Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiparametric MRI for prostate cancer diagnosis: current status and future directions

Abstract

The current diagnostic pathway for prostate cancer has resulted in overdiagnosis and consequent overtreatment as well as underdiagnosis and missed diagnoses in many men. Multiparametric MRI (mpMRI) of the prostate has been identified as a test that could mitigate these diagnostic errors. The performance of mpMRI can vary depending on the population being studied, the execution of the MRI itself, the experience of the radiologist, whether additional biomarkers are considered and whether mpMRI-targeted biopsy is carried out alone or in addition to systematic biopsy. A number of challenges to implementation remain, such as ensuring high-quality execution and reporting of mpMRI and ensuring that this diagnostic pathway is cost-effective. Nevertheless, emerging clinical trial data support the adoption of this technology as part of the standard of care for the diagnosis of prostate cancer.

Key points

  • Multiparametric MRI (mpMRI) of the prostate is a novel promising tool for diagnosis of prostate cancer that might help to reduce overdiagnosis of insignificant prostate cancer.

  • mpMRI should include four sequences: T1-weighted images, T2-weighted images, diffusion-weighted images (DWI) and dynamic contrast-enhanced imaging (DCEI).

  • Interpretation and reporting of mpMRI must be carried out following standardized scoring systems (such as Prostate Imaging Reporting and Data System (PI-RADS) v2).

  • The use of mpMRI is considered useful; the use of mpMRI-targeted biopsy is increasing the detection of clinically significant prostate cancer in both biopsy-naive and previous negative biopsy settings.

  • The use of mpMRI as a triage test is still controversial. In men with negative mpMRI, omitting a biopsy can only be considered when the clinical suspicion of prostate cancer is low.

  • Improvements in inter-reader agreement, development of computer-aided diagnostic systems and assessment of biomarkers to use in combination with mpMRI are needed.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: mpMRI of a non-malignant prostate gland.
Fig. 2: mpMRI of a cancerous prostate.
Fig. 3: mpMRI of a cancerous prostate using magnetic resonance spectroscopy imaging.
Fig. 4: The anatomy of the prostate and T2-weighted mpMRI imaging.
Fig. 5: Transrectal versus transperineal approach to biopsy.
Fig. 6: Traditional and mpMRI-influenced prostate cancer diagnostic pathway.
Fig. 7: Comparison between T2-weighted images of a prostate with and without the use of an endorectal coil.

References

  1. Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015. JAMA Oncol. 3, 524 (2017).

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  3. European Association of Urology. EAU guidelines on prostate cancer. EAU https://uroweb.org/guideline/prostate-cancer/ (2019).

  4. Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA 319, 883–895 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Schröder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    PubMed  Google Scholar 

  6. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moyer, V. A. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    PubMed  Google Scholar 

  8. Fleshner, K., Carlsson, S. V. & Roobol, M. J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol. 14, 26–37 (2017).

    CAS  PubMed  Google Scholar 

  9. Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, k3519 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Fenton, J. J. et al. Prostate-specific antigen-based screening for prostate cancer evidence report and systematic review for the us preventive services task force. JAMA 319, 1914–1931 (2018).

    PubMed  Google Scholar 

  11. US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task force recommendation statement. JAMA 319, 1901–1913 (2018).

    Google Scholar 

  12. Gandaglia, G. et al. Structured population-based prostate-specific antigen screening for prostate cancer: the European Association of Urology position in 2019. Eur. Urol. https://doi.org/10.1016/j.eururo.2019.04.033 (2019).

    PubMed  Google Scholar 

  13. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    PubMed  Google Scholar 

  14. Bjurlin, M. A. et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J. Urol. 192, 648–658 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Cohen, M. S. et al. Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center Experience and an international meta-analysis. Eur. Urol. 54, 371–381 (2008).

    PubMed  Google Scholar 

  16. Etzioni, R. et al. Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control 19, 175–181 (2008).

    PubMed  Google Scholar 

  17. Loeb, S. et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65, 1046–1055 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Serefoglu, E. C. et al. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can. Urol. Assoc. J. 7, E293–E298 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Futterer, J. J. et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur. Urol. 68, 1045–1053 (2015).

    PubMed  Google Scholar 

  20. Poon, Y., Mccallum, W., Henkelman, M., Sutcliffe, B. & Jewett, A. S. Magnetic resonance imaging of the prostate. Radiology 154, 143–149 (1985).

    CAS  PubMed  Google Scholar 

  21. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Schoots, I. G. et al. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur. Urol. 68, 438–450 (2015).

    PubMed  Google Scholar 

  23. Giganti, F. et al. The evolution of MRI of the prostate: the past, the present, and the future. Am. J. Roentgenol. https://doi.org/10.2214/AJR.18.20796 (2019).

    Article  Google Scholar 

  24. Wu, L.-M., Xu, J.-R., Ye, Y.-Q., Lu, Q. & Hu, J. N. The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. Am. J. Roentgenol. 199, 103–110 (2012).

    Google Scholar 

  25. Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Rosenkrantz, A. B. & Taneja, S. S. Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. Am. J. Roentgenol. 202, 109–120 (2014).

    Google Scholar 

  27. Hricak, H. et al. MR imaging of the prostate gland: normal anatomy. Am. J. Roentgenol. 148, 51–58 (1987).

    CAS  Google Scholar 

  28. Wang, L. et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246, 168–176 (2008).

    PubMed  Google Scholar 

  29. Somford, D. M., Fütterer, J. J., Hambrock, T. & Barentsz, J. O. Diffusion and perfusion MR imaging of the prostate. Magn. Reson. Imaging Clin. N. Am. 16, 685–695 (2008).

    PubMed  Google Scholar 

  30. Kim, C. K., Park, B. K. & Kim, B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. Am. J. Roentgenol. 194, 33–37 (2010).

    Google Scholar 

  31. Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

    PubMed  Google Scholar 

  32. Jung, S. Il et al. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269, 493–503 (2013).

    PubMed  Google Scholar 

  33. Hara, N., Okuizumi, M., Koike, H., Kawaguchi, M. & Bilim, V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62, 140–147 (2005).

    PubMed  Google Scholar 

  34. Verma, S. et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am. J. Roentgenol. 198, 1277–1288 (2012).

    Google Scholar 

  35. Boesen, L. et al. Assessment of the diagnostic accuracy of biparametric magnetic resonance imaging for prostate cancer in biopsy-naive men: the biparametric MRI for detection of prostate cancer (BIDOC) study. JAMA 1, e180219 (2018).

    Google Scholar 

  36. Jambor, I. et al. Novel biparametric MRI and targeted biopsy improves risk stratification in men with a clinical suspicion of prostate cancer (IMPROD Trial). J. Magn. Reson. Imaging 46, 1089–1095 (2017).

    PubMed  Google Scholar 

  37. Del Vescovo, R. et al. Dynamic contrast-enhanced MR evaluation of prostate cancer before and after endorectal high-intensity focused ultrasound. Radiol. Med. 118, 851–862 (2013).

    PubMed  Google Scholar 

  38. Punwani, S. et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br. J. Radiol. 85, 720–728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hricak, H. MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78, 103–111 (2005).

    Google Scholar 

  40. Kumar, V., Jagannathan, N. R., Thulkar, S. & Kumar, R. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer. Int. J. Urol. 19, 602–613 (2012).

    CAS  PubMed  Google Scholar 

  41. Vos, E. K. et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3T. Eur. Urol. 64, 448–455 (2013).

    PubMed  Google Scholar 

  42. Kobus, T., Vos, P. C. & Hambrock, T. Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted. Radiology 265, 457–467 (2013).

    Google Scholar 

  43. Kobus, T. et al. In vivo assessment of prostate cancer aggressiveness using magnetic resonance spectroscopic imaging at 3T with an endorectal coil. Eur. Urol. 60, 1074–1080 (2011).

    PubMed  Google Scholar 

  44. Hamoen, E. H. J., de Rooij, M., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur. Urol. 67, 1112–1121 (2014).

    PubMed  Google Scholar 

  45. Woo, S., Suh, C. H., Kim, S. Y., Cho, J. Y. & Kim, S. H. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur. Urol. 72, 177–188 (2017).

    PubMed  Google Scholar 

  46. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed  Google Scholar 

  47. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed  Google Scholar 

  48. Renard-Penna, R. et al. Prostate imaging reporting and data system and Likert scoring system: multiparametric MR imaging validation study to screen patients for initial biopsy. Radiology 275, 458–468 (2015).

    PubMed  Google Scholar 

  49. Appayya, M. B. et al. Characterizing indeterminate (Likert-score 3/5) peripheral zone prostate lesions with PSA density, PI-RADS scoring and qualitative descriptors on multiparametric MRI. Br. J. Radiol. 91, 20170645 (2017).

    Google Scholar 

  50. Rosenkrantz, A. B. et al. Prostate cancer localization using multiparametric MR imaging: comparison of prostate imaging reporting and data system (PI-RADS) and Likert scales. Radiology 269, 482–492 (2013).

    PubMed  Google Scholar 

  51. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Prostate cancer — version 2.2019. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2019).

  52. Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 7454–1490 (2004).

    Google Scholar 

  53. de Rooij, M., Hamoen, E. H. J., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur. Urol. 70, 233–245 (2016).

    PubMed  Google Scholar 

  54. Roethke, M. C. et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J. Urol. 31, 1111–1116 (2013).

    PubMed  Google Scholar 

  55. Hricak, H. et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 100, 2655–2663 (2004).

    PubMed  Google Scholar 

  56. Rud, E. et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur. Urol. 68, 487–496 (2015).

    PubMed  Google Scholar 

  57. De Rooij, M., Hamoen, E. H. J., Fütterer, J. J., Barentsz, J. O. & Rovers, M. M. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am. J. Roentgenol. 202, 343–351 (2014).

    Google Scholar 

  58. Guichard, G. et al. Extended 21-sample needle biopsy protocol for diagnosis of prostate cancer in 1000 consecutive patients. Eur. Urol. 52, 430–435 (2007).

    PubMed  Google Scholar 

  59. Valerio, M. et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur. Urol. 68, 8–19 (2015).

    PubMed  Google Scholar 

  60. van Hove, A. et al. Comparison of image-guided targeted biopsies versus systematic randomized biopsies in the detection of prostate cancer: a systematic literature review of well-designed studies. World J. Urol. 32, 847–858 (2014).

    PubMed  Google Scholar 

  61. Porpiglia, F. et al. Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naïve patients with suspected prostate cancer. Eur. Urol. 78, 282–288 (2016).

    Google Scholar 

  62. Panebianco, V. et al. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol. Oncol. 33, 17.e1–17.e7 (2015).

    Google Scholar 

  63. Tonttila, P. P. et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur. Urol. 69, 419–425 (2015).

    PubMed  Google Scholar 

  64. Baco, E. et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur. Urol. 69, 149–156 (2015).

    PubMed  Google Scholar 

  65. Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

    PubMed  Google Scholar 

  66. van der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur. Urol. 75, 570–578 (2019).

    PubMed  Google Scholar 

  67. Mendhiratta, N. et al. Magnetic resonance imaging-ultrasound fusion targeted prostate biopsy in a consecutive cohort of men with no previous biopsy: reduction of over detection through improved risk stratification. J. Urol. 194, 1601–1606 (2015).

    PubMed  Google Scholar 

  68. Haffner, J. et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 102, 171–178 (2011).

    Google Scholar 

  69. Mozer, P. et al. First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int. 115, 50–57 (2015).

    CAS  PubMed  Google Scholar 

  70. Hansen, N. et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naïve men with suspicion of prostate cancer. BJU Int. 38, 3218–3221 (2017).

    Google Scholar 

  71. Zaytoun, O. M., Moussa, A. S., Gao, T., Fareed, K. & Jones, J. S. Office based transrectal saturation biopsy improves prostate cancer detection compared to extended biopsy in the repeat biopsy population. J. Urol. 186, 850–854 (2011).

    PubMed  Google Scholar 

  72. Meng, M. V., Franks, J. H., Presti, J. C. & Shinohara, K. The utility of apical anterior horn biopsies in prostate cancer detection. Urol. Oncol. 21, 361–365 (2003).

    PubMed  Google Scholar 

  73. Allen, E. A., Kahane, H. & Epstein, J. I. Repeat biopsy strategies for men with atypical diagnoses on initial prostate needle biopsy. Urology 52, 803–807 (1998).

    CAS  PubMed  Google Scholar 

  74. Mabjeesh, N. J., Lidawi, G., Chen, J., German, L. & Matzkin, H. High detection rate of significant prostate tumours in anterior zones using transperineal ultrasound-guided template saturation biopsy. BJU Int. 110, 993–997 (2012).

    PubMed  Google Scholar 

  75. Zaytoun, O. M. et al. When serial prostate biopsy is recommended: most cancers detected are clinically insignificant. BJU Int. 110, 987–992 (2012).

    PubMed  Google Scholar 

  76. Merrick, G. S. et al. The morbidity of transperineal template-guided prostate mapping biopsy. BJU Int. 101, 1524–1529 (2008).

    PubMed  Google Scholar 

  77. Simmons, L. A. M. et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br. J. Cancer 116, 1159–1165 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Zhang, Z. X. et al. The value of magnetic resonance imaging in the detection of prostate cancer in patients with previous negative biopsies and elevated prostate-specific antigen levels: a meta-analysis. Acad. Radiol. 21, 578–589 (2014).

    CAS  PubMed  Google Scholar 

  79. Radtke, J. P. et al. Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imaging-ultrasound fusion guidance. J. Urol. 193, 87–94 (2015).

    PubMed  Google Scholar 

  80. Boesen, L., Nørgaard, N., Løgager, V., Balslev, I. & Thomsen, H. S. A prospective comparison of selective multiparametric magnetic resonance imaging fusion-targeted and systematic transrectal ultrasound-guided biopsies for detecting prostate cancer in men undergoing repeated biopsies. Urol. Int. 99, 384–391 (2017).

    PubMed  Google Scholar 

  81. Arsov, C. et al. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur. Urol. 68, 713–720 (2015).

    PubMed  Google Scholar 

  82. Moore, C. M. et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an international working group. Eur. Urol. 64, 544–552 (2013).

    PubMed  Google Scholar 

  83. Wegelin, O. et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur. Urol. 71, 517–531 (2016).

    Google Scholar 

  84. Stabile, A. et al. Not all multiparametric magnetic resonance imaging–targeted biopsies are equal: the impact of the type of approach and operator expertise on the detection of clinically significant prostate cancer. Eur. Urol. Oncol. 1, 120–128 (2018).

    PubMed  Google Scholar 

  85. Calio, B. et al. Changes in prostate cancer detection rate of MRI-TRUS fusion versus systematic biopsy over time: evidence of a learning curve. Prostate Cancer Prostatic Dis. 20, 436–441 (2017).

    CAS  PubMed  Google Scholar 

  86. Gaziev, G. et al. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int. 117, 80–86 (2016).

    PubMed  Google Scholar 

  87. Marra, G. et al. Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World J. Urol. 37, 277–287 (2019).

    PubMed  Google Scholar 

  88. Logan, J. K. et al. Current status of MRI and ultrasound fusion software platforms for guidance of prostate biopsies. BJU Int. 114, 641–652 (2015).

    Google Scholar 

  89. Gayet, M. et al. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review. BJU Int. 117, 392–400 (2016).

    PubMed  Google Scholar 

  90. Cash, H. et al. Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int. 118, 35–43 (2015).

    PubMed  Google Scholar 

  91. Muthigi, A. et al. Missing the mark: prostate cancer upgrading by systematic biopsy over magnetic resonance imaging/transrectal ultrasound fusion biopsy. J. Urol. 197, 327–334 (2017).

    PubMed  Google Scholar 

  92. Wegelin, O. et al. The FUTURE trial: a multicenter randomised controlled trial on target biopsy techniques based on magnetic resonance imaging in the diagnosis of prostate cancer in patients with prior negative biopsies. Eur. Urol. 75, 582–590 (2018).

    PubMed  Google Scholar 

  93. Hamid, S. et al. The SmartTarget Biopsy trial: a prospective, within-person randomised, blinded trial comparing the accuracy of visual-registration and magnetic resonance imaging/ultrasound image-fusion targeted biopsies for prostate cancer risk stratification. Eur. Urol. 75, 733–740 (2018).

    PubMed  Google Scholar 

  94. Hambrock, T. et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur. Urol. 61, 177–184 (2012).

    PubMed  Google Scholar 

  95. Baco, E. et al. Magnetic resonance imaging — transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur. Urol. 67, 787–794 (2015).

    PubMed  Google Scholar 

  96. Borghesi, M. et al. Complications after systematic, random, and image-guided prostate biopsy. Eur. Urol. 71, 353–365 (2017).

    PubMed  Google Scholar 

  97. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    PubMed  Google Scholar 

  98. Grummet, J., Pepdjonovic, L., Huang, S., Anderson, E. & Hadaschik, B. Transperineal versus transrectal biopsy in MRI targeting. Transl Androl. Urol. 6, 368–375 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Pepe, P., Garufi, A., Priolo, G. & Pennisi, M. Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin. Genitourin. Cancer 15, e33–e36 (2017).

    PubMed  Google Scholar 

  100. Murphy, D. G. & Grummet, J. P. Planning for the post-antibiotic era — why we must avoid TRUS-guided biopsy sampling. Nat. Rev. Urol. 13, 559–560 (2016).

    PubMed  Google Scholar 

  101. Schoots, I. G. & Roobol, M. J. From PROMIS to PRO-MRI in primary prostate cancer diagnosis. Transl Androl. Urol. 6, 604–607 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. 63, 125–140 (2013).

    PubMed  Google Scholar 

  103. Stabile, A., Giganti, F., Emberton, M. & Moore, C. M. MRI in prostate cancer diagnosis: do we need to add standard sampling? A review of the last 5 years. Prostate Cancer Prostatic Dis. 21, 473–487 (2018).

    PubMed  Google Scholar 

  104. Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    PubMed  Google Scholar 

  105. Marenco, J., Orczyk, C., Collins, T., Moore, C. & Emberton, M. Role of MRI in planning radical prostatectomy: what is the added value? World J. Urol. https://doi.org/10.1007/s00345-019-02762-2 (2019).

    Article  PubMed  Google Scholar 

  106. Algaba, F. & Montironi, R. Impact of prostate cancer multifocality on its biology and treatment. J. Endourol. 24, 799–804 (2010).

    PubMed  Google Scholar 

  107. Le, J. D. et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur. Urol. 67, 569–576 (2015).

    PubMed  Google Scholar 

  108. Radtke, J. P. et al. Multiparametric magnetic resonance imaging (MRI) and MRI — transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur. Urol. 70, 846–853 (2016).

    PubMed  Google Scholar 

  109. Stabile, A. et al. Association between prostate imaging reporting and data system (PI-RADS) score for the index lesion and multifocal, clinically significant prostate cancer. Eur. Urol. Oncol. 1, 29–36 (2018).

    Google Scholar 

  110. Panebianco, V. et al. Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur. Urol. 74, 48–54 (2018).

    PubMed  Google Scholar 

  111. Moldovan, P. C. et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

    PubMed  Google Scholar 

  112. Panebianco, V. et al. An update of pitfalls in prostate mpMRI: a practical approach through the lens of PI-RADS v. 2 guidelines. Insights Imaging 9, 87–101 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Soher, B. J., Dale, B. M. & Merkle, E. M. A review of MR physics: 3T versus 1.5T. Magn. Reson. Imaging Clin. N. Am. 15, 277–290 (2007).

    PubMed  Google Scholar 

  114. Shah, Z. K. et al. Performance comparison of 1.5T endorectal coil MRI with non-endorectal coil 3.0T MRI in patients with prostate cancer. Acad. Radiol. 36, 1011–1014 (2016).

    Google Scholar 

  115. Beyersdorff, D. et al. MRI of prostate cancer at 1.5 and 3.0T: comparison of image quality in tumor detection and staging. Am. J. Roentgenol. 185, 1214–1220 (2005).

    Google Scholar 

  116. Ullrich, T. et al. Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: a prospective comparison study of image quality. Eur. J. Radiol. 90, 192–197 (2017).

    CAS  PubMed  Google Scholar 

  117. Thompson, J. E. et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J. Urol. 192, 67–74 (2014).

    PubMed  Google Scholar 

  118. Gawlitza, J. et al. Impact of the use of an endorectal coil for 3T prostate MRI on image quality and cancer detection rate. Sci. Rep. 7, 40640 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Turkbey, B. et al. Comparison of endorectal coil and non-endorectal coil T2W and DW MRI at 3T for localizing prostate cancer: correlation with whole-mount histopathology. J. Magn. Reson. Imaging 25, 713–724 (2014).

    Google Scholar 

  120. Engelbrecht, M. R. et al. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur. Radiol. 12, 2294–2302 (2002).

    PubMed  Google Scholar 

  121. Heijmink, S. W. T. P. J. et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3T—comparison of image quality, localization, and staging performance. Radiology 244, 184–195 (2007).

    PubMed  Google Scholar 

  122. Platzek, I. et al. Multiparametric prostate magnetic resonance imaging at 3T: failure of magnetic resonance spectroscopy to provide added value. J. Comput. Assist. Tomogr. 39, 674–680 (2015).

    PubMed  Google Scholar 

  123. Panebianco, V. et al. Role of magnetic resonance spectroscopic imaging ([1H]MRSI) and dynamic contrast-enhanced MRI (DCE-MRI) in identifying prostate cancer foci in patients with negative biopsy and high levels of prostate-specific antigen (PSA). Radiol. Med. 115, 1314–1329 (2010).

    CAS  PubMed  Google Scholar 

  124. Polanec, S. H. et al. Multiparametric MRI of the prostate at 3T: limited value of 3D 1H-MR spectroscopy as a fourth parameter. World J. Urol. 34, 649–656 (2016).

    PubMed  Google Scholar 

  125. Mowatt, G. et al. The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. Health Technol. Assess. 17, 20 (2013).

    Google Scholar 

  126. Leapman, M. S. et al. Impact of the integration of proton magnetic resonance imaging spectroscopy to PI-RADS 2 for prediction of high grade and high stage prostate cancer. Radiol. Bras. 50, 299–307 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Peng, Y. et al. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology 271, 461–471 (2014).

    PubMed  Google Scholar 

  128. Hoang Dinh, A. et al. Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology 280, 117–127 (2016).

    PubMed  Google Scholar 

  129. Hoang Dinh, A. et al. Characterization of prostate cancer using T2 mapping at 3 T: a multi-scanner study. Diagn. Interv. Imaging 96, 365–372 (2015).

    CAS  PubMed  Google Scholar 

  130. Briganti, A. et al. Active surveillance for low-risk prostate cancer: the European Association of Urology position in 2018. Eur. Urol. 74, 357–368 (2018).

    PubMed  Google Scholar 

  131. Bruinsma, S. M. et al. The Movember Foundation’s GAP3 cohort: a profile of the largest global prostate cancer active surveillance database to date. BJU Int. 12, 3218–3221 (2017).

    Google Scholar 

  132. Bruinsma, S. M. et al. Active surveillance for prostate cancer: a narrative review of clinical guidelines. Nat. Rev. Urol. 13, 151–167 (2016).

    CAS  PubMed  Google Scholar 

  133. Filson, C. P. & Marks, L. S. Expectant management for men with early stage prostate cancer expectant management for men with early stage prostate cancer. CA Cancer J. Clin. 65, 265–282 (2015).

    PubMed  Google Scholar 

  134. Schoots, I. G. et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur. Urol. 67, 627–636 (2015).

    PubMed  Google Scholar 

  135. Schoots, I. G. et al. Is MRI-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int. 122, 946–958 (2018).

    PubMed  Google Scholar 

  136. Ghavimi, S. et al. Natural history of prostatic lesions on serial multiparametric magnetic resonance imaging. Can. Urol. Assoc. J. 12, 270–275 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Ma, T. M. et al. The role of multiparametric magnetic resonance imaging/ultrasound fusion biopsy in active surveillance. Eur. Urol. 71, 174–180 (2017).

    PubMed  Google Scholar 

  138. Velasquez, M. C., Prakash, N. S., Venkatramani, V., Nahar, B. & Punnen, S. Imaging for the selection and monitoring of men on active surveillance for prostate cancer. Transl Androl. Urol. 7, 228–235 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Moore, C. M. et al. Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations — a report of a European School of Oncology Task Force. Eur. Urol. 71, 648–655 (2017).

    PubMed  Google Scholar 

  140. Benson, M. C. et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J. Urol. 147, 815–816 (1992).

    CAS  PubMed  Google Scholar 

  141. Magheli, A. et al. Prostate specific antigen density to predict prostate cancer upgrading in a contemporary radical prostatectomy series: a single center experience. J. Urol. 183, 126–132 (2010).

    PubMed  Google Scholar 

  142. Washino, S. et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients. BJU Int. 119, 225–233 (2017).

    CAS  PubMed  Google Scholar 

  143. Distler, F. A. et al. The value of PSA density in combination with PI-RADSTM for the accuracy of prostate cancer prediction. J. Urol. 198, 575–582 (2017).

    PubMed  Google Scholar 

  144. Hansen, N. L. et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7–10 prostate cancer in a repeat biopsy setting. BJU Int. 119, 724–730 (2017).

    CAS  PubMed  Google Scholar 

  145. Hessels, D. et al. PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–16 (2003).

    CAS  PubMed  Google Scholar 

  146. Busetto, G. M. et al. Prostate cancer gene 3 and multiparametric magnetic resonance can reduce unnecessary biopsies: decision curve analysis to evaluate predictive models. Urology 82, 1355–1360 (2013).

    PubMed  Google Scholar 

  147. Catalona, W. J. et al. Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen. J. Urol. 171, 2239–2244 (2004).

    PubMed  Google Scholar 

  148. Filella, X., Foj, L., Augé, J. M., Molina, R. & Alcover, J. Clinical utility of %p2PSA and prostate health index in the detection of prostate cancer. Clin. Chem. Lab. Med. 52, 1347–1355 (2014).

    CAS  PubMed  Google Scholar 

  149. Catalona, W. J. et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 185, 1650–1655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Loeb, S. et al. The prostate health index selectively identifies clinically significant prostate cancer. J. Urol. 193, 1163–1169 (2015).

    PubMed  Google Scholar 

  151. Gnanapragasam, V. J. et al. The prostate health index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci. Rep. 72, 654–655 (2016).

    Google Scholar 

  152. Druskin, S. C. et al. Incorporating prostate health index density, MRI, and prior negative biopsy status to improve the detection of clinically significant prostate cancer. BJU Int. 12, 3218–3221 (2018).

    Google Scholar 

  153. de Rooij, M. et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 66, 430–436 (2014).

    PubMed  Google Scholar 

  154. Faria, R. et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS). Eur. Urol. 73, 23–30 (2017).

    PubMed  Google Scholar 

  155. Pepe, P. et al. Cost-effectiveness of multiparametric MRI in 800 men submitted to repeat prostate biopsy: results of a public health model. Anticancer Res. 38, 2395–2398 (2018).

    PubMed  Google Scholar 

  156. Cerantola, Y. et al. Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urol. Oncol. 34, 119.e1–119.e9 (2016).

    Google Scholar 

  157. Barnett, C. L. et al. Cost-effectiveness of magnetic resonance imaging and targeted fusion biopsy for early detection of prostate cancer. BJU Int. 122, 50–58 (2018).

    PubMed  Google Scholar 

  158. Barentsz, J. O. et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur. Urol. 69, 41–49 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Thomas, S. & Oto, A. Multiparametric MR imaging of the prostate: pitfalls in interpretation. Radiol. Clin. North Am. 56, 277–287 (2017).

    PubMed  Google Scholar 

  160. Rosenkrantz, A. B. et al. Online interactive case-based instruction in prostate magnetic resonance imaging interpretation using prostate imaging and reporting data system version 2: effect for novice readers. Curr. Probl. Diagn. Radiol. 48, 132–141 (2018).

    PubMed  Google Scholar 

  161. Rosenkrantz, A. B. et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280, 793–804 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Akin, O. et al. Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer. Eur. Radiol. 20, 995–1002 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. Garcia-Reyes, K. et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis. Abdom. Imaging 40, 134–142 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Rosenkrantz, A. B. et al. The learning curve in prostate MRI interpretation: self-directed learning versus continual reader feedback. Am. J. Roentgenol. 208, W92–W100 (2017).

    Google Scholar 

  165. Muller, B. G. et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology 277, 741–750 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Riney, J. C. et al. Prostate magnetic resonance imaging: the truth lies in the eye of the beholder. Urol. Oncol. 36, 159.e1–159.e5 (2018).

    Google Scholar 

  167. Chau, E. M. et al. Performance characteristics of multiparametric-MRI at a non-academic hospital using transperineal template mapping biopsy as a reference standard. Int. J. Surg. Open 10, 66–71 (2018).

    Google Scholar 

  168. Di Campli, E. et al. Diagnostic accuracy of biparametric versus multiparametric MRI in clinically significant prostate cancer: comparison between readers with different experience. Eur. J. Radiol. 101, 17–23 (2018).

    PubMed  Google Scholar 

  169. Scialpi, M. et al. Biparametric MRI of the prostate. Turk. J. Urol. 43, 401–409 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Thestrup, K. C. D. et al. Biparametric versus multiparametric MRI in the diagnosis of prostate cancer. Acta Radiol. Open 5, 2058460116663046 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Le, M. H., Chen, J., Wang, L. & Wang, Z. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys. Med. Biol. 62, 6497–6514 (2017).

    PubMed  Google Scholar 

  172. Niaf, E., Rouviere, O., Mège-Lechevallier, F., Bratan, F. & Lartizien, C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys. Med. Biol. 263, 3833–3851 (2013).

    Google Scholar 

  173. Vos, P. C., Barentsz, J. O., Karssemeijer, N. & Huisman, H. J. Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57, 1527–1542 (2012).

    CAS  PubMed  Google Scholar 

  174. Hambrock, T., Vos, P. C. Hulsbergen–Van de Kaa, C. A., Barentsz, J. O. & Hulsman, H. J. Computer-aided diagnosis with multiparametric 3-T MR imaging—effect on observer performance. Radiology 266, 521–530 (2013).

    PubMed  Google Scholar 

  175. Lemaitre, G., Marti, R., Rastgoo, M. & Meriaudeau, F. Computer-aided detection for prostate cancer detection based on multi-parametric magnetic resonance imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 3138–3141 (2017).

    PubMed  Google Scholar 

  176. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N. & Huisman, H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33, 1083–1092 (2014).

    PubMed  Google Scholar 

  177. Wang, J. et al. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol. 27, 4082–4090 (2017).

    PubMed  Google Scholar 

  178. Thompson, M. I. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    CAS  PubMed  Google Scholar 

  179. Abd-alazeez, M. et al. The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level—can it rule out clinically significant prostate cancer? Urol. Oncol. 32, 45.e17–45.e22 (2013).

    Google Scholar 

  180. Thompson, J. E. et al. The diagnostic performance of multiparametric magnetic resonance imaging to detect significant prostate cancer. J. Urol. 195, 1428–1435 (2016).

    CAS  PubMed  Google Scholar 

  181. Nam, R. K. et al. A pilot study to evaluate the role of magnetic resonance imaging for prostate cancer screening in the general population. J. Urol. 196, 361–366 (2016).

    PubMed  Google Scholar 

  182. Brennen, W. N. & Isaacs, J. T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat. Rev. Urol. 15, 703–715 (2018).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. and F.G. researched the data for the article. A.S. wrote the article. All authors made substantial contributions to the discussion of the content. A.S., A.B.R., S.S.T., G.V., I.S.G., C.A., M.E., C.M.M. and V.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Armando Stabile.

Ethics declarations

Competing interests

M.E. receives research support from the UK’s National Institute of Health Research (NIHR) UCLH/UCL Biomedical Research Centre. C.M.M. has received research funding from NI Health, the European Association of Urology Research Foundation, Prostate Cancer UK, Movember, and the Cancer Vaccine Institute and advisory board fees from Genomic Health. A.B.R. has royalties from Thieme Medical Publisher. F.G. is funded by the UCL Graduate Scholarship and the Brahm PhD scholarship. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks T. Hambrock, P. Choyke and A. George for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stabile, A., Giganti, F., Rosenkrantz, A.B. et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 17, 41–61 (2020). https://doi.org/10.1038/s41585-019-0212-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0212-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing