora: Mustelidae: Lutrinae) in Malaysia and Singapore. Hydrobiologia 285, 151–170 (1994).
Petrini, K. R., Lulich, J. P., Treschel, L. & Nachreiner, R. F. Evaluation of urinary and serum metabolites in Asian small-clawed otters (Aonyx cinerea) with calcium oxalate urolithiasis. J. Zoo Wildl. Med. 30, 54–63 (1999).
Sutton, R. A. & Walker, V. R. Enteric and mild hyperoxaluria. Miner. Electrolyte Metab. 20, 352–360 (1994).
Sabater Gonzalez, M., Osterwind, M. & Fernandez Colome, J. Management of nephrolithiasis by pyelotomy and pyeloscopy in an Asian small-clawed otter (Aonyx cinereus). J. Am. Vet. Med. Assoc. 255, 1057–1063 (2019).
Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones — pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333 (2014).
Koga, S., Arakaki, Y., Matsuoka, M. & Ohyama, C. Staghorn calculi — long-term results of management. Br. J. Urol. 68, 122–124 (1991).
Bichler, K. H. et al. Urinary infection stones. Int. J. Antimicrob. Agents 19, 488–498 (2002).
Espinosa-Ortiz, E. J., Eisner, B. H., Lange, D. & Gerlach, R. Current insights into the mechanisms and management of infection stones. Nat. Rev. Urol. 16, 35–53 (2019).
Cook, A. R. The elimination of urease activity in Streptococcus faecium as evidence for plasmid-coded urease. J. Gen. Microbiol. 92, 49–58 (1976).
Collins, C. M. & Falkow, S. Genetic analysis of Escherichia coli urease genes: evidence for two distinct loci. J. Bacteriol. 172, 7138–7144 (1990).
Margel, D. et al. Clinical implication of routine stone culture in percutaneous nephrolithotomy — a prospective study. Urology 67, 26–29 (2006).
Flannigan, R. K. et al. Evaluating factors that dictate struvite stone composition: a multi-institutional clinical experience from the EDGE research consortium. Can. Urol. Assoc. J. 12, 131–136 (2018).
Cicerello, E., Mangano, M., Cova, G. D., Merlo, F. & Maccatrozzo, L. Metabolic evaluation in patients with infected nephrolithiasis: is it necessary? Arch. Ital. Urol. Androl. 88, 208–211 (2016).
Jaeger, C. D. et al. Endoscopic and pathologic characterization of papillary architecture in struvite stone formers. Urology 90, 39–44 (2016).
Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological society guideline, Part I. J. Urol. 196, 1153–1160 (2016).
Morgan, T. N. et al. Conservative management of Staghorn calculi: when is it safe? J. Endourol. 32, 541–545 (2018).
Griffith, D. P. et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol. 20, 243–247 (1991).
Okafor, C. C. et al. Risk factors associated with struvite urolithiasis in dogs evaluated at general care veterinary hospitals in the United States. J. Am. Vet. Med. Assoc. 243, 1737–1745 (2013).
Osborne, C. A. et al. Medical dissolution and prevention of canine struvite urolithiasis. Twenty years of experience. Vet. Clin. North Am. Small Anim. Pract. 29, 73–111 (1999).
Bartges, J. W. Recurrent sterile struvite urocystolithiasis in three related English Cocker Spaniels. J. Am. Anim. Hosp. Assoc. 28, 459–469 (1992).
Stiller, A. T., Lulich, J. P. & Furrow, E. Urethral plugs in dogs. J. Vet. Intern. Med. 28, 324–330 (2014).
Palma, D., Langston, C., Gisselman, K. & McCue, J. Canine struvite urolithiasis. Compend. Contin. Educ. Vet. 35, E1 (2013).
Dear, J. D. et al. Evaluation of a dry therapeutic urinary diet and concurrent administration of antimicrobials for struvite cystolith dissolution in dogs. BMC Vet. Res. 15, 273 (2019).
Krawiec, D. R., Osborne, C. A., Leininger, J. R. & Griffith, D. P. Effect of acetohydroxamic acid on dissolution of canine struvite uroliths. Am. J. Vet. Res. 45, 1266–1275 (1984).
Fowler, J. E. Bacteriology of branched renal calculi and accompanying urinary tract infection. J. Urol. 131, 213–215 (1984).
Tarttelin, M. F. Feline struvite urolithiasis: factors affecting urine pH may be more important than magnesium levels in food. Vet. Rec. 121, 227–230 (1987).
Osborne, C. A. et al. Medical dissolution of feline struvite urocystoliths. J. Am. Vet. Med. Assoc. 196, 1053–1063 (1990).
Torres-Henderson, C., Bunkers, J., Contreras, E. T., Cross, E. & Lappin, M. R. Use of purina pro plan veterinary diet UR urinary St/Ox to dissolve struvite cystoliths. Top. Companion Anim. Med. 32, 49–54 (2017).
Lulich, J. P. et al. Efficacy of two commercially available, low-magnesium, urine-acidifying dry foods for the dissolution of struvite uroliths in cats. J. Am. Vet. Med. Assoc. 243, 1147–1153 (2013).
Nguyen, H. T., Moreland, A. F. & Shields, R. P. Urolithiasis in ferrets (Mustela putorius). Lab. Anim. Sci. 29, 243–245 (1979).
Nwaokorie, E. E., Osborne, C. A., Lulich, J. P., Albasan, H. & Lekcharoensuk, C. Epidemiology of struvite uroliths in ferrets: 272 cases (1981–2007). J. Am. Vet. Med. Assoc. 239, 1319–1324 (2011).
Trinchieri, A. & Montanari, E. Prevalence of renal uric acid stones in the adult. Urolithiasis 45, 553–562 (2017).
Sakhaee, K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J. Nephrol. 27, 241–245 (2014).
Pak, C. Y. et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology 61, 523–527 (2003).
Soble, J. J., Hamilton, B. D. & Streem, S. B. Ammonium acid urate calculi: a reevaluation of risk factors. J. Urol. 161, 869–873 (1999).
Pichette, V. et al. Ammonium acid urate crystal formation in adult North American stone-formers. Am. J. Kidney Dis. 30, 237–242 (1997).
Lomas, D. J., Jaeger, C. D. & Krambeck, A. E. Profile of the ammonium acid urate stone former based on a large contemporary cohort. Urology 102, 43–47 (2017).
Klohn, M. et al. Ammonium urate urinary stones. Urol. Res. 14, 315–318 (1986).
Hodgkinson, A. Composition of urinary tract Calculi from some developing countries. Urol. Int. 34, 26–35 (1979).
Maalouf, N. M., Cameron, M. A., Moe, O. W. & Sakhaee, K. Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 5, 1277–1281 (2010).
Abou-Elela, A. Epidemiology, pathophysiology, and management of uric acid urolithiasis: a narrative review. J. Adv. Res. 8, 513–527 (2017).
Ichida, K. et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15, 164–173 (2004).
Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).
York, N. E., Borofsky, M. S. & Lingeman, J. E. Risks associated with drug treatments for kidney stones. Expert Opin. Drug Saf. 14, 1865–1877 (2015).
Bartges, J. W. et al. Canine urate urolithiasis. Etiopathogenesis, diagnosis, and management. Vet. Clin. North Am. Small Anim. Pract. 29, 161–191 (1999).
Folin, O., Berglund, H. & Derick, C. The uric acid problem: an experimental study on animals and man, including gouty subjects. J. Biol. Chem. 60, 361–471 (1924).
Bannasch, D. et al. Mutations in the SLC2A9 gene cause hyperuricosuria and hyperuricemia in the dog. PLoS Genet. 4, e1000246 (2008).
Donner, J. et al. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet. 14, e1007361 (2018).
Roch-Ramel, F., Wong, N. L. & Dirks, J. H. Renal excretion of urate in mongrel and Dalmatian dogs: a micropuncture study. Am. J. Physiol. 231, 326–331 (1976).
Bannasch, D. & Henthorn, P. S. Changing paradigms in diagnosis of inherited defects associated with urolithiasis. Vet. Clin. North Am. Small Anim. Pract. 39, 111–125 (2009).
Moulin, B., Vinay, P., Duong, N., Gougoux, A. & Lemieux, G. Net urate reabsorption in the Dalmatian coach hound with a note on automated measurement of urate in species with low plasma urate. Can. J. Physiol. Pharmacol. 60, 1499–1504 (1982).
Albasan, H., Lulich, J. P., Osborne, C. A. & Lekcharoensuk, C. Evaluation of the association between sex and risk of forming urate uroliths in Dalmatians. J. Am. Vet. Med. Assoc. 227, 565–569 (2005).
Bannasch, D. L., Ling, G. V., Bea, J. & Famula, T. R. Inheritance of urinary calculi in the Dalmatian. J. Vet. Intern. Med. 18, 483–487 (2004).
Westropp, J. L. et al. Evaluation of dogs with genetic hyperuricosuria and urate urolithiasis consuming a purine restricted diet: a pilot study. BMC Vet. Res. 13, 45 (2017).
Albasan, H., Osborne, C. A., Lulich, J. P. & Lekcharoensuk, C. Risk factors for urate uroliths in cats. J. Am. Vet. Med. Assoc. 240, 842–847 (2012).
Dear, J. D., Shiraki, R., Ruby, A. L. & Westropp, J. L. Feline urate urolithiasis: a retrospective study of 159 cases. J. Feline Med. Surg. 13, 725–732 (2011).
Venn-Watson, S. K. et al. Hypocitraturia in common bottlenose dolphins (Tursiops truncatus): assessing a potential risk factor for urate nephrolithiasis. Comp. Med. 60, 149–153 (2010).
Venn-Watson, S., Smith, C. R., Johnson, S., Daniels, R. & Townsend, F. Clinical relevance of urate nephrolithiasis in bottlenose dolphins Tursiops truncatus. Dis. Aquat. Org. 89, 167–177 (2010).
Le-Bert, C. R. et al. Comparison of potential dietary and urinary risk factors for ammonium urate nephrolithiasis in two bottlenose dolphin (Tursiops truncatus) populations. Am. J. Physiol. Ren. Physiol. 315, F231–F237 (2018).
Wells, R. S. et al. Evaluation of potential protective factors against metabolic syndrome in bottlenose dolphins: feeding and activity patterns of dolphins in sarasota bay, Florida. Front. Endocrinol. 4, 139 (2013).
Venn-Watson, S. et al. Blood-based indicators of insulin resistance and metabolic syndrome in bottlenose dolphins (Tursiops truncatus). Front. Endocrinol. 4, 136 (2013).
Smith, C. R. et al. Comparison of nephrolithiasis prevalence in two bottlenose dolphin (Tursiops truncatus) populations. Front. Endocrinol. 4, 145 (2013).
Ardente, A. J. et al. A targeted metabolomics assay to measure eight purines in the diet of common bottlenose dolphins, tursiops truncatus. J. Chromatogr. Sep. Tech. 7, 334 (2016).
Schmitt, T. L. & Sur, R. L. Treatment of ureteral calculus obstruction with laser lithotripsy in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 43, 101–109 (2012).
Sahota, A., Tischfield, J. A., Goldfarb, D. S., Ward, M. D. & Hu, L. Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis 47, 57–66 (2019).
Martell, H. J. et al. Associating mutations causing cystinuria with disease severity with the aim of providing precision medicine. BMC Genomics 18, 550 (2017).
Goldstein, B. & Goldfarb, D. S. Early recognition and management of rare kidney stone disorders. Urol. Nurs. 37, 81–102 (2017).
Dello Strologo, L. et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J. Am. Soc. Nephrol. 13, 2547–2553 (2002).
Usawachintachit, M. et al. Clinical outcomes for cystinuria patients with unilateral versus bilateral cystine stone disease. J. Endourol. 32, 148–153 (2018).
Pareek, G., Steele, T. H. & Nakada, S. Y. Urological intervention in patients with cystinuria is decreased with medical compliance. J. Urol. 174, 2250–2252 (2005).
Kum, F., Wong, K., Game, D., Bultitude, M. & Thomas, K. Hypertension and renal impairment in patients with cystinuria: findings from a specialist cystinuria centre. Urolithiasis 47, 357–363 (2019).
Osborne, C. A. et al. Canine cystine urolithiasis. Cause, detection, treatment, and prevention. Vet. Clin. North Am. Small Anim. Pract. 29, 193–211 (1999).
Roe, K., Pratt, A., Lulich, J., Osborne, C. & Syme, H. M. Analysis of 14,008 uroliths from dogs in the UK over a 10-year period. J. Small Anim. Pract. 53, 634–640 (2012).
Brons, A. K. et al. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system. J. Vet. Intern. Med. 27, 1400–1408 (2013).
Florey, J., Ewen, V. & Syme, H. Association between cystine urolithiasis and neuter status of dogs within the UK. J. Small Anim. Pract. 58, 531–535 (2017).
Hesse, A., Hoffmann, J., Orzekowsky, H. & Neiger, R. Canine cystine urolithiasis: a review of 1760 submissions over 35 years (1979–2013). Can. Vet. J. 57, 277–281 (2016).
Lulich, J. P. et al. Recent shifts in the global proportions of canine uroliths. Vet. Rec. 172, 363 (2013).
Hoppe, A. & Denneberg, T. Cystinuria in the dog: clinical studies during 14 years of medical treatment. J. Vet. Intern. Med. 15, 361–367 (2001).
Mizukami, K., Raj, K., Osborne, C. & Giger, U. Cystinuria associated with different SLC7A9 gene variants in the cat. PLoS ONE 11, e0159247 (2016).
Hilton, S., Mizukami, K. & Giger, U. Cystinuria caused by a SLC7A9 missense mutation in Siamese-crossbred littermates in Germany. Tierarztl. Prax. Ausg. K. Kleintiere Heimtiere 45, 265–272 (2017).
Gustafson, K. D. et al. Founder events, isolation, and inbreeding: intercontinental genetic structure of the domestic ferret. Evolut. Appl. 11, 694–704 (2018).
Nwaokorie, E. E., Osborne, C. A., Lulich, J. P. & Albasan, H. Epidemiological evaluation of cystine urolithiasis in domestic ferrets (Mustela putorius furo): 70 cases (1992–2009). J. Am. Vet. Med. Assoc. 242, 1099–1103 (2013).
Johnson-Delaney, C. A. Ferret nutrition. Vet. Clin. North Am. Exotic Anim. Pract. 17, 449–470 (2014).
Ichida, K., Amaya, Y., Okamoto, K. & Nishino, T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int. J. Mol. Sci. 13, 15475–15495 (2012).
Sebesta, I., Stiburkova, B. & Krijt, J. Hereditary xanthinuria is not so rare disorder of purine metabolism. Nucleosides Nucleotides Nucleic Acids 37, 324–328 (2018).
Yakubov, R., Nir, V., Kassem, E. & Klein-Kremer, A. [Asymptomatic classical hereditary xanthinuria type 1]. Harefuah 151, 330–331, 380 (2012).
Sighinolfi, M. C. et al. Drug-induced urolithiasis in pediatric patients. Pediatr. Drugs 21, 323–344 (2019).
Seegmiller, J. E. Xanthine stone formation. Am. J. Med. 45, 780–783 (1968).
Tate, N. M. et al. P6030 Three diverse mutations underlying canine xanthine urolithiasis. J. Anim. Sci. 94, 163–163 (2016).
Delbarre, F., Holtzer, A. & Auscher, C. [Xanthine urinary lithiasis and xanthinuria in a dachshund. Deficiency, probably genetic, of the xanthine oxidase system]. C. R. Acad. Hebd. Seances. Acad. Sci. D 269, 1449–1452 (1969).
van Zuilen, C. D., Nickel, R. F., van Dijk, T. H. & Reijngoud, D. J. Xanthinuria in a family of Cavalier King Charles spaniels. Vet. Q. 19, 172–174 (1997).
Kucera, J., Bulkova, T., Rychla, R. & Jahn, P. Bilateral xanthine nephrolithiasis in a dog. J. Small Anim. Pract. 38, 302–305 (1997).
Flegel, T., Freistadt, R. & Haider, W. Xanthine urolithiasis in a dachshund. Vet. Rec. 143, 420 (1998).
Gow, A. G., Fairbanks, L. D., Simpson, J. W., Jacinto, A. M. & Ridyard, A. E. Xanthine urolithiasis in a Cavalier King Charles spaniel. Vet. Rec. 169, 209 (2011).
White, R. N., Tick, N. T. & White, H. L. Naturally occurring xanthine urolithiasis in a domestic shorthair cat. J. Small Anim. Pract. 38, 299–301 (1997).
Tsuchida, S., Kagi, A., Koyama, H. & Tagawa, M. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase. J. Feline Med. Surg. 9, 503–508 (2007).
Furman, E. et al. Hereditary xanthinuria and urolithiasis in a domestic shorthair cat. Comp. Clin. Path 24, 1325–1329 (2015).
Mestrinho, L. A., Goncalves, T., Parreira, P. B., Niza, M. M. & Hamaide, A. J. Xanthine urolithiasis causing bilateral ureteral obstruction in a 10-month-old cat. J. Feline Med. Surg. 15, 911–916 (2013).
Bollee, G. et al. Adenine phosphoribosyltransferase deficiency. Clin. J. Am. Soc. Nephrol. 7, 1521–1527 (2012).
Kamatani, N., Terai, C., Kuroshima, S., Nishioka, K. & Mikanagi, K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum. Genet. 75, 163–168 (1987).
Furrow, E., Pfeifer, R. J., Osborne, C. A. & Lulich, J. P. An APRT mutation is strongly associated with and likely causative for 2,8-dihydroxyadenine urolithiasis in dogs. Mol. Genet. Metab. 111, 399–403 (2014).
Haddad, F. S. & Kouyoumdjian, A. Silica stones in humans. Urol. Int. 41, 70–76 (1986).
Lee, M. H., Lee, Y. H., Hsu, T. H., Chen, M. T. & Chang, L. S. Silica stone — development due to long time oral trisilicate intake. Scand. J. Urol. Nephrol. 27, 267–269 (1993).
Nishizono, T. et al. Renal silica calculi in an infant. Int. J. Urol. 11, 119–121 (2004).
Flythe, J. E., Rueda, J. F., Riscoe, M. K. & Watnick, S. Silicate nephrolithiasis after ingestion of supplements containing silica dioxide. Am. J. Kidney Dis. 54, 127–130 (2009).
Osborne, C. A. et al. Canine silica urolithiasis: risk factors, detection, treatment, and prevention. Vet. Clin. North Am. Small Anim. Pract. 29, 213–230 (1999).
Legendre, A. M. Silica urolithiasis in a dog. J. Am. Vet. Med. Assoc. 168, 418–419 (1976).
Guan, X. & Deng, Y. Melamine-associated urinary stone. Int. J. Surg. 36, 613–617 (2016).
Zheng, X. et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 5, 172ra122 (2013).
Dalal, R. P. & Goldfarb, D. S. Melamine-related kidney stones and renal toxicity. Nat. Rev. Nephrol. 7, 267–274 (2011).
Lu, X. et al. Gender and urinary pH affect melamine-associated kidney stone formation risk. Urol. Ann. 3, 71–74 (2011).
Osborne, C. A. et al. Melamine and cyanuric acid-induced crystalluria, uroliths, and nephrotoxicity in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 39, 1–14 (2009).
Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).
Tsai, K. L., Clark, L. A. & Murphy, K. E. Understanding hereditary diseases using the dog and human as companion model systems. Mamm. Genome 18, 444–451 (2007).
Ostrander, E. A. & Franklin, H. Epstein lecture. Both ends of the leash — the human links to good dogs with bad genes. N. Engl. J. Med. 367, 636–646 (2012).
Karlsson, E. K. & Lindblad-Toh, K. Leader of the pack: gene mapping in dogs and other model organisms. Nat. Rev. Genet. 9, 713–725 (2008).
Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6, 72 (2018).
Alhaddad, H. et al. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds. PLoS ONE 8, e53537 (2013).
Wu, X.-R. Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall’s plaques. Urolithiasis 43, 65–76 (2015).
Chen, T. T., Samson, P. C., Sorensen, M. D. & Bailey, M. R. Burst wave lithotripsy and acoustic manipulation of stones. Curr. Opin. Urol. 30, 149–156 (2020).
Childs, M. A. et al. Pathogenesis of bladder calculi in the presence of urinary stasis. J. Urol. 189, 1347–1351 (2013).
Borges, N. C., Pereira-Sampaio, M. A., Pereira, V. A., Abidu-Figueiredo, M. & Chagas, M. A. Effects of castration on penile extracellular matrix morphology in domestic cats. J. Feline Med. Surg. 19, 1261–1266 (2017).
Atalan, G., Barr, F. J. & Holt, P. E. Frequency of urination and ultrasonographic estimation of residual urine in normal and dysuric dogs. Res. Vet. Sci. 67, 295–299 (1999).
Thiel, C., Häußler, T. C., Kramer, M. & Tacke, S. [Urethrolithiasis in the dog — a retrospective evaluation of 83 male dogs]. Tierarztl. Prax. Ausg. K. Kleintiere Heimtiere 47, 394–401 (2019).
Albrecht, R. A. et al. Moving forward: recent developments for the ferret biomedical research model. mBio 9, e01113–01118 (2018).
Smith, C. R. et al. Pathophysiological and physicochemical basis of ammonium urate stone formation in dolphins. J. Urol. 192, 260–266 (2014).
Okafor, C. C. et al. Risk factors associated with calcium oxalate urolithiasis in dogs evaluated at general care veterinary hospitals in the United States. Prev. Vet. Med. 115, 217–228 (2014).
Acknowledgements
Partial support for E.F. was provided by the Office of the Director, National Institutes of Health (NIH) under award number K01-OD019912.
Author information
Authors and Affiliations
Contributions
A.A., E.F., J.L. and M.B. researched data for the article and made substantial contributions to the discussion of content. A.A. and E.F. wrote the manuscript. All authors reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Urology thanks M. Bultitude, S. Howles and H. Syme for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alford, A., Furrow, E., Borofsky, M. et al. Animal models of naturally occurring stone disease. Nat Rev Urol 17, 691–705 (2020). https://doi.org/10.1038/s41585-020-00387-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41585-020-00387-4
This article is cited by
-
The impact of urine collection method on canine urinary microbiota detection: a cross-sectional study
BMC Microbiology (2023)
-
Nephroprotective effect of PHYMIN-22 on ethylene glycol induced urolithiasis rat model
Urolithiasis (2023)
-
Consumption of soft drinks rich in phosphoric acid versus struvite crystallization from artificial urine
Scientific Reports (2022)
-
Mechanisms of the intestinal and urinary microbiome in kidney stone disease
Nature Reviews Urology (2022)
-
Drosophila melanogaster: a simple genetic model of kidney structure, function and disease
Nature Reviews Nephrology (2022)