Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TIMELINE

Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP

Abstract

Vaginal meshes used in the treatment of stress urinary incontinence (SUI) and pelvic organ prolapse (POP) have produced highly variable outcomes, causing life-changing complications in some patients while providing others with effective, minimally invasive treatments. The risk:benefit ratio when using vaginal meshes is a complex issue in which a combination of several factors, including the inherent incompatibility of the mesh material with some applications in pelvic reconstructive surgeries and the lack of appropriate regulatory approval processes at the time of the premarket clearance of these products, have contributed to the occurrence of complications caused by vaginal mesh. Surgical mesh used in hernia repair has evolved over many years, from metal implants to knitted polymer meshes that were adopted for use in the pelvic floor for treatment of POP and SUI. The evolution of the material and textile properties of the surgical mesh was guided by clinical feedback from hernia repair procedures, which were also being modified to obtain the best outcomes with use of the mesh. Current evidence shows how surgical mesh fails biomechanically when used in the pelvic floor and materials with improved performance can be developed using modern material processing and tissue engineering techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Milestones in the development of PPL mesh as a material used in pelvic floor repair.
Fig. 2: Mesh positioning in relation to muscle and fascia in incisional hernia repair.
Fig. 3: The most common sites of surgical mesh implantation in the pelvic floor.
Fig. 4: The industrial process used to produce monofilament PPL mesh compared with a tissue engineering process called electrospinning.
Fig. 5: The basic mechanical properties of a material determined by uni-axial mechanical testing.

References

  1. 1.

    Bako, A. & Dhar, R. Review of synthetic mesh-related complications in pelvic floor reconstructive surgery. Int. Urogynecol. J. 20, 103–111 (2009).

    Article  Google Scholar 

  2. 2.

    New Zealand Ministry of Health. Medsafe introduces surgical mesh restrictions. https://www.health.govt.nz/news-media/media-releases/medsafe-introduces-surgical-mesh-restrictions (2017).

  3. 3.

    NHS Digital. Retrospective review of surgery for urogynaecological prolapse and stress urinary incontinence using tape or mesh: Hospital Episode Statistics (HES), Experimental Statistics, April 2008 – March 2017 (NHS, 2018).

  4. 4.

    Scottish Government. Scottish Independent Review of the use, safety and efficacy of transvaginal mesh implants in the treatment of stress urinary incontinence and pelvic organ prolapse in women. gov.scot https://www.gov.scot/publications/scottish-independent-review-use-safety-efficacy-transvaginal-mesh-implants-treatment-9781786528711/ (2017).

  5. 5.

    Department of Health and Social Care. Update on the Independent Medicines and Medical Devices Safety Review: written statement – HCWS841 (UK Parliament, 2018).

  6. 6.

    National Institute for Health and Care Excellence. Urinary incontinence and pelvic organ prolapse in women: management (NICE, 2019).

  7. 7.

    Lapitan, M. C. M., Cody, J. D. & Grant, A. Open retropubic colposuspension for urinary incontinence in women. Cochrane Database Syst. Rev. 7, CD002912 (2017).

  8. 8.

    British Society of Urogynaecology. Vaginal mesh: high vigilance restriction period (BSUG, 2018).

  9. 9.

    Dyer, O. Johnson and Johnson faces lawsuit over vaginal mesh devices. BMJ 353, i3045 (2016).

    Article  PubMed  Google Scholar 

  10. 10.

    Ford, A. A., Rogerson, L., Cody, J. D. & Ogah, J. Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst. Rev. 7, CD006375 (2017).

  11. 11.

    Ward, K. L. & Hilton, P., UK and Ireland TVT Trial Group. Tension-free vaginal tape versus colposuspension for primary urodynamic stress incontinence: 5-year follow up. BJOG 115, 226–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Milani, A. L., Damoiseaux, A., IntHout, J., Kluivers, K. B. & Withagen, M. I. J. Long-term outcome of vaginal mesh or native tissue in recurrent prolapse: a randomized controlled trial. Int. Urogynecol. J. 29, 847–858 (2018).

    Article  PubMed  Google Scholar 

  13. 13.

    Glazener, C. M. et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet 389, 381–392 (2017).

    Article  PubMed  Google Scholar 

  14. 14.

    Usher, F. C. A new plastic prosthesis for repairing tissue defects of the chest and abdominal wall. Am. J. Surg. 97, 629–633 (1959).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Czerny, V. Beiträge zur operativen Chirurgie (1878).

  16. 16.

    Bringman, S. et al. Hernia repair: the search for ideal meshes. Hernia 14, 81–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Gilbert, A. I., Graham, M. F. & Young, J. in Meshes: Benefits Risks (eds Schumpelick, V. & Nyhus, L. M.) 101–104 (Springer, 2004).

  18. 18.

    Meyer, W. I. X. The implantation of silver filigree for the closure of large hernia apertures. Ann. Surg. 36, 767–778 (1902).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Flynn, W. J., Brant, A. E. & Nelson, G. G. A four and one-half year analysis of tantalum gauze used in the repair of ventral hernia. Ann. Surg. 134, 1027–1034 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    DeBord, J. R. The historical development of prosthetics in hernia surgery. Surg. Clin. North Am. 78, 973–1006 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Baylón, K. et al. Past, present and future of surgical meshes: a review. Membranes 7, E47 (2017).

  22. 22.

    Wolstenholme, J. T. Use of commerical dacron fabric in the repair of inguinal hernias and abdominal wall defects. Arch. Surg. 73, 1004 (1956).

    Article  CAS  Google Scholar 

  23. 23.

    Usher, F. C., Allen, J. E., Crosthwait, R. W. & Cogan, J. E. Polypropylene monofilament. A new, biologically inert suture for closing contaminated wounds. JAMA 179, 780–782 (1962).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Amid, P. K. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1, 15–21 (1997).

    Article  Google Scholar 

  25. 25.

    Klosterhalfen, B., Klinge, U. & Schumpelick, V. Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomater. 19, 2235–2246 (1998).

    Article  CAS  Google Scholar 

  26. 26.

    Klinge, U. et al. Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur. J. Surg. 164, 951–960 (2003).

    Article  Google Scholar 

  27. 27.

    Schmidbauer, S., Ladurner, R., Hallfeldt, K. K. & Mussack, T. Heavy-weight versus low-weight polypropylene meshes for open sublay mesh repair of incisional hernia. Eur. J. Med. Res. 10, 247–253 (2005).

    CAS  PubMed  Google Scholar 

  28. 28.

    Bachman, S. & Ramshaw, B. Prosthetic material in ventral hernia repair: how do I choose? Surg. Clin. North Am. 88, 101–112 (2008).

    Article  PubMed  Google Scholar 

  29. 29.

    Klosterhalfen, B., Junge, K. & Klinge, U. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices 2, 103–117 (2005).

    Article  PubMed  Google Scholar 

  30. 30.

    Kingsnorth, A. N. in Management of Abdominal Hernias (eds Kingsnorth, A. & LeBlanc, K.) 1–23 (Springer, 2013).

  31. 31.

    Robbins, A. W. & Rutkow, I. M. Mesh plug repair and groin hernia surgery. Surg. Clin. North Am. 78, 1007–1023 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Holihan, J. L. et al. Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J. Surg. 40, 89–99 (2016).

    Article  PubMed  Google Scholar 

  33. 33.

    Sevinç, B., Okuş, A., Ay, S., Aksoy, N. & Karahan, Ö. Randomized prospective comparison of long-term results of onlay and sublay mesh repair techniques for incisional hernia. Turkish J. Surg. 34, 17–20 (2018).

    Google Scholar 

  34. 34.

    Timmermans, L. et al. Meta-analysis of sublay versus onlay mesh repair in incisional hernia surgery. Am. J. Surg. 207, 980–988 (2014).

    Article  PubMed  Google Scholar 

  35. 35.

    Binnebösel, M. et al. Impact of mesh positioning on foreign body reaction and collagenous ingrowth in a rabbit model of open incisional hernia repair. Hernia 14, 71–77 (2010).

    Article  PubMed  Google Scholar 

  36. 36.

    Helgstrand, F. National results after ventral hernia repair. Dan. Med. J. 63, (2016).

  37. 37.

    Alexander, A. M. & Scott, D. J. Laparoscopic ventral hernia repair. Surg. Clin. North Am. 93, 1091–1110 (2013).

    Article  PubMed  Google Scholar 

  38. 38.

    Luijendijk, R. W. et al. A comparison of suture repair with mesh repair for incisional hernia. N. Engl. J. Med. 343, 392–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Goldeberger, M. A. & Davids, A. M. The treatment of urinary stress incontinence by the implantation of a tantalum plate. Am. J. Obstet. Gynecol. 54, 829–837 (1947).

    Article  Google Scholar 

  40. 40.

    Moore, J., Armstrong, J. T. & Willis, S. H. The use of tantalum mesh in cystocele with critical report of ten cases. Am. J. Obstet. Gynecol. 69, 1127–1135 (1955).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Moir, J. C. The gauze-hammock operation. (A modified Aldridge sling procedure). J. Obstet. Gynaecol. Br. Commonw. 75, 1–9 (1968).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Morgan, J. E. A sling operation, using marlex polypropylene mesh, for treatment of recurrent stress incontinence. Am. J. Obstet. Gynecol. 106, 369–377 (1970).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Morgan, J. E., Farrow, G. A. & Stewart, F. E. The Marlex sling operation for the treatment of recurrent stress urinary incontinence: a 16-year review. Am. J. Obstet. Gynecol. 151, 224–226 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Ulmsten, U. & Petros, P. Intravaginal slingplasty (IVS): an ambulatory surgical procedure for treatment of female urinary incontinence. Scand. J. Urol. Nephrol. 29, 75–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Ulmsten, U., Henriksson, L., Johnson, P. & Varhos, G. An ambulatory surgical procedure under local anesthesia for treatment of female urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 7, 81–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Heneghan, C. J. et al. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process. BMJ Open 7, e017125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kobashi, K. C. et al. Erosion of woven polyester pubovaginal sling. J. Urol. 162, 2070–2072 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    US Food and Drug Administration. 510(k) premarket notification. FDA https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K974098 (2019).

  49. 49.

    Gerullis, H. et al. IDEAL in meshes for prolapse, urinary incontinence, and hernia repair. Surg. Innov. 20, 502–508 (2013).

    Article  PubMed  Google Scholar 

  50. 50.

    McKeen, L. W. in The Effect of Long Term Thermal Exposure on Plastics and Elastomers 1–16 (2014).

  51. 51.

    Śmietański, M. et al. Five-year results of a randomised controlled multi-centre study comparing heavy-weight knitted versus low-weight, non-woven polypropylene implants in Lichtenstein hernioplasty. Hernia 15, 495–501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Liang, R., Knight, K., Abramowitch, S. & Moalli, P. A. Exploring the basic science of prolapse meshes. Curr. Opin. Obstet. Gynecol. 28, 413–419 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    McKeen, L. W. in Handbook of Polymer Applications in Medicine and Medical Devices (ed. Modjarrad, K. & Ebnesajjad, S.) 21–53 (William Andrew Publishing, 2014).

  54. 54.

    Sastri, V. R. in Plastics in Medical Devices: Properties, Requirements and Applications 55–72 (Elsevier, 2013).

  55. 55.

    Sastri, V. R. in Handbook of Polymer Applications in Medicine and Medical Devices 337–346 (Elsevier, 2010).

  56. 56.

    US Food and Drug Administration. Urogynecologic surgical mesh implants. FDA https://www.fda.gov/medicaldevices/productsandmedicalprocedures/implantsandprosthetics/urogynsurgicalmesh/ (2018).

  57. 57.

    DeBord, J. R. in Abdominal Wall Hernias 16–32 (Springer, 2001).

  58. 58.

    Bent, A. E., Ostergard, D. R. & Zwick-Zaffuto, M. Tissue reaction to expanded polytetrafluoroethylene suburethral sling for urinary incontinence: clinical and histologic study. Am. J. Obstet. Gynecol. 169, 1198–1204 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Chen, C. C. G., Ridgeway, B. & Paraiso, M. F. R. Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin. Obstet. Gynecol. 50, 383–411 (2007).

    Article  PubMed  Google Scholar 

  60. 60.

    Wang, C., Christie, A. L. & Zimmern, P. E. Long-term occurrence of secondary compartment pelvic organ prolapse after open mesh sacrocolpopexy for symptomatic prolapse. Neurourol. Urodyn. 37, 1101–1105 (2017).

  61. 61.

    Barber, M. D. et al. Defining success after surgery for pelvic organ prolapse. Obstet. Gynecol. 114, 600–609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cundiff, G. W. et al. Risk factors for mesh/suture erosion following sacral colpopexy. Am. J. Obstet. Gynecol. 199, 688.e1–5 (2008).

    Article  Google Scholar 

  63. 63.

    Nygaard, I. et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse. JAMA 309, 2016–2024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Maher, C. et al. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2, CD012079 (2016).

    PubMed  Google Scholar 

  65. 65.

    Chapple, C. R. et al. Consensus statement of the european urology association and the european urogynaecological association on the use of implanted materials for treating pelvic organ prolapse and stress urinary incontinence. Eur. Urol. 72, 424–431 (2017).

    Article  PubMed  Google Scholar 

  66. 66.

    Skoczylas, L. C., Turner, L. C., Wang, L., Winger, D. G. & Shepherd, J. P. Changes in prolapse surgery trends relative to FDA notifications regarding vaginal mesh. Int. Urogynecol. J. 25, 471–477 (2014).

    Article  PubMed  Google Scholar 

  67. 67.

    Rac, G. et al. Stress urinary incontinence surgery trends in academic female pelvic medicine and reconstructive surgery urology practice in the setting of the food and drug administration public health notifications. Neurourol. Urodyn. 36, 1155–1160 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    US Food and Drug Administration. Classify your medical device. FDA https://www.fda.gov/medicaldevices/deviceregulationandguidance/overview/classifyyourdevice/default.htm. (2018)

  69. 69.

    Van Norman, G. A. Drugs, devices, and the FDA: part 2: an overview of approval processes: FDA approval of medical devices. JACC Basic Transl Sci. 1, 277–287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zuckerman, D., Brown, P. & Das, A. Lack of publicly available scientific evidence on the safety and effectiveness of implanted medical devices. JAMA Intern. Med. 174, 1781 (2014).

    Article  PubMed  Google Scholar 

  71. 71.

    Marsden, H. Vaginal mesh campaigner ‘dies of sepsis after antibiotic-resistant infection’. The Independent https://www.independent.co.uk/news/uk/transvaginal-vaginal-mesh-surgery-stress-urinary-incontinence-sui-uti-tvt-antiobiotic-resistance-a8092006.html (2017).

  72. 72.

    de Tayrac, R. & Sentilhes, L. Complications of pelvic organ prolapse surgery and methods of prevention. Int. Urogynecol. J. 24, 1859–1872 (2013).

    Article  PubMed  Google Scholar 

  73. 73.

    Food and Drug Administration & HHS. Obstetrical and gynecological devices; reclassification of surgical mesh for transvaginal pelvic organ prolapse repair; final order. Fed. Regist. 81, 353–361 (2016).

    Google Scholar 

  74. 74.

    Mucowski, S. J., Jurnalov, C. & Phelps, J. Y. Use of vaginal mesh in the face of recent FDA warnings and litigation. Am. J. Obstet. Gynecol. 203, 103.e1–103.e4 (2010).

    Article  Google Scholar 

  75. 75.

    European Commission. New EU rules on medical devices to enhance patient safety and modernise public health. European Commission https://ec.europa.eu/growth/content/new-eu-rules-medical-devices-enhance-patient-safety-and-modernise-public-health-0_en (2017).

  76. 76.

    European Commission. Medical devices. European Commission https://ec.europa.eu/growth/sectors/medical-devices/regulatory-framework_en#new_regulations (2019).

  77. 77.

    Rutman, M. P. & Blaivas, J. G. in Continence 117–132 (Springer, 2009).

  78. 78.

    McGuire, E. J. Urodynamic findings in patients after failure of stress incontinence operations. Prog. Clin. Biol. Res. 78, 351–360 (1981).

    CAS  PubMed  Google Scholar 

  79. 79.

    Mcguire, E. J. & Lytton, B. Pubovaginal sling procedure for stress incontinence. J. Urol. 119, 82–84 (1978).

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Petros, P. E. & Ulmsten, U. I. An integral theory of female urinary incontinence. Experimental and clinical considerations. Acta Obstet. Gynecol. Scand. Suppl. 153, 7–31 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Petros, P. Creating a gold standard surgical device: scientific discoveries leading to TVT and beyond: Ulf Ulmsten memorial lecture 2014. Int. Urogynecol. J. 26, 471–476 (2015).

    Article  PubMed  Google Scholar 

  82. 82.

    Papa Petros, P. E. The pubourethral ligaments — an anatomical and histological study in the live patient. Int. Urogynecol. J. Pelvic Floor Dysfunct. 9, 154–157 (1998).

    Article  Google Scholar 

  83. 83.

    Vazzoler, N. et al. Pubourethral ligaments in women: anatomical and clinical aspects. Surg. Radiol. Anat. 24, 33–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Zacharin, R. F. The suspensory mechanism of the female urethra. J. Anat. 97, 423–427 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    DeLancey, J. O. L. Anatomie aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 166, 1717–1728 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Kruger, J. A., Yan, X., Li, X., Nielsen, P. M. F. & Nash, M. P. in Biomechanics of the Female Pelvic Floor 367–382 (Elsevier, 2016).

  87. 87.

    Ashton-Miller, J. A., Howard, D. & DeLancey, J. O. The functional anatomy of the female pelvic floor and stress continence control system. Scand. J. Urol. Nephrol. Suppl. 207, 1–7; discussion 106–125 (2001).

    Article  Google Scholar 

  88. 88.

    LANE, F. E. Repair of posthysterectomy vaginal-vault prolapse. Obstet. Gynecol. 20, 72–77 (1962).

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Tan, T., Cholewa, N. M., Case, S. W. & De Vita, R. Micro-structural and biaxial creep properties of the swine uterosacral–cardinal ligament complex. Ann. Biomed. Eng. 44, 3225–3237 (2016).

    Article  PubMed  Google Scholar 

  90. 90.

    Kotarinos, R. K. in Biomechanics of the Female Pelvic Floor 53–87 (Elsevier, 2016).

  91. 91.

    Berger, R. L. et al. Development and validation of a risk-stratification score for surgical site occurrence and surgical site infection after open ventral hernia repair. J. Am. Coll. Surg. 217, 974–982 (2013).

    Article  PubMed  Google Scholar 

  92. 92.

    Semmens, J. P. & Wagner, G. Estrogen deprivation and vaginal function in postmenopausal women. JAMA 248, 445–448 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Roman, S. et al. Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse. Neurourol. Urodyn. 38, 107–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Williams, D. F. Williams Dictionary of Biomaterials (Liverpool Univ. Press, 1999).

  95. 95.

    Faulk, D. M. et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35, 8585–8595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

  97. 97.

    Klinge, U. et al. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 103, 208–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Brown, B. N. et al. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque. Am. J. Obstet. Gynecol. 213, 668.e1–668.e10 (2015).

    Article  CAS  Google Scholar 

  99. 99.

    de Tayrac, R., Alves, A. & Thérin, M. Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int. Urogynecol. J. Pelvic Floor Dysfunct. 18, 513–520 (2007).

    Article  PubMed  Google Scholar 

  100. 100.

    Manodoro, S. et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120, 244–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. 101.

    Nolfi, A. L. et al. Host response to synthetic mesh in women with mesh complications. Am. J. Obstet. Gynecol. 215, 206.e1–8 (2016).

    Article  Google Scholar 

  102. 102.

    Moore, R. D. & Lukban, J. C. Comparison of vaginal mesh extrusion rates between a lightweight type I polypropylene mesh versus heavier mesh in the treatment of pelvic organ prolapse. Int. Urogynecol. J. 23, 1379–1386 (2012).

    Article  PubMed  Google Scholar 

  103. 103.

    Klinge, U., Otto, J. & Mühl, T. High structural stability of textile implants prevents pore collapse and preserves effective porosity at strain. Biomed Res. Int. 2015, 1–7 (2015).

    Article  CAS  Google Scholar 

  104. 104.

    Mühl, T., Binnebösel, M., Klinge, U. & Goedderz, T. New objective measurement to characterize the porosity of textile implants. J. Biomed. Mater. Res. B Appl. Biomater. 84B, 176–183 (2008).

    Article  CAS  Google Scholar 

  105. 105.

    Shepherd, J. P., Feola, A. J., Abramowitch, S. D. & Moalli, P. A. Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse. Int. Urogynecol. J. 23, 613–620 (2012).

    Article  PubMed  Google Scholar 

  106. 106.

    Barone, W. R., Moalli, P. A. & Abramowitch, S. D. Textile properties of synthetic prolapse mesh in response to uniaxial loading. Am. J. Obstet. Gynecol. 215, 326.e1–326.e9 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    Knight, K. M., Moalli, P. A. & Abramowitch, S. D. Preventing mesh pore collapse by designing mesh pores with auxetic geometries: a comprehensive evaluation via computational modeling. J. Biomech. Eng. 140, 051005 (2018).

    Article  Google Scholar 

  108. 108.

    Iakovlev, V. V., Guelcher, S. A. & Bendavid, R. Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients. J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 237–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. 109.

    Holmes-Walker, A. in Life-Enhancing Plastics 61–70 (Imperial College Press, 2004).

  110. 110.

    Liebert, T. C., Chartoff, R. P., Cosgrove, S. L. & McCuskey, R. S. Subcutaneous implants of polypropylene filaments. J. Biomed. Mater. Res. 10, 939–951 (1976).

    Article  CAS  PubMed  Google Scholar 

  111. 111.

    Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996).

    Article  PubMed  Google Scholar 

  112. 112.

    Engineer, C., Parikh, J. & Raval, A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater. Artif. Organs 25, 79–85 (2011).

    Google Scholar 

  113. 113.

    Teoh, S. H., Tang, Z. G. & Hastings, G. W. in Handbook of Biomaterial Properties 270–301 (Springer, 1998).

  114. 114.

    Gargallo, L. & Radić, D. in Physicochemical Behavior and Supramolecular Organization of Polymers 43–162 (Springer, 2009).

  115. 115.

    Edwards, S. L. et al. Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair. J. Mech. Behav. Biomed. Mater. 23, 53–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Pandit, A. S. & Henry, J. A. Design of surgical meshes - an engineering perspective. Technol. Health Care 12, 51–65 (2004).

    Article  PubMed  Google Scholar 

  117. 117.

    Velayudhan, S., Martin, D. & Cooper-White, J. Evaluation of dynamic creep properties of surgical mesh prostheses — uniaxial fatigue. J. Biomed. Mater. Res. B Appl. Biomater. 91, 287–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. 118.

    Knudson, D. in Fundamentals of Biomechanics 3–22 (Springer, 2007).

  119. 119.

    Easley, D. C., Abramowitch, S. D. & Moalli, P. A. Female pelvic floor biomechanics. Curr. Opin. Urol. 27, 262–267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Moalli, P. A. et al. A rat model to study the structural properties of the vagina and its supportive tissues. Am. J. Obstet. Gynecol. 192, 80–88 (2005).

    Article  PubMed  Google Scholar 

  121. 121.

    Abramowitch, S. D., Feola, A., Jallah, Z. & Moalli, P. A. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S146–S158 (2009).

    Article  PubMed  Google Scholar 

  122. 122.

    Martins, P. et al. Biomechanical properties of vaginal tissue in women with pelvic organ prolapse. Gynecol. Obstet. Invest. 75, 85–92 (2013).

    Article  PubMed  Google Scholar 

  123. 123.

    Brandão, S. et al. Magnetic resonance imaging of the pelvic floor: from clinical to biomechanical imaging. Proc. Inst. Mech. Eng. H 227, 1324–1332 (2013).

    Article  PubMed  Google Scholar 

  124. 124.

    Kruger, J., Hayward, L., Nielsen, P., Loiselle, D. & Kirton, R. Design and development of a novel intra-vaginal pressure sensor. Int. Urogynecol. J. 24, 1715–1721 (2013).

    Article  PubMed  Google Scholar 

  125. 125.

    Feola, A. et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG 120, 224–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Liang, R. et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120, 233–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Petersen, G. H., Martin, Fr,S., Henke, G., Freitag, M., Faulhaber, A. & Ludwig, K. Deep prosthesis infection in incisional hernia repair: predictive factors and clinical outcome. Eur. J. Surg. 167, 453–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. 128.

    Robichaud, A. et al. Avoidance of the vaginal incision site for mesh placement in vaginal wall prolapse surgery: A prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 131–136 (2017).

    Article  PubMed  Google Scholar 

  129. 129.

    Leanza, V., Zanghì, G., Vecchio, R. & Leanza, G. How to prevent mesh erosion in transobturator tension-free incontinence cystocoele treatment (TICT): a comparative survey. G. Chir. 36, 21–25 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Liang, R. et al. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold. Acta Biomater. 57, 324–333 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Haylen, B. T. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int. Urogynecol. J. 21, 5–26 (2010).

    Article  PubMed  Google Scholar 

  132. 132.

    Orenstein, S. B., Saberski, E. R., Kreutzer, D. L. & Novitsky, Y. W. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J. Surg. Res. 176, 423–429 (2012).

    Article  PubMed  Google Scholar 

  133. 133.

    Feola, A., Pal, S., Moalli, P., Maiti, S. & Abramowitch, S. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes. J. Biomech. 47, 2584–2589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Milani, A. L. et al. Vaginal prolapse repair surgery augmented by ultra lightweight titanium coated polypropylene mesh. Eur. J. Obstet. Gynecol. Reprod. Biol. 138, 232–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. 135.

    Hung, M.-J. et al. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction. J. Formos. Med. Assoc. 113, 704–715 (2014).

    Article  PubMed  Google Scholar 

  136. 136.

    Li, Q., Wang, J., Liu, H., Xie, B. & Wei, L. Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res. 354, 471–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Ulrich, D. et al. A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model. PLOS ONE 7, e50044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Ulrich, D. et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng. Part A 20, 785–798 (2014).

    CAS  PubMed  Google Scholar 

  139. 139.

    Roman, S., Mangir, N., Bissoli, J., Chapple, C. R. & MacNeil, S. Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence. J. Biomater. Appl. 30, 1578–1588 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. 140.

    Roman, S. et al. Evaluating alternative materials for the treatment of stress urinary incontinence and pelvic organ prolapse: a comparison of the in vivo response to meshes implanted in rabbits. J. Urol. 196, 261–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. 141.

    Fredenberg, S., Wahlgren, M., Reslow, M. & Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems — a review. Int. J. Pharm. 415, 34–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. 142.

    Hillary, C. J. et al. Developing repair materials for stress urinary incontinence to withstand dynamic distension. PLOS ONE 11, e0149971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Hympánová, L. et al. Assessment of electrospun and ultra-lightweight polypropylene meshes in the sheep model for vaginal surgery. Eur. Urol. Focus. S2405–4569, 30190–30191 (2018).

    Google Scholar 

  144. 144.

    Mangır, N. et al. Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater. 29, 188–197 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Mangır, N., Hillary, C. J., Chapple, C. R. & MacNeil, S. Oestradiol-releasing biodegradable mesh stimulates collagen production and angiogenesis: an approach to improving biomaterial integration in pelvic floor repair. Eur. Urol. Focus. 5, 280–289 (2017).

    Article  PubMed  Google Scholar 

  146. 146.

    Shafaat, S., Mangir, N., Regureos, S. R., Chapple, C. R. & MacNeil, S. Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair. Neurourol. Urodyn. 37, 716–725 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. 147.

    Price, P. B. Plastic operations for incontinence of urine and of feces. Arch. Surg. 26, 1043 (1933).

    Article  Google Scholar 

  148. 148.

    Bloom, D., Uznis, G., Kraklau, D. & McGuire, E. Frederick C. Mclellan and clinical cystometrics. Urology 51, 168–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. 149.

    Burke, G. L. The corrosion of metals in tissues; and an introduction to tantalum. Can. Med. Assoc. J. 43, 125–128 (1940).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Aldridge, A. H. Transplantation of fascia for relief of urinary stress incontinence. Am. J. Obstet. Gynecol. 44, 398–411 (1942).

    Article  Google Scholar 

  151. 151.

    Usher, F. C. & Gannon, J. P. Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies. AMA Arch. Surg. 78, 131–137 (1959).

    Article  CAS  PubMed  Google Scholar 

  152. 152.

    Chevrel, J. P. [The treatment of large midline incisional hernias by "overcoat" plasty and prothesis (author’s transl)]. Nouv. Presse Med. 8, 695–696 (1979).

    CAS  PubMed  Google Scholar 

  153. 153.

    Stoppa, R. E. The treatment of complicated groin and incisional hernias. World J. Surg. 13, 545–554 (1989).

    Article  CAS  PubMed  Google Scholar 

  154. 154.

    DeLancey, J. O. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis. Am. J. Obstet. Gynecol. 170, 1713–1720 (1994).

    Article  CAS  PubMed  Google Scholar 

  155. 155.

    Dällenbach, P. To mesh or not to mesh: a review of pelvic organ reconstructive surgery. Int. J. Womens Health 7, 331–343 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank The Urology Foundation and the Rosetrees Trust for supporting Naside Mangir. They also gratefully acknowledge the Republic of Turkey, The Ministry of National Education for funding Betül Aydemir Dikici with a PhD studentship grant.

Author information

Affiliations

Authors

Contributions

N.M. researched data for the article, all authors made substantial contributions to discussions of the content. N.M., B.A.D. and S.M. wrote the manuscript and N.M., C.R.C. and S.M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sheila MacNeil.

Ethics declarations

Competing interests

C.R.C. has been involved in the development of bio-engineered alternatives to conventional synthetic sling materials with Symimetic Ltd. N.M., B.A.D. and S.M.N. declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks P. Moalli and L. Zhu for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mangir, N., Aldemir Dikici, B., Chapple, C.R. et al. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nat Rev Urol 16, 675–689 (2019). https://doi.org/10.1038/s41585-019-0230-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing