New approaches for effective and safe pelvic radiotherapy in high-risk prostate cancer

Article metrics


Radical radiotherapy for prostate cancer offers excellent long-term outcomes for patients with high-risk disease. The increased risk of pelvic nodal involvement in this cohort has led to the development of whole-pelvis radiotherapy (WPRT) with a prostate boost. However, the use of WPRT remains controversial. Data are mixed, but advanced radiotherapy techniques enable delivery of increased radiation to pelvic nodes with acceptable levels of toxicity. Contemporary imaging modalities with increased sensitivity for detecting subclinical lymph node disease will facilitate selection of patients most likely to benefit from WPRT. Using such modalities for image guidance of advanced radiotherapy techniques could also permit high-dose delivery to nodes outside the conventional Radiation Therapy Oncology Group volumes, where magnetic resonance lymphography and single-photon-emission CT imaging have mapped a high frequency of microscopic disease. With increased toxicity a concern, an alternative to WPRT would be selective irradiation of target nodal groups most likely to harbour occult disease. New image-based ‘big data’ mining techniques enable the large-scale comparison of incidental dose distributions of thousands of patients treated in the past. By using novel computing methods and artificial intelligence, high-risk regions can be identified and used to optimize WPRT through refined knowledge of the likely location of subclinical disease.

Key points

  • Prophylactic pelvic nodal irradiation in patients with high-risk prostate cancer might improve clinical outcomes.

  • Negative results in clinical trials to date might be attributable to subtherapeutic radiation doses, inappropriate patient selection and suboptimal field size delineation.

  • Conformal radiotherapy techniques reduce incidental pelvic lymph node dose, increasing the potential utility of whole pelvis radiotherapy (WPRT) in the modern intensity-modulated radiotherapy era.

  • Contemporary imaging modalities with high sensitivity for the detection of occult lymph node metastases will improve patient selection for WPRT and guide appropriate target volume definition.

  • Advanced radiotherapy techniques will permit dose escalation to minimally positive nodal regions, both inside and outside of the standard Radiation Therapy Oncology Group target volumes.

  • Large-scale image-based data mining raises the possibility of selective irradiation of statistically identified high-risk nodal groups to improve the therapeutic ratio in WPRT.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Patterns of lymph node failure after prostate-only radiotherapy.
Fig. 2: Kaplan–Meier bPFS curves of intermediate and high-risk prostate cancer patients treated with EBRT and HDR brachytherapy.
Fig. 3: Potential radiotherapy clinical target volumes in high-risk prostate cancer.
Fig. 4: Image-based data mining infrastructure.


  1. 1.

    Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

  2. 2.

    Fridriksson, J. Ö. et al. Long-term adverse effects after curative radiotherapy and radical prostatectomy: population-based nationwide register study. Scand. J. Urol. 50, 338–345 (2016).

  3. 3.

    Widmark, A. et al. Endocrine treatment with or without radiotherapy in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

  4. 4.

    Mason, M. D. et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J. Clin. Oncol. 33, 2143–2150 (2015).

  5. 5.

    Morikawa, L. K. & Roach, M. Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int. J. Radiat. Oncol. Biol. Phys. 80, 6–16 (2011).

  6. 6.

    Roach, M. et al. Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J. Clin. Oncol. 21, 1904–1911 (2003).

  7. 7.

    Pommier, P. et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J. Clin. Oncol. 25, 5366–5373 (2011).

  8. 8.

    Tharmalingam, H., Tsang, Y., Choudhury, A. & Hoskin, P. J. External beam (EBRT) and HDR brachytherapy (BT) in prostate cancer: impact of EBRT volume [abstract OC-0285]. Radiother. Oncol. 127 (Suppl. 1), 146–147 (2018).

  9. 9.

    Murthy, V. et al. Incidental dose to pelvic nodal regions in prostate-only radiotherapy. Technol. Cancer Res. Treat. 16, 211–217 (2016).

  10. 10.

    Fischer-Valuck, B. W., Rao, Y. J. & Michalski, J. M. Intensity-modulated radiotherapy for prostate cancer. Transl Androl. Urol. 7, 297–307 (2018).

  11. 11.

    Roach, M., Waldman, F. & Pollack, A. Predictive models in external beam radiotherapy for clinically localized prostate cancer. Cancer 115, 3112–3120 (2009).

  12. 12.

    D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

  13. 13.

    Kuban, D. A. et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

  14. 14.

    Peeters, S. T. H. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicentre randomized phase III trial comparing 68Gy of radiotherapy with 78Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

  15. 15.

    Dearnaley, D. P. et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 8, 475–487 (2007).

  16. 16.

    Bolla, M. et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 337, 295–300 (1997).

  17. 17.

    Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).

  18. 18.

    Zapatero, A. et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 16, 320–327 (2015).

  19. 19.

    Roach, M. et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 28, 33–37 (1994).

  20. 20.

    Wagner, M., Sokoloff, M. & Daneshmand, S. The role of pelvic lymphadenectomy for prostate cancer-therapeutic? J. Urol. 179, 408–413 (2008).

  21. 21.

    Briganti, A. et al. Pelvic lymph node dissection in prostate cancer. Eur. Urol. 55, 1251–1265 (2009).

  22. 22.

    Heidenreich, A., Varga, Z. & Von Knobloch, R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J. Urol. 167, 1681–1686 (2002).

  23. 23.

    Grégoire, V. et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother. Oncol. 69, 227–236 (2003).

  24. 24.

    Lim, K. et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 348–355 (2011).

  25. 25.

    Roels, S. et al. Definition and delineation of the clinical target volume for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 65, 1129–1142 (2006).

  26. 26.

    Aizer, A. A. et al. Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 75, 1344–1349 (2009).

  27. 27.

    Mantini, G. et al. Effect of whole pelvic radiotherapy for patients with locally advanced prostate cancer treated with radiotherapy and long-term androgen deprivation therapy. Int. J. Radiat. Oncol. Biol. Phys. 81, e721–726 (2011).

  28. 28.

    Seaward, S. A. et al. Improved freedom from PSA failure with whole pelvic irradiation for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42, 1055–1062 (1998).

  29. 29.

    Seaward, S. A. et al. Identification of a high-risk clinically localized prostate cancer subgroup receiving maximum benefit from whole-pelvic irradiation. Cancer J. Sci. Am. 4, 370–377 (1998).

  30. 30.

    Amini, A. et al. Survival outcomes of whole-pelvic versus prostate-only radiation therapy for high-risk prostate cancer patients with use of the National Cancer Data Base. Int. J. Radiat. Oncol. Biol. Phys. 93, 1052–1063 (2015).

  31. 31.

    Pan, C. C., Kim, K. Y., Taylor, J. M. G., McLaughlin, P. W. & Sandler, H. M. Influence of 3D-CRT pelvic irradiation on outcome in prostate cancer treated with external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 1139–1145 (2002).

  32. 32.

    Jacob, R. et al. Role of prostate dose escalation in patients with greater than 15% risk of pelvic lymph node involvement. Int. J. Radiat. Oncol. Biol. Phys. 61, 695–701 (2005).

  33. 33.

    Milecki, P. et al. Benefit of whole pelvic radiotherapy combined with neoadjuvant androgen deprivation for the high-risk prostate cancer. J. Biomed. Biotechnol. 2009, 625394 (2009).

  34. 34.

    Lawton, C. A. et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13 with emphasis on unexpected hormone/radiation interactions. Int. J. Radiat. Oncol. Biol. Phys. 69, 646–655 (2007).

  35. 35.

    Spratt, D. E. et al. Patterns of lymph node failure after dose-escalated radiotherapy: implications for extended pelvic lymph node coverage. Eur. Urol. 71, 37–43 (2017).

  36. 36.

    Hoskin, P. J. et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother. Oncol. 103, 217–222 (2012).

  37. 37.

    Morris, W. J. et al. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT trial): an analysis of survival endpoints for a randomized trial comparing low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 98, 275–285 (2017).

  38. 38.

    Dayes, I. S. et al. Long-term results of a randomized trial comparing iridium implant plus external beam radiation therapy with external beam radiation therapy alone in node-negative locally advanced cancer of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 99, 90–93 (2017).

  39. 39.

    Perez, C. A., Michalski, J., Brown, K. C. & Lockett, M. A. Nonrandomized evaluation of pelvic lymph node irradiation in localized carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 36, 573–584 (1996).

  40. 40.

    Roach, M. et al. Whole pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 647–653 (2006).

  41. 41.

    Fiorino, C. et al. Dose–volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 75, 29–35 (2009).

  42. 42.

    Longobardi, B. et al. Anatomical and clinical predictors of acute bowel toxicity in whole pelvis irradiation for prostate cancer with tomotherapy. Radiother. Oncol. 101, 460–464 (2011).

  43. 43.

    Perna, L. et al. Predictors of acute bowel toxicity in patients treated with IMRT whole pelvis irradiation after prostatectomy. Radiother. Oncol. 97, 71–75 (2010).

  44. 44.

    Sini, C. et al. Patient-reported intestinal toxicity from whole pelvis intensity-modulated radiotherapy: first quantification of bowel dose–volume effects. Radiother. Oncol. 124, 296–301 (2017).

  45. 45.

    Song, C. et al. Elective pelvic versus prostate bed-only salvage radiotherapy following radical prostatectomy: a propensity score-matched analysis. Strahlenther. Onkol. 191, 801–809 (2015).

  46. 46.

    Spiotto, M. T., Hancock, S. L. & King, C. R. Radiotherapy after prostatectomy: improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients. Int. J. Radiat. Oncol. Biol. Phys. 69, 54–61 (2007).

  47. 47.

    Moghanaki, D. et al. Elective irradiation of pelvic lymph nodes during postprostatectomy salvage radiotherapy. Cancer 119, 52–60 (2013).

  48. 48.

    Ramey, S. J. et al. Multi-institutional evaluation of elective nodal irradiation and/or androgen deprivation therapy with postprostatectomy salvage radiotherapy for prostate cancer. Eur. Urol. 74, 99–106 (2018).

  49. 49.

    US National Library of Medicine. (2017).

  50. 50.

    Pollack, A. et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiation therapy: the NRG Oncology/RTOG 0534 SPPORT trial. Int. J. Radiat. Oncol. Biol. Phys. 102, 1605 (2018).

  51. 51.

    van Loon, J. et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 77, 329–336 (2010).

  52. 52.

    Hoskin, P. J., Díez, P., Williams, M., Lucraft, H. & Bayne, M. Recommendations for the use of radiotherapy in nodal lymphoma. Clin. Oncol. (R. Coll. Radiol.) 25, 49–58 (2013).

  53. 53.

    Koper, P. et al. Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. Int. J. Radiat. Oncol. Biol. Phys. 43, 727–734 (1999).

  54. 54.

    Heemsbergen, W. D., Al-Mamgani, A., Witte, M. G., Van Herk, M. & Lebesque, J. V. Radiotherapy with rectangular fields is associated with fewer clinical failures than conformal fields in the high-risk prostate cancer subgroup: results from a randomized trial. Radiother. Oncol. 107, 134–139 (2013).

  55. 55.

    Zietman, A. L., Nakfoor, B. M., Prince, E. A. & Gerweck, L. E. The effect of androgen deprivation and radiation therapy on an androgen-sensitive murine tumor: an in vitro and in vivo study. Cancer J. Sci. Am. 3, 31–36 (1997).

  56. 56.

    Meijer, H. J. M. et al. Individualized image-based lymph node irradiation for prostate cancer. Nat. Rev. Urol. 10, 376–385 (2013).

  57. 57.

    Heesakkers, R. A. M. et al. Detection of lymph node metastases outside the routine surgical area with ferumoxtran-10–enhanced MR imaging. Radiology 251, 408–414 (2009).

  58. 58.

    Partin, A. W. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 150, 110–114 (1993).

  59. 59.

    Nguyen, P. L., Chen, M. H., Hoffman, K. E., Katz, M. S. & D’Amico, A. V. Predicting the risk of pelvic node involvement among men with prostate cancer in the contemporary era. Int. J. Radiat. Oncol. Biol. Phys. 74, 104–109 (2009).

  60. 60.

    Bader, P., Burkhard, F. C., Markwalder, R. & Studer, U. E. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J. Urol. 168, 514–518 (2002).

  61. 61.

    Lattouf, J. B. et al. Laparoscopic extended pelvic lymph node dissection for prostate cancer: description of the surgical technique and initial results. Eur. Urol. 52, 1347–1357 (2007).

  62. 62.

    Arenas, L. F., Fullhase, C., Boemans, P. & Fichtner, J. Detecting lymph nodes metastasis in prostate cancer through extended versus standard laparoscopic pelvic lymphadenectomy. Aktuelle Urol. 41, S10–S14 (2010).

  63. 63.

    Joniau, S. et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur. Urol. 63, 450–458 (2013).

  64. 64.

    Abdollah, F. et al. Indications for pelvic nodal treatment in prostate cancer should change. Validation of the Roach formula in a large extended nodal dissection series. Int. J. Radiat. Oncol. Biol. Phys. 83, 624–629 (2012).

  65. 65.

    Mattei, A. et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur. Urol. 53, 118–125 (2008).

  66. 66.

    Ganswindt, U. et al. Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int. J. Radiat. Oncol. Biol. Phys. 79, 1364–1372 (2011).

  67. 67.

    Edelstein, R. A. et al. Implications of prostate micrometastases in pelvic lymph nodes: an archival tissue study. Urology 47, 370–375 (1996).

  68. 68.

    Ferrari, A. C. et al. Prospective analysis of prostate-specific markers in pelvic lymph nodes of patients with high-risk prostate cancer. J. Natl Cancer Inst. 89, 1498–1504 (1997).

  69. 69.

    Briganti, A. et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur. Urol. 61, 480–487 (2012).

  70. 70.

    Vance, S. M. et al. Percentage of cancer volume in biopsy cores is prognostic for prostate cancer death and overall survival in patients treated with dose-escalated external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 940–946 (2012).

  71. 71.

    Hansen, J. et al. External validation of the updated Briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate 73, 211–218 (2013).

  72. 72.

    Gacci, M. et al. External validation of the updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection. Urol. Int. 90, 277–282 (2013).

  73. 73.

    Walz, J. et al. Head to head comparison of nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended pelvic lymph node dissection. Urology 79, 546–551 (2012).

  74. 74.

    Hricak, H., Choyke, P. L., Eberhardt, S. C., Leibel, S. A. & Scardino, P. T. Imaging prostate cancer: a multidisciplinary perspective. Radiology 243, 28–53 (2007).

  75. 75.

    Davis, G. L. Sensitivity of frozen section examination of pelvic nodes for metastatic prostate carcinoma. Cancer 76, 661–668 (1995).

  76. 76.

    Hövels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63, 387–395 (2008).

  77. 77.

    Bauman, G. et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 15, 45–55 (2012).

  78. 78.

    Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. (2019).

  79. 79.

    Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

  80. 80.

    Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

  81. 81.

    Ackerstaff, E., Glunde, K. & Bhujwalla, Z. M. Choline phospholipid metabolism: a target in cancer cells? J. Cell. Biochem. 90, 525–533 (2003).

  82. 82.

    de Jong, I. J., Pruim, J., Elsinga, P. H., Vaalburg, W. & Mensink, H. J. Preoperative staging of pelvic lymph nodes in prostate cancer by C-11-choline PET. J. Nucl. Med. 44, 331–335 (2003).

  83. 83.

    Poulsen, M. H. et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int. 106, 639–643 (2010).

  84. 84.

    Steuber, T. et al. [F18]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: preliminary results from a prospective histology based study. Eur. J. Cancer 46, 449–455 (2010).

  85. 85.

    Hacker, A. et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F] fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J. Urol. 176, 2014–2019 (2006).

  86. 86.

    Evangelista, L. et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur. Urol. 63, 1040–1048 (2001).

  87. 87.

    Fuccio, C., Rubello, D., Castellucci, P., Marzola, M. C. & Fanti, S. Choline PET/CT for prostate cancer: main clinical applications. Eur. J. Radiol. 80, e50–e56 (2011).

  88. 88.

    Osborne, J. R. et al. Prostate-specific membrane antigen-based imaging. Urol. Oncol. 31, 144–154 (2013).

  89. 89.

    Wright, G. L., Haley, C., Beckett, M. L. & Schellhammer, P. F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. Semin. Ori. 1, 18–28 (1995).

  90. 90.

    Wright, G. L. et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48, 326–334 (1996).

  91. 91.

    Sweat, S. D., Pacelli, A., Murphy, G. P. & Bostwick, D. G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52, 637–640 (1998).

  92. 92.

    Evans, J. D. et al. Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract. Radiat. Oncol. 8, 28–39 (2018).

  93. 93.

    Maurer, T. et al. Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

  94. 94.

    van Leeuwen, P. J. et al. Prospective evaluation of 68Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int. 119, 209–215 (2017).

  95. 95.

    Budaus, L. et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur. Urol. 69, 393–396 (2016).

  96. 96.

    Grubmüller, B. et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin. Cancer Res. 24, 6300–6307 (2018).

  97. 97.

    Barentsz, J. O., Fütterer, J. J. & Takahashi, S. Use of ultrasmall superparamagnetic iron oxide in lymph node MR imaging in prostate cancer patients. Eur. J. Radiol. 63, 369–372 (2007).

  98. 98.

    Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990).

  99. 99.

    Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).

  100. 100.

    Fortuin, A. S. et al. Value of PET/CT and MR lymphography in treatment of prostate cancer patients with lymph node metastases. Int. J. Radiat. Oncol. Biol. Phys. 84, 712–718 (2012).

  101. 101.

    Thoeny, H. C. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 55, 761–769 (2009).

  102. 102.

    Birkhäuser, F. D. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol. 64, 953–960 (2013).

  103. 103.

    Hövels, A. M., Heesakkers, R. A. M., Adang, E. M., Jager, G. J. & Barentsz, J. O. Cost-analysis of staging methods for lymph nodes in patients with prostate cancer: MRI with a lymph node-specific contrast agent compared to pelvic lymph node dissection or CT. Eur. Radiol. 14, 1707–1712 (2004).

  104. 104.

    Staffurth, J. A review of the clinical evidence for intensity-modulated radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 22, 643–657 (2010).

  105. 105.

    Michalski, J. M. et al. Effect of standard versus dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 4, e180039 (2018).

  106. 106.

    Michalski, J. M. et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 932–938 (2013).

  107. 107.

    Koontz, B. F., Bossi, A., Cozzarini, C., Wiegel, T. & D’Amico, A. A systematic review of hypofractionation for primary management of prostate cancer. Eur. Urol. 68, 683–691 (2015).

  108. 108.

    Zaorsky, N. G., Ohri, N., Showalter, T. N., Dicker, A. P. & Den, R. B. Systematic review of hypofractionated radiation therapy for prostate cancer. Cancer Treat. Rev. 39, 728–736 (2013).

  109. 109.

    Arcangeli, S. & Greco, C. Hypofractionated radiotherapy for organ-confined prostate cancer: is less more? Nat. Rev. Urol. 13, 400–408 (2016).

  110. 110.

    Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).

  111. 111.

    Hong, T. S., Tomé, W. A., Jaradat, H., Raisbeck, B. M. & Ritter, M. A. Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy. Acta Oncol. 45, 717–727 (2006).

  112. 112.

    Di Muzio, N. et al. Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 392–398 (2009).

  113. 113.

    Adkison, J. B. et al. Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 82, 184–190 (2012).

  114. 114.

    Fonteyne, V. et al. Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer: early late toxicity and 3-year clinical outcome. Radiother. Oncol. 109, 229–234 (2013).

  115. 115.

    Guerrero Urbano, T. et al. Intensity-modulated radiotherapy allows escalation of the radiation dose to the pelvic lymph nodes in patients with locally advanced prostate cancer: preliminary results of a phase I dose escalation study. Clin. Oncol. (R. Coll. Radiol.) 22, 236–244 (2010).

  116. 116.

    Reis Ferreira, M. et al. Phase 1/2 dose-escalation study of the use of intensity modulated radiation therapy to treat the prostate and pelvic nodes in patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 99, 1234–1242 (2017).

  117. 117.

    Muteganya, R., Goldman, S., Aoun, F., Roumeguère, T. & Albisinni, S. Current imaging techniques for lymph node staging in prostate cancer: a review. Front. Surg. 5, 74 (2018).

  118. 118.

    Wurschmidt, F., Petersen, C., Wahl, A., Dahle, J. & Kretschmer, M. 18F-fluoroethylcholine PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat. Oncol. 6, 44 (2011).

  119. 119.

    Schmidt-Hegemann, N. S. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat. Oncol. 13, 37 (2018).

  120. 120.

    Meijer, H. J. M. et al. Magnetic resonance lymphography-guided selective high-dose lymph node irradiation in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 82, 175–183 (2012).

  121. 121.

    Lawton, C. A. F. et al. Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 377–382 (2009).

  122. 122.

    Lawton, C. A. F. et al. RTOG GU radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 383–387 (2009).

  123. 123.

    Paxton, R. M., Williams, G. & Macdonald, J. S. Role of lymphography in carcinoma of the prostate. Br. Med. J. 1, 120–122 (1975).

  124. 124.

    Heidenreich, A., Ohlmann, C. H. & Polyakov, S. Anatomical extent of pelvic lymphadenectomy in patients undergoing radical prostatectomy. Eur. Urol. 52, 29–37 (2007).

  125. 125.

    Meijer, H. J. M. et al. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother. Oncol. 106, 59–63 (2013).

  126. 126.

    Chen, C., Witte, M., Heemsbergen, W. & van Herk, M. Multiple comparisons permutation test for image based data mining in radiotherapy. Radiat. Oncol. 8, 293 (2013).

  127. 127.

    Shipley, W. U. et al. Proton radiation as boost therapy for localized prostatic carcinoma. JAMA 241, 1912–1915 (1979).

  128. 128.

    Dryzmala, R. et al. Dose-volume histograms. Int. J. Radiat. Oncol. Biol. Phys. 21, 71–78 (1991).

  129. 129.

    Witte, M. G. et al. Relating dose outside the prostate with freedom from failure in the Dutch trial 68 Gy versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 77, 131–138 (2010).

  130. 130.

    Beasley, W. et al. Image-based data mining with continuous outcome variables. Radiother. Oncol. 127, S1088 (2018).

  131. 131.

    Heemsbergen, W. D. et al. Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy versus 78 Gy): relationships with local dose, acute effects, and baseline characteristics. Int. J. Radiat. Oncol. Biol. Phys. 78, 19–25 (2010).

  132. 132.

    Palorini, F. et al. First application of a pixel-wise analysis on bladder dose-surface maps in prostate cancer radiotherapy. Radiother. Oncol. 119, 123–128 (2016).

  133. 133.

    Improta, I. et al. Bladder spatial-dose descriptors correlate with acute urinary toxicity after radiation therapy for prostate cancer. Phys. Med. 32, 1681–1689 (2016).

  134. 134.

    Hoogeman, M. S. et al. Quantification of local rectal wall displacements by virtual rectum unfolding. Radiother. Oncol. 70, 21–30 (2004).

  135. 135.

    Heemsbergen, W. D., Hoogeman, M. S., Hart, G. A. M., Lebesque, J. V. & Koper, P. C. M. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 1011–1018 (2005).

  136. 136.

    Acosta, O. et al. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys. Med. Biol. 58, 2581–2595 (2013).

  137. 137.

    US National Library of Medicine. (2019).

  138. 138.

    International Standard Randomised Controlled Trial Number Register. A phase III randomised controlled trial of prostate and pelvis versus prostate alone radiotherapy with or without prostate boost. ISRCTN (2019).

Download references


H.T. is part funded by Prostate Cancer UK grant RIA-ST2-031. A.C. and M.V.H. are supported by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre.

Author information

H.T. researched data for the article and wrote the manuscript. All authors made substantial contributions to discussions of content and reviewed and edited the manuscript before submission.

Correspondence to Hannah Tharmalingam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks C. Cozzarini and M. Roach III for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Intensity-modulated radiotherapy

An advanced form of 3D radiotherapy that uses multiple narrow radiation beams of differing intensities aimed at the tumour from many angles to enable precise conformation of dose to the target.

Image-guided radiotherapy

The process of imaging during radiotherapy to ensure accuracy of treatment delivery and adherence to the actual radiation plan.

Propensity-score matched analyses

A statistical matching technique that estimates treatment effect by accounting for covariates that predict receipt of it, thereby attempting to reduce bias due to confounding factors.

High-dose rate (HDR) brachytherapy

A type of brachytherapy used in prostate cancer whereby a radioactive source is dispensed via a number of temporary catheters placed transperineally into the prostate to deliver radiation at a rapid rate of >12 Gy/h.

3D conformal radiotherapy

A type of radiotherapy that uses special imaging modalities to define the 3D shape of the tumour and computer-controlled planning techniques to conform the radiation beams to the target.


Mean radiation dose delivered to 33% of a defined target volume typically derived from a dose–volume histogram.

α/β ratio

A parameter derived from linear quadratic dose–response curves that determines the sensitivity of different types of tissue to radiation doses.

International Prostate Symptom Score

A validated self-assessment tool developed to measure lower urinary tract symptoms and health-related quality of life in patients with prostate disease.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark