Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targetable gene fusions and aberrations in genitourinary oncology

Abstract

Gene fusions result from either structural chromosomal rearrangement or aberrations caused by splicing or transcriptional readthrough. The precise and distinctive presence of fusion genes in neoplastic tissues and their involvement in multiple pathways central to cancer development, growth and survival make them promising targets for personalized therapy. In genitourinary malignancies, rearrangements involving the E26 transformation-specific family of transcription factors have emerged as very frequent alterations in prostate cancer, especially the TMPRSS2ERG fusion. In renal malignancies, Xp11 and t(6;11) translocations are hallmarks of a distinct pathological group of tumours described as microphthalmia-associated transcription factor family translocation-associated renal cell carcinomas. Novel druggable fusion events have been recognized in genitourinary malignancies, leading to the activation of several clinical trials. For instance, ALK-rearranged renal cell carcinomas have shown responses to alectinib and crizotinib. Erdafitinib has been tested for the treatment of FGFR-rearranged bladder cancer. Other anti-fibroblast growth factor receptor 3 (FGFR3) compounds are showing promising results in the treatment of bladder cancer, including infigratinib and pemigatinib, and all are currently in clinical trials.

Key points

  • Gene fusions and rearrangements represent potentially targetable alterations in several different malignancies, including genitourinary tumours.

  • TMPRSS2ERG fusion is present in 40–50% of prostate cancers and has a critical role in tumorigenesis and progression by disrupting the androgen receptor differentiation of prostate cells.

  • FGFR3TACC fusion in urothelial carcinoma has proven to be an effective target of anti-fibroblast growth factor receptor (FGFR) compounds, such as erdafitinib, in phase II clinical trials.

  • Xp11 and t(6;11) translocations and their related fusion events represent the hallmark aberrations of the microphthalmia-associated transcription factor family translocated renal cell carcinomas.

  • Application of standardized and easy-to-use classification frameworks (such as ESMO Scale for Clinical Actionability (ESCAT) and OncoKB) to the multitude of gene fusions identifiable by next-generation sequencing is necessary to foster the translation of gene fusion research into effective clinical practice.

  • Results from site-agnostic, biomarker-guided trials including strong translational investigations would help move forwards our understanding of the pathobiology and druggability of rare, low-prevalence gene fusions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the different mechanisms of gene fusions.
Fig. 2: Overview of protumoural mechanisms of gene fusions.
Fig. 3: Main gene fusions identified in prostate, kidney and bladder cancer.
Fig. 4: Example of fusion-targeted therapy in bladder cancer.

Similar content being viewed by others

References

  1. Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381 (2015).

    CAS  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    CAS  Google Scholar 

  3. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2017).

    CAS  Google Scholar 

  4. Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).

    CAS  Google Scholar 

  5. Teles Alves, I. et al. Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line. Hum. Genet. 132, 709–713 (2013).

    CAS  Google Scholar 

  6. Nakanishi, Y. et al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Mol. Cancer Ther. 14, 704–712 (2015).

    CAS  Google Scholar 

  7. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  Google Scholar 

  8. Williams, S. V., Hurst, C. D. & Knowles, M. A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 22, 795–803 (2013).

    CAS  Google Scholar 

  9. Hood, F. E. & Royle, S. J. Pulling it together: the mitotic function of TACC3. Bioarchitecture 1, 105–109 (2011).

    Google Scholar 

  10. Schneider, L. et al. The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J. Biol. Chem. 282, 29273–29283 (2007).

    CAS  Google Scholar 

  11. Parker, B. C. et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest. 123, 855–865 (2013).

    CAS  Google Scholar 

  12. Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 16, 793–798 (2010).

    CAS  Google Scholar 

  13. Zhang, Y. et al. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov. 2, 598–607 (2012).

    CAS  Google Scholar 

  14. Abeshouse, A. et al. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    CAS  Google Scholar 

  15. Tomlins, S. A. et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur. Urol. 56, 275–286 (2009).

    CAS  Google Scholar 

  16. Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    CAS  Google Scholar 

  17. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    CAS  Google Scholar 

  18. Feng, F. Y., Brenner, J. C., Hussain, M. & Chinnaiyan, A. M. Molecular pathways: targeting ETS gene fusions in cancer. Clin. Cancer Res. 20, 4442–4448 (2014).

    CAS  Google Scholar 

  19. Zong, Y. et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl Acad. Sci. USA 106, 12465–12470 (2009).

    CAS  Google Scholar 

  20. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    CAS  Google Scholar 

  21. Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).

    CAS  Google Scholar 

  22. Arora, R. et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 100, 2362–2366 (2004).

    Google Scholar 

  23. Brastianos, H. C. et al. Determining the impact of spatial heterogeneity on genomic prognostic biomarkers for localized prostate cancer. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.06.005 (2020).

    Article  Google Scholar 

  24. Fontugne, J. et al. Clonal evaluation of prostate cancer foci in biopsies with discontinuous tumor involvement by dual ERG/SPINK1 immunohistochemistry. Mod. Pathol. 29, 157–165 (2016).

    CAS  Google Scholar 

  25. Mehra, R. et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 68, 3584–3590 (2008).

    CAS  Google Scholar 

  26. Helgeson, B. E. et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68, 73–80 (2008).

    CAS  Google Scholar 

  27. Han, B. et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 68, 7629–7637 (2008).

    CAS  Google Scholar 

  28. Luo, J.-H. et al. Discovery and classification of fusion transcripts in prostate cancer and normal prostate tissue. Am. J. Pathol. 185, 1834–1845 (2015).

    CAS  Google Scholar 

  29. Tomlins, S. A. et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66, 3396–3400 (2006).

    CAS  Google Scholar 

  30. Boormans, J. L. et al. Expression of the androgen-regulated fusion gene TMPRSS2-ERG does not predict response to endocrine treatment in hormone-naïve, node-positive prostate cancer. Eur. Urol. 57, 830–835 (2010).

    CAS  Google Scholar 

  31. Karnes, R. J. et al. The ability of biomarkers to predict systemic progression in men with high-risk prostate cancer treated surgically is dependent on ERG status. Cancer Res. 70, 8994–9002 (2010).

    CAS  Google Scholar 

  32. Leinonen, K. A. et al. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin. Cancer Res. 16, 2845–2851 (2010).

    CAS  Google Scholar 

  33. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    CAS  Google Scholar 

  34. Danila, D. C. et al. TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur. Urol. 60, 897–904 (2011).

    CAS  Google Scholar 

  35. Pilié, P. G., Tang, C., Mills, G. B. & Yap, T. A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Google Scholar 

  36. Tripathi, A., McFarland, T. & Agarwal, N. PARP inhibitors in prostate cancer: a promise delivered. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.08.006 (2020).

  37. Brenner, J. C. et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19, 664–678 (2011).

    CAS  Google Scholar 

  38. Brenner, J. C. et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 72, 1608–1613 (2012).

    CAS  Google Scholar 

  39. Antonarakis, E. S., Gomella, L. G. & Petrylak, D. P. When and how to use PARP inhibitors in prostate cancer: a systematic review of the literature with an update on on-going trials. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.07.005 (2020).

  40. Hussain, M. et al. Abiraterone + prednisone (Abi) +/- veliparib (Vel) for patients (pts) with metastatic castration-resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 5001 (2017).

    Google Scholar 

  41. Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14, 882–892 (2013).

    CAS  Google Scholar 

  42. Conteduca, V. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann. Oncol. 28, 1508–1516 (2017).

    CAS  Google Scholar 

  43. Alshalalfa, M. et al. Transcriptomic and clinical characterization of neuropeptide Y expression in localized and metastatic prostate cancer: identification of novel prostate cancer subtype with clinical implications. Eur. Urol. Oncol. 2, 405–412 (2019).

    Google Scholar 

  44. Shinde, D. et al. Transcriptional reprogramming and inhibition of tumor-propagating stem-like cells by EC-8042 in ERG-positive prostate cancer. Eur. Urol. Oncol. 2, 415–424 (2019).

    Google Scholar 

  45. Ross, J. S. et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 138, 881–890 (2016).

    CAS  Google Scholar 

  46. Beltran, H. et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013).

    CAS  Google Scholar 

  47. Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269–273 (2011).

    CAS  Google Scholar 

  48. Annala, M. et al. Recurrent SKIL-activating rearrangements in ETS-negative prostate cancer. Oncotarget 6, 6235–6250 (2015).

    Google Scholar 

  49. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  Google Scholar 

  50. Hakenberg, O. W. et al. Penile Cancer. in EAU Guidelines. Edn presented at the EAU Annual Congress Copenhagen 2018 (EAU Guidelines Office, 2018).

  51. Aydin, A. M. et al. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat. Rev. Urol. https://doi.org/10.1038/s41585-020-0359-z (2020).

    Article  Google Scholar 

  52. Barocas, D. A. & Chang, S. S. Penile cancer: clinical presentation, diagnosis, and staging. Urol. Clin. North Am. 37, 343–352 (2010).

    Google Scholar 

  53. Couturier, J., Sastre-Garau, X., Schneider-Maunoury, S., Labib, A. & Orth, G. Integration of papillomavirus DNA near myc genes in genital carcinomas and its consequences for proto-oncogene expression. J. Virol. 65, 4534–4538 (1991).

    CAS  Google Scholar 

  54. Lam, K. Y. & Chan, K. W. Molecular pathology and clinicopathologic features of penile tumors: with special reference to analyses of p21 and p53 expression and unusual histologic features. Arch. Pathol. Lab. Med. 123, 895–904 (1999).

    CAS  Google Scholar 

  55. Ferreux, E. et al. Evidence for at least three alternative mechanisms targeting the p16INK4A/cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. J. Pathol. 201, 109–118 (2003).

    CAS  Google Scholar 

  56. Jacob, J. M. et al. Comparative genomic profiling of refractory and metastatic penile and nonpenile cutaneous squamous cell carcinoma: implications for selection of systemic therapy. J. Urol. 201, 541–548 (2019).

    Google Scholar 

  57. Zhou, Q. et al. Molecular characterization and integrative genomic analysis of a panel of newly established penile cancer cell lines. Cell Death Dis. 9, 384 (2018).

    Google Scholar 

  58. Albers, P. et al. in EAU Guidelines. Edn Presented at the EAU Annual Congress Copenhagen 2018 (EAU Guidelines Office, 2018).

  59. Litchfield, K. et al. Large-scale sequencing of testicular germ cell tumour (TGCT) cases excludes major TGCT predisposition gene. Eur. Urol. 73, 828–831 (2018).

    CAS  Google Scholar 

  60. Hoff, A. M. et al. Identification of novel fusion genes in testicular germ cell tumors. Cancer Res. 76, 108–116 (2016).

    CAS  Google Scholar 

  61. Necchi, A. et al. Genomic features for therapeutic insights of chemotherapy-resistant, primary mediastinal nonseminomatous germ cell tumors and comparison with gonadal counterpart. Oncologist 24, e142–e145 (2019).

    CAS  Google Scholar 

  62. Necchi, A. et al. Genomic characterization of testicular germ cell tumors relapsing after chemotherapy. Eur. Urol. Focus 6, 122–130 (2020).

    Google Scholar 

  63. Necchi, A. et al. Genomic features of metastatic testicular sex cord stromal tumors [abstract]. J. Clin. Oncol. 37 (Suppl. 7), 532 (2019).

    Google Scholar 

  64. Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).

    CAS  Google Scholar 

  65. Argani, P. et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am. J. Pathol. 159, 179–192 (2001).

    CAS  Google Scholar 

  66. Argani, P. et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am. J. Pathol. 158, 2089–2096 (2001).

    CAS  Google Scholar 

  67. Kauffman, E. C. et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11, 465–475 (2014).

    CAS  Google Scholar 

  68. Moch, H. M., Humphrey, P., Ulbright, T. & Reuter, V. WHO Classification of Tumours of the Urinary System and Male Genital Organs (WHO, 2016).

  69. Pastore, G. et al. Malignant renal tumours incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2103–2114 (2006).

    Google Scholar 

  70. Selle, B. et al. Population-based study of renal cell carcinoma in children in Germany, 1980-2005: more frequently localized tumors and underlying disorders compared with adult counterparts. Cancer 107, 2906–2914 (2006).

    Google Scholar 

  71. Argani, P. et al. Melanotic Xp11 translocation renal cancers: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am. J. Surg. Pathol. 33, 609–619 (2009).

    Google Scholar 

  72. Argani, P. et al. A distinctive subset of PEComas harbors TFE3 gene fusions. Am. J. Surg. Pathol. 34, 1395–1406 (2010).

    Google Scholar 

  73. Argani, P. et al. TFE3-fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am. J. Surg. Pathol. 40, 723–737 (2016).

    Google Scholar 

  74. Argani, P. et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am. J. Surg. Pathol. 26, 1553–1566 (2002).

    Google Scholar 

  75. Davis, I. J. et al. Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc. Natl Acad. Sci. USA 100, 6051–6056 (2003).

    CAS  Google Scholar 

  76. Skala, S. L. et al. Detection of 6 TFEB-amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod. Pathol. 31, 179–197 (2018).

    CAS  Google Scholar 

  77. Argani, P. et al. TFEB-amplified renal cell carcinomas: an aggressive molecular subset demonstrating variable melanocytic marker expression and morphologic heterogeneity. Am. J. Surgical Pathol. 40, 1484–1495 (2016).

    Google Scholar 

  78. Tsuda, M. et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res. 67, 919–929 (2007).

    CAS  Google Scholar 

  79. Wagner, A. J. et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 118, 5894–5902 (2012).

    CAS  Google Scholar 

  80. Turajlic, S. & Swanton, C. TRACERx renal: tracking renal cancer evolution through therapy. Nat. Rev. Urol. 14, 575–576 (2017).

    Google Scholar 

  81. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    CAS  Google Scholar 

  82. Sukov, W. R. et al. ALK alterations in adult renal cell carcinoma: frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod. Pathol. 25, 1516–1525 (2012).

    CAS  Google Scholar 

  83. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    CAS  Google Scholar 

  84. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    CAS  Google Scholar 

  85. Smith, N. E. et al. VCL-ALK renal cell carcinoma in children with sickle-cell trait: the eighth sickle-cell nephropathy? Am. J. Surg. Pathol. 38, 858–863 (2014).

    Google Scholar 

  86. Sugawara, E. et al. Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer 118, 4427–4436 (2012).

    CAS  Google Scholar 

  87. Kusano, H. et al. Two cases of renal cell carcinoma harboring a novel STRN-ALK fusion gene. Am. J. Surg. Pathol. 40, 761–769 (2016).

    Google Scholar 

  88. Pal, S. K. et al. Responses to alectinib in ALK-rearranged papillary renal cell carcinoma. Eur. Urol. 74, 124–128 (2018).

    Google Scholar 

  89. Schöffski, P. et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. Eur. J. Cancer 87, 147–163 (2017).

    Google Scholar 

  90. Pal, S. K. et al. A randomized, phase II efficacy assessment of multiple MET kinase inhibitors in metastatic papillary renal carcinoma (PRCC): SWOG S1500 [abstract]. J. Clin. Oncol. 35 (Suppl. 15), TPS4599 (2017).

    Google Scholar 

  91. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    CAS  Google Scholar 

  92. Haq, R. & Fisher, D. E. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J. Clin. Oncol. 29, 3474–3482 (2011).

    CAS  Google Scholar 

  93. Dynek, J. N. et al. Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 68, 3124–3132 (2008).

    CAS  Google Scholar 

  94. Okamura, R. et al. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00183 (2018).

    Article  Google Scholar 

  95. Jin, W. et al. Cellular transformation and activation of the phosphoinositide-3-kinase-akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src. Cancer Res. 67, 3192–3200 (2007).

    CAS  Google Scholar 

  96. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    CAS  Google Scholar 

  97. Drilon, A. et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).

    CAS  Google Scholar 

  98. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Eng. J. Med. 378, 731–739 (2018).

    CAS  Google Scholar 

  99. Tony, I., Marco, G., Bahleda, R. & Yohann, L. Clinical development of FGFR3 inhibitors for the treatment of urothelial cancer. Bladder Cancer 5, 87–12 (2019).

    Google Scholar 

  100. di Martino, E., Tomlinson, D. C. & Knowles, M. A. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv. Urol. 2012, 429213 (2012).

    Google Scholar 

  101. Helsten, T. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 22, 259–267 (2016).

    CAS  Google Scholar 

  102. Necchi, A. et al. Comprehensive genomic profiling of upper-tract and bladder urothelial carcinoma. Eur. Urol. Focus https://doi.org/10.1016/j.euf.2020.08.001 (2020).

  103. Blaszyk, H. et al. Upper tract urothelial carcinoma: a clinicopathologic study including microsatellite instability analysis. Mod. Pathol. 15, 790–797 (2002).

    Google Scholar 

  104. Hartmann, A. et al. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res. 62, 6796–6802 (2002).

    CAS  Google Scholar 

  105. Ross, J. S. et al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod. Pathol. 27, 271–280 (2014).

    CAS  Google Scholar 

  106. Pal, S. K. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 8, 812–821 (2018).

    CAS  Google Scholar 

  107. Necchi, A. et al. Interim results of fight-201, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with metastatic or surgically unresectable urothelial carcinoma (UC) harboring fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations (GA) [abstract 900P]. Ann. Oncol. 29 (Suppl. 8), viii319–viii320 (2018).

    Google Scholar 

  108. Necchi, A. et al. Fierce-21: phase II study of vofatmab (B-701), a selective inhibitor of FGFR3, as salvage therapy in metastatic urothelial carcinoma (mUC) [abstract]. J. Clin. Oncol. 37 (Suppl. 7), 409 (2019).

    Google Scholar 

  109. Loriot, Y. et al. Erdafitinib compared with vinflunine or docetaxel or pembrolizumab in patients (pts) with metastatic or surgically unresectable (M/UR) urothelial carcinoma (UC) and selected fgfr gene alterations (FGFRalt): The phase III THOR study [abstract 920TiP]. Ann. Oncol. 29 (Suppl. 8), viii327–viii328 (2018).

    Google Scholar 

  110. Sternberg, C. N. et al. Phase II/III study of rogaratinib versus chemotherapy in patients with locally advanced or metastatic urothelial carcinoma selected based on FGFR1/3 mRNA expression [abstract 930TiP]. Ann. Oncol. 29 (Suppl. 8), viii331 (2018).

    Google Scholar 

  111. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 174, 1033 (2018).

    CAS  Google Scholar 

  112. McConkey, D. J. et al. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol. Oncol. Clin. North Am. 29, 377–394 (2015).

    Google Scholar 

  113. Siefker-Radtke, A. & Curti, B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat. Rev. Urol. 15, 112–124 (2018).

    CAS  Google Scholar 

  114. Li, Q., Bagrodia, A., Cha, E. K. & Coleman, J. A. Prognostic genetic signatures in upper tract urothelial carcinoma. Curr. Urol. Rep. 17, 12 (2016).

    Google Scholar 

  115. Haugsten, E. M., Wiedlocha, A., Olsnes, S. & Wesche, J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol. Cancer Res. 8, 1439–1452 (2010).

    CAS  Google Scholar 

  116. Necchi, A. et al. Can patients with muscle-invasive bladder cancer and fibroblast growth factor receptor-3 alterations still be considered for neoadjuvant pembrolizumab? A comprehensive assessment from the updated results of the PURE-01 study. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.04.005 (2020).

  117. Necchi, A. et al. Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant pembrolizumab in muscle-invasive bladder cancer. Eur. Urol. 77, 701–710 (2020).

    CAS  Google Scholar 

  118. Siefker-Radtke, A. O. et al. Efficacy of programmed death 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors in patients with FGFR mutations and gene fusions: Results from a data analysis of an ongoing phase 2 study of erdafitinib (JNJ-42756493) in patients (pts) with advanced urothelial cancer (UC) [abstract]. J. Clin. Oncol. 36 (Suppl. 6), 450 (2018).

    Google Scholar 

  119. Joerger, M. et al. Rogaratinib in patients with advanced urothelial carcinomas prescreened for tumor FGFR mRNA expression and effects of mutations in the FGFR signaling pathway [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 4513 (2018).

    Google Scholar 

  120. Galsky, M. D. et al. Fibroblast growth factor receptor 3 (FGFR3), peroxisome proliferator-activated receptor gamma (PPARg), and outcomes with nivolumab (nivo) in metastatic urothelial cancer (UC) [abstract]. J. Clin. Oncol. 36 (Suppl. 6), 511 (2018).

    Google Scholar 

  121. Bandini, M. et al. Predicting the pathologic complete response after neoadjuvant pembrolizumab in muscle-invasive bladder cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa076 (2020).

    Article  Google Scholar 

  122. Grivas, P. et al. Circulating tumor DNA alterations in advanced urothelial carcinoma and association with clinical outcomes: a pilot study. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2019.02.004 (2019).

  123. Yates, L. R. et al. The European Society for Medical Oncology (ESMO) precision medicine glossary. Ann. Oncol. 29, 30–35 (2018).

    CAS  Google Scholar 

  124. Nelson, K. N. et al. Oncogenic gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol. Cancer Res. 14, 458–469 (2016).

    CAS  Google Scholar 

  125. Vandekerkhove, G. et al. Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin. Cancer Res. 23, 6487–6497 (2017).

    CAS  Google Scholar 

  126. Tomlins, S. A. et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    CAS  Google Scholar 

  127. Park, K. et al. TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J. Clin. Oncol. 32, 206–211 (2014).

    Google Scholar 

  128. Sanda, M. G. et al. Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 3, 1085–1093 (2017).

    Google Scholar 

  129. Sukov, W. R. et al. TFE3 rearrangements in adult renal cell carcinoma: clinical and pathologic features with outcome in a large series of consecutively treated patients. Am. J. Surg. Pathol. 36, 663–670 (2012).

    Google Scholar 

  130. Ellis, C. L. et al. Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod. Pathol. 27, 875–886 (2014).

    CAS  Google Scholar 

  131. Sboner, A. et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 11, R104 (2010).

    CAS  Google Scholar 

  132. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    CAS  Google Scholar 

  133. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLOS Comput. Biol. 7, e1001138 (2011).

    CAS  Google Scholar 

  134. Mateo, J. et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 29, 1895–1902 (2018).

    CAS  Google Scholar 

  135. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011 (2017).

    Article  Google Scholar 

  136. Sleijfer, S., Bogaerts, J. & Siu, L. L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841 (2013).

    Google Scholar 

  137. Lemery, S., Keegan, P. & Pazdur, R. First, F. D. A. Approval agnostic of cancer site – when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    Google Scholar 

  138. US Food and Drug Administration. Highlights of prescribing Information: VITRAKVI® (larotrectinib) capsules, for oral use. VITRAKVI® (larotrectinib) oral solution. FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211710s000lbl.pdf (2018).

  139. Mehra, R. et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 67, 7991–7995 (2007).

    CAS  Google Scholar 

  140. Siefker-Radtke, A. O. et al. FIERCE-22: Clinical activity of vofatamab (V) a FGFR3 selective inhibitor in combination with pembrolizumab (P) in WT metastatic urothelial carcinoma, preliminary analysis [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 4511 (2019).

    Google Scholar 

  141. Drilon, A. et al. STARTRK-2: A global phase 2, open-label, basket study of entrectinib in patients with locally advanced or metastatic solid tumors harboring TRK, ROS1, or ALK gene fusions [abstract]. Cancer Res. 77 (Suppl. 13), CT060 (2017).

    Google Scholar 

  142. Powles, T. et al. BISCAY, a phase Ib, biomarker-directed multidrug umbrella study in patients with metastatic bladder cancer [abstract]. J. Clin. Oncol. 34 (Suppl. 15), TPS4577 (2016).

    Google Scholar 

  143. Voss, M. H. et al. First-in-human phase I “basket” study of Debio1347 (CH5183284), a novel FGFR inhibitor, in patients with FGFR genomically activated advanced solid tumors [abstract]. J. Clin. Oncol. 32 (Suppl. 15), TPS2629 (2014).

    Google Scholar 

  144. Joerger, M. et al. Rogaratinib treatment of patients with advanced urothelial carcinomas prescreened for tumor FGFR mRNA expression [abstract]. J. Clin. Oncol. 36 (Suppl. 6), 494 (2018).

    Google Scholar 

  145. Rosenberg, J. et al. Phase Ib/II study to evaluate the safety, tolerability and pharmacokinetics of rogaratinib in combination with atezolizumab in cisplatin-ineligible patients with locally advanced or metastatic urothelial cancer and FGFR mRNA overexpression [abstract 925TiP]. Ann. Oncol. 29 (Suppl. 8), viii329 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.P. and A.N. researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission. M.B., L.M., S.M.A., R.M. and J.C. made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. J.S.R. made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Filippo Pederzoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal website: https://www.cbioportal.org/

ClinicalTrials.gov database: https://www.clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pederzoli, F., Bandini, M., Marandino, L. et al. Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 17, 613–625 (2020). https://doi.org/10.1038/s41585-020-00379-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-00379-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer