Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long non-coding RNAs in genitourinary malignancies: a whole new world

Abstract

Long non-coding RNAs (lncRNAs) are regulators of cellular machinery that are commonly dysregulated in genitourinary malignancies. Accordingly, the investigation of lncRNAs is improving our understanding of genitourinary cancers, from development to progression and dissemination. lncRNAs are involved in major oncogenic events in genitourinary malignancies, including androgen receptor (AR) signalling in prostate cancer, hypoxia-inducible factor (HIF) pathway activation in renal cell carcinoma and invasiveness in bladder cancer, as well as multiple other proliferation and survival mechanisms. In line with their putative oncogenic roles, new lncRNA-based classifications are emerging as potent predictors of prognosis. In clinical practice, detection of oncogenic lncRNAs in serum or urine might enable early cancer detection, and lncRNAs might also be promising therapeutic targets for patients with genitourinary cancer. Furthermore, as predictors of sensitivity to anticancer treatments, lncRNAs could be integrated into future precision medicine strategies. Overall, lncRNAs are promising new candidates for molecular studies and for discovery of innovative biomarkers and are putative therapeutic targets in genitourinary oncology.

Key points

  • Long non-coding RNAs (lncRNAs) are untranslated transcripts >200 nucleotides in length with a 3D structure that enables complex interactions with DNA, mRNA and proteins.

  • lncRNAs influence cellular functions through genome-wide transcriptional regulation as well as direct interactions with proteins in diverse signalling pathways.

  • lncRNAs are frequently dysregulated in genitourinary malignancies, resulting in the promotion of multiple oncogenic mechanisms and the acquisition of therapeutic resistance.

  • The detection of tissue-specific lncRNAs in liquid biopsy samples provides opportunities to improve the early diagnosis of genitourinary malignancies.

  • lncRNA expression signatures can improve the subtyping and risk classification of genitourinary cancers and, therefore, have the potential to help refine therapeutic strategies.

  • Targeting lncRNAs using mechanisms based on RNA interference might provide new therapeutic opportunities in genitourinary malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main mechanisms of action of lncRNAs.
Fig. 2: Overview of oncogenic mechanisms of lncRNAs in prostate cancer.
Fig. 3: Overview of oncogenic mechanisms of lncRNAs in kidney cancer.
Fig. 4: Overview of oncogenic mechanisms of lncRNAs in bladder cancer.
Fig. 5: Principles of lncRNA targeting using single-stranded oligonucleotides.

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  2. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  4. Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Beuselinck, B. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 21, 1329–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Spratt, D. E., Zumsteg, Z. S., Feng, F. Y. & Tomlins, S. A. Translational and clinical implications of the genetic landscape of prostate cancer. Nat. Rev. Clin. Oncol. 13, 597–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elaidi, R. T. et al. A phase 2 BIOmarker driven trial with Nivolumab and Ipilimumab or VEGFR tKi in naïve metastatic Kidney cancer: the BIONIKK trial [923TiP]. Ann. Oncol. 28, mdx371.077 (2017).

    Google Scholar 

  9. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015). This paper details a landmark effort to characterize the lncRNA transcriptome in humans, from normal and tumour tissues to cell lines, identifying nearly 8,000 lineage-associated or cancer-associated lncRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogawa, Y., Sun, B. K. & Lee, J. T. Intersection of the RNAi and X-inactivation pathways. Science 320, 1336–1341 (2008). This study reports the characterization and regulation of the mechanisms of X inactivation by the lncRNA XIST , highlighting the essential role of non-coding transcripts in human biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ransohoff, J. D., Wei, Y. & Khavari, P. A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell. Biol. 19, 143–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14, 23672–23684 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009). This study reports that expression of lncRNAs is conserved in mammals and regulates key cellular functions through transcriptional regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, G. X. Y., Do, B. T., Webster, D. E., Khavari, P. A. & Chang, H. Y. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nat. Struct. Mol. Biol. 21, 585–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marvin, M. C. et al. Accumulation of noncoding RNA due to an RNase P defect in Saccharomyces cerevisiae. RNA 17, 1441–1450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3΄ end processing of a long nuclear-retained non-coding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qu, L. et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29, 653–668 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flippot, R. et al. Cancer subtypes classification using long non-coding RNA. Oncotarget 7, 54082–54093 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non–coding RNAs. Nature 482, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geisler, S. & Coller, J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell. Biol. 14, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoon, J.-H. et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun. 4, 2939 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Ørom, U. A. et al. Long non-coding RNAs with enhancer-like function in human. Cell 143, 46–58 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Long, Y., Wang, X., Youmans, D. T. & Cech, T. R. How do lncRNAs regulate transcription? Sci. Adv. 3, eaao2110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xiao, H. et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 6, 38005–38015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chiu, H.-S. et al. Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep. 23, 297–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero-Barrios, N., Legascue, M. F., Benhamed, M., Ariel, F. & Crespi, M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 46, 2169–2184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Nishikura, K. A-To-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell. Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009). This study finds that multiple lncRNAs can interact physically with transcriptional regulators, such as PRC2, demonstrating their importance for the function of chromatin remodelling complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Portoso, M. et al. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J. 36, 981–994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brockdorff, N. Noncoding RNA and Polycomb recruitment. RNA 19, 429–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Couso, J.-P. & Patraquim, P. Classification and function of small open reading frames. Nat. Rev. Mol. Cell. Biol. 18, 575–589 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Martens-Uzunova, E. S. et al. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 65, 1140–1151 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer J. Int. Cancer 136, E359–E386 (2015).

    Article  CAS  Google Scholar 

  45. Groskopf, J. et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin. Chem. 52, 1089–1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Morris, M. J. et al. Optimizing anticancer therapy in metastatic non-castrate prostate cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 36, 1521–1539 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smolle, M. A., Bauernhofer, T., Pummer, K., Calin, G. A. & Pichler, M. Current insights into long non-coding RNAs (lncRNAs) in prostate cancer. Int. J. Mol. Sci. 18, 473 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  51. Takayama, K.-I. et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 32, 1665–1680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999). In this study, overexpression of PCA3 (also known as DD3 ) was identified as a sensitive and specific marker of prostate cancer, demonstrating the potential of lncRNAs for improving early diagnosis.

    CAS  PubMed  Google Scholar 

  53. Ferreira, L. B. et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12, 507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lemos, A. E. G. et al. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol. 37, 11339–11348 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, A. et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 13, 209–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, L. et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parolia, A. et al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol. Cancer 14, 46 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cui, Z. et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol. Oncol. 31, 1117–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Y. et al. Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat. Genet. 50, 814–824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salameh, A. et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl Acad. Sci. USA 112, 8403–8408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hung, C.-L. et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proc. Natl Acad. Sci. USA 111, 18697–18702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prensner, J. R. et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 16, 900–908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chakravarty, D. et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Ricke, W. A. et al. Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J. 22, 1512–1520 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Xiong, W. et al. Oncogenic non-coding RNA NEAT1 promotes the prostate cancer cell growth through the SRC3/IGF1R/AKT pathway. Int. J. Biochem. Cell Biol. 94, 125–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fox, A. H. & Lamond, A. I. Paraspeckles. Cold Spring Harb. Perspect. Biol. 2, a000687 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Prensner, J. R. et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 74, 1651–1660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y. et al. Long noncoding RNA SChLAP1 accelerates the proliferation and metastasis of prostate cancer via targeting miR-198 and promoting the MAPK1 pathway. Oncol. Res. 26, 131–143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Malek, R. et al. TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis. Cancer Res. 77, 3181–3193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bauderlique-Le Roy, H. et al. Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in stemness for the long noncoding RNA H19. Stem Cells Dev. 24, 1252–1262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, B. et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway. Cancer Biomark. 21, 613–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Orfanelli, U. et al. Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 34, 2094–2102 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, X., Yang, B. & Ma, B. The UCA1/miR-204/Sirt1 axis modulates docetaxel sensitivity of prostate cancer cells. Cancer Chemother. Pharmacol. 78, 1025–1031 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Byles, V. et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31, 4619–4629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010). In this paper, PTENP1 is shown to regulate the expression of PTEN, showing that lncRNAs can be potentially involved in the regulation of major oncogenic pathways .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Du, Z. et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif. 50, e12318 (2017).

    Article  CAS  Google Scholar 

  80. Wang, X. et al. LincRNA-p21 suppresses development of human prostate cancer through inhibition of PKM2. Cell Prolif. 50, e12395 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  81. Du, Y. et al. LncRNA XIST acts as a tumor suppressor in prostate cancer through sponging miR-23a to modulate RKIP expression. Oncotarget 8, 94358–94370 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, J. et al. Decreased expression of long non-coding RNA GAS5 promotes cell proliferation, migration and invasion, and indicates a poor prognosis in ovarian cancer. Oncol. Rep. 36, 3241–3250 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Pickard, M. R., Mourtada-Maarabouni, M. & Williams, G. T. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim. Biophys. Acta 1832, 1613–1623 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Yacqub-Usman, K., Pickard, M. R. & Williams, G. T. Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 75, 693–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, J. et al. Reciprocal regulation of long noncoding RNAs THBS4-003 and THBS4 control migration and invasion in prostate cancer cell lines. Mol. Med. Rep. 14, 1451–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jia, J. et al. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget 7, 37868–37881 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sebastian, A., Hum, N. R., Hudson, B. D. & Loots, G. G. Cancer-osteoblast interaction reduces sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer. Microarrays 4, 503–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, D. et al. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 6, 41045–41055 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation. PLOS ONE 12, e0182305 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wang, G. et al. Lrf suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat. Genet. 45, 739–746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhu, M. et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 281, 3766–3775 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Prensner, J. R. et al. The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 5, 1434–1438 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chua, M. L. K. et al. A prostate cancer ‘nimbosus’: genomic instability and SChLAP1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur. Urol. 72, 665–674 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primer 3, 17009 (2017).

    Article  Google Scholar 

  97. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Brugarolas, J. PBRM1 and BAP1 as novel targets for renal cell carcinoma. Cancer J. 19, 324–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kanu, N. et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 34, 5699–5708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Malouf, G. G. et al. Characterization of long non-coding RNA transcriptome in clear-cell renal cell carcinoma by next-generation deep sequencing. Mol. Oncol. 9, 32–43 (2014). In this study, unsupervised clustering of the ccRCC transcriptome identifies four subgroups with distinct mutational and clinicopathological profiles, suggesting that lncRNAs can help define genitourinary tumour subtypes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wu, W. et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci. Rep. 7, 45029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, L. et al. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma 62, 412–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. He, H., Wang, N., Yi, X., Tang, C. & Wang, D. Long non-coding RNA H19 regulates E2F1 expression by competitively sponging endogenous miR-29a-3p in clear cell renal cell carcinoma. Cell Biosci. 7, 65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Raveh, E., Matouk, I. J., Gilon, M. & Hochberg, A. The H19 long non-coding RNA in cancer initiation, progression and metastasis — a proposed unifying theory. Mol. Cancer 14, 184 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhang, H., Yang, F., Chen, S.-J., Che, J. & Zheng, J. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 36, 2947–2955 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Hirata, H. et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 75, 1322–1331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, Y. et al. Suppressed expression of long non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells. Tumour Biol. 35, 11887–11894 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hong, Q. et al. LncRNA HOTAIR regulates HIF-1α/AXL signaling through inhibition of miR-217 in renal cell carcinoma. Cell Death Dis. 8, e2772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Katayama, H. et al. Long non-coding RNA HOTAIR promotes cell migration by upregulating insulin growth factor–binding protein 2 in renal cell carcinoma. Sci. Rep. 7, 12016 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ding, J. et al. Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 37, 5037–5053 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Zhai, W. et al. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia. Oncogene 35, 4866–4880 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Qu, L. et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nat. Commun. 7, 12692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Y. et al. Long intergenic non-coding RNA 00152 promotes renal cell carcinoma progression by epigenetically suppressing P16 and negatively regulates miR-205. Am. J. Cancer Res. 7, 312–322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, Z. et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36, 1965–1977 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Gong, X. et al. Novel lincRNA SLINKY is a prognostic biomarker in kidney cancer. Oncotarget 8, 18657–18669 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Flippot, R. et al. Expression of long non-coding RNA MFI2-AS1 is a strong predictor of recurrence in sporadic localized clear-cell renal cell carcinoma. Sci. Rep. 7, 8540 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Thrash-Bingham, C. A. & Tartof, K. D. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J. Natl Cancer Inst. 91, 143–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Bertozzi, D. et al. Characterization of novel antisense HIF-1α transcripts in human cancers. Cell Cycle 10, 3189–3197 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Baranello, L., Bertozzi, D., Fogli, M. V., Pommier, Y. & Capranico, G. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1alpha gene locus. Nucleic Acids Res. 38, 159–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Mineo, M. et al. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 15, 2500–2509 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, M. et al. Tetracycline-inducible shRNA targeting antisense long non-coding RNA HIF1A-AS2 represses the malignant phenotypes of bladder cancer. Cancer Lett. 376, 155–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Cayre, A., Rossignol, F., Clottes, E. & Penault-Llorca, F. aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 5, R223–R230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jiang, Y.-Z. et al. Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res. 76, 2105–2114 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Qiao, H.-P., Gao, W.-S., Huo, J.-X. & Yang, Z.-S. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac. J. Cancer Prev. 14, 1077–1082 (2013).

    Article  PubMed  Google Scholar 

  126. Zhou, Y. et al. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 282, 24731–24742 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Kawakami, T. et al. Imprinted DLK1 is a putative tumor suppressor gene and inactivated by epimutation at the region upstream of GTL2 in human renal cell carcinoma. Hum. Mol. Genet. 15, 821–830 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Yao, J. et al. Decreased expression of a novel lncRNA CADM1-AS1 is associated with poor prognosis in patients with clear cell renal cell carcinomas. Int. J. Clin. Exp. Pathol. 7, 2758–2767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xue, S. et al. Decreased expression of long non-coding RNA NBAT-1 is associated with poor prognosis in patients with clear cell renal cell carcinoma. Int. J. Clin. Exp. Pathol. 8, 3765–3774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sanli, O. et al. Bladder cancer. Nat. Rev. Dis. Primer 3, 17022 (2017).

    Article  Google Scholar 

  131. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Peter, S. et al. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin. Cancer Res. 20, 5311–5321 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, L. et al. Genome-wide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma. Cancer Lett. 349, 77–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, M. et al. Common and differentially expressed long noncoding RNAs for the characterization of high and low grade bladder cancer. Gene 592, 78–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, H. et al. Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer. Oncotarget 7, 86174–86185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Millán-Rodríguez, F., Chéchile-Toniolo, G., Salvador-Bayarri, J., Palou, J. & Vicente-Rodríguez, J. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J. Urol. 163, 73–78 (2000).

    Article  PubMed  Google Scholar 

  137. Wang, X.-S. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin. Cancer Res. 12, 4851–4858 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, F., Li, X., Xie, X., Zhao, L. & Chen, W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 582, 1919–1927 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Luo, J. et al. LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway. Oncol. Lett. 14, 5556–5562 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu, W. et al. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLOS ONE 8, e73920 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xue, M. et al. Upregulation of long non-coding RNA urothelial carcinoma associated 1 by CCAAT/enhancer binding protein α contributes to bladder cancer cell growth and reduced apoptosis. Oncol. Rep. 31, 1993–2000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xue, M., Li, X., Li, Z. & Chen, W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumor Biol. 35, 6901–6912 (2014).

    Article  CAS  Google Scholar 

  143. Elkin, M. et al. The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett. 374, 57–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Ohana, P. et al. The expression of the H19 gene and its function in human bladder carcinoma cell lines. FEBS Lett. 454, 81–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Ariel, I. et al. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol. Pathol. 53, 320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Luo, M. et al. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333, 213–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Lv, M. et al. lncRNA H19 regulates epithelial–mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim. Biophys. Acta 1864, 1887–1899 (2017).

    Article  CAS  Google Scholar 

  148. Chen, L.-H., Hsu, W.-L., Tseng, Y.-J., Liu, D.-W. & Weng, C.-F. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer 16, 431 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Luo, M. et al. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 280, 1709–1716 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Li, S. et al. The YAP1 oncogene contributes to bladder cancer cell proliferation and migration by regulating the H19 long noncoding RNA. Urol. Oncol. 33, 427.e1–427.e10 (2015).

    Article  CAS  Google Scholar 

  151. Han, Y., Liu, Y., Nie, L., Gui, Y. & Cai, Z. Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology 81, 209.e1–209.e7 (2013).

    Article  Google Scholar 

  152. Fan, Y. et al. TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin. Cancer Res. 20, 1531–1541 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Ying, L. et al. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol. Biosyst. 8, 2289 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Tan, J., Qiu, K., Li, M. & Liang, Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 589, 3175–3181 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Han, Y., Liu, Y., Gui, Y. & Cai, Z. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder: TUG 1 in bladder cancer. J. Surg. Oncol. 107, 555–559 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Zhuang, J. et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci. Rep. 5, 11924 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Li, L.-J. et al. Long noncoding RNA GHET1 promotes the development of bladder cancer. Int. J. Clin. Exp. Pathol. 7, 7196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Berrondo, C. et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLOS ONE 11, e0147236 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Droop, J. et al. Diagnostic and prognostic value of long noncoding RNAs as biomarkers in urothelial carcinoma. PLOS ONE 12, e0176287 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Li, Z., Li, X., Wu, S., Xue, M. & Chen, W. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 105, 951–955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, H.-J. et al. Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J. Clin. Oncol. 45, 1055–1063 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, X. et al. Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells. Oncol. Rep. 32, 1281–1290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yang, C., Li, X., Wang, Y., Zhao, L. & Chen, W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 496, 8–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, C. et al. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumor Biol. 37, 263–270 (2016).

    Article  CAS  Google Scholar 

  165. Sun, X. et al. Long non-coding RNA HOTAIR regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death Dis. 6, e1907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xiong, Y. et al. The long non-coding RNA XIST interacted with MiR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR). Cell. Physiol. Biochem. 43, 405–418 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, Z. et al. Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLOS ONE 8, e73991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cao, Q., Wang, N., Qi, J., Gu, Z. & Shen, H. Long non-coding RNA-GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C-C motif) ligand 1 expression. Mol. Med. Rep. 13, 27–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Ying, L. et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol. Biosyst. 9, 407 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Qi, P., Zhou, X. & Du, X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol. Cancer 15, 39 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Jiang, H., Hu, X., Zhang, H. & Li, W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat. Oncol. 12, 65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Han, Y. et al. Prostate cancer susceptibility in men of African ancestry at 8q24. J. Natl. Cancer Inst. 108, djv431 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  174. Verhaegh, G. W. et al. Polymorphisms in the H19 gene and the risk of bladder cancer. Eur. Urol. 54, 1118–1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Hua, Q. et al. Genetic variants in lncRNA H19 are associated with the risk of bladder cancer in a Chinese population. Mutagenesis 31, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, F. et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 5, 11091–11102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang, W. et al. A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy. Prostate 75, 653–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. de Kok, J. B. et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 62, 2695–2698 (2002).

    PubMed  Google Scholar 

  179. Hessels, D. et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    Article  PubMed  Google Scholar 

  181. Sanguedolce, F. et al. Urine TMPRSS2: ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin. Genitourin. Cancer 14, 117–121 (2016).

    Article  PubMed  Google Scholar 

  182. Ke, D. et al. The combination of circulating long noncoding RNAs AK001058, INHBA-AS1, MIR4435-2HG, and CEBPA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. Oncotarget 8, 21516–21525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Permuth, J. B. et al. Linc-ing circulating long non-coding RNAs to the diagnosis and malignant prediction of intraductal papillary mucinous neoplasms of the pancreas. Sci. Rep. 7, 10484 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Ren, S. et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Cancer 49, 2949–2959 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Li, M. et al. Long non-coding RNAs in renal cell carcinoma: a systematic review and clinical implications. Oncotarget 8, 48424–48435 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wu, Y. et al. A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogenesis 5, e192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, Z. et al. Long non-coding RNA urothelial carcinoma–associated 1 as a tumor biomarker for the diagnosis of urinary bladder cancer. Tumor Biol. 39, 1010428317709990 (2017).

    Google Scholar 

  188. Srivastava, A. K. et al. Appraisal of diagnostic ability of UCA1 as a biomarker of carcinoma of the urinary bladder. Tumour Biol. 35, 11435–11442 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Eissa, S., Matboli, M., Essawy, N. O. E. & Kotb, Y. M. Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis. Tumor Biol. 36, 9545–9552 (2015).

    Article  CAS  Google Scholar 

  190. Duan, W. et al. Identification of a serum circulating lncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget 7, 78850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ylipää, A. et al. Transcriptome sequencing reveals PCAT5 as a novel ERG-regulated long noncoding RNA in prostate cancer. Cancer Res. 75, 4026–4031 (2015).

    Article  PubMed  CAS  Google Scholar 

  192. Ma, W. et al. The prognostic value of long noncoding RNAs in prostate cancer: a systematic review and meta-analysis. Oncotarget 8, 57755–57765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Mehra, R. et al. Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur. Urol. 70, 549–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Prensner, J. R. et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 15, 1469–1480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Huang, T.-B. et al. A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int. Urol. Nephrol. 49, 825–835 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Liu, D. et al. The gain and loss of long noncoding RNA associated-competing endogenous RNAs in prostate cancer. Oncotarget 7, 57228–57238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cheng, W.-S. et al. Both genes and lncRNAs can be used as biomarkers of prostate cancer by using high throughput sequencing data. Eur. Rev. Med. Pharmacol. Sci. 18, 3504–3510 (2014).

    PubMed  Google Scholar 

  198. Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zigeuner, R. et al. External validation of the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score for clear-cell renal cell carcinoma in a single European centre applying routine pathology. Eur. Urol. 57, 102–111 (2010).

    Article  PubMed  Google Scholar 

  201. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003).

    Article  PubMed  Google Scholar 

  202. Qu, L. et al. Prognostic value of a long non-coding RNA signature in localized clear cell renal cell carcinoma. Eur. Urol. 74, 756–763 (2018). In this paper, lncRNA-based expression signatures are shown to be independent biomarkers for patient stratification in ccRCC.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H.-M., Yang, F.-Q., Yan, Y., Che, J.-P. & Zheng, J.-H. High expression of long non-coding RNA SPRY4-IT1 predicts poor prognosis of clear cell renal cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 5801–5809 (2014).

    PubMed  PubMed Central  Google Scholar 

  204. Xiong, J., Liu, Y., Jiang, L., Zeng, Y. & Tang, W. High expression of long non-coding RNA lncRNA-ATB is correlated with metastases and promotes cell migration and invasion in renal cell carcinoma. Jpn J. Clin. Oncol. 46, 378–384 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Song, S. et al. RCCRT1 is correlated with prognosis and promotes cell migration and invasion in renal cell carcinoma. Urology 84, 730.e1–730.e7 (2014).

    Article  Google Scholar 

  206. Su, H. et al. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget 8, 5789–5799 (2017).

    Article  PubMed  Google Scholar 

  207. Jin, P., Wang, J. & Liu, Y. Downregulation of a novel long non-coding RNA, LOC389332, is associated with poor prognosis and tumor progression in clear cell renal cell carcinoma. Exp. Ther. Med. 13, 1137–1142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Yan, T.-H. et al. Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. Tumor Biol. 35, 10249–10257 (2014).

    Article  CAS  Google Scholar 

  210. Zhang, S. et al. lncRNA up-regulated in nonmuscle invasive bladder cancer facilitates tumor growth and acts as a negative prognostic factor of recurrence. J. Urol. 196, 1270–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, T. et al. Expression of long noncoding RNA lncRNA-n336928 is correlated with tumor stage and grade and overall survival in bladder cancer. Biochem. Biophys. Res. Commun. 468, 666–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Gu, P. et al. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol. Ther. 25, 1959–1973 (2017). This study reports that lncRNAs can drive resistance to therapy in genitourinary cancers, as demonstrated by HOXD-AS1 , which promotes resistance to paclitaxel and anti-androgens in prostate cancer models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Misawa, A., Takayama, K.-I., Urano, T. & Inoue, S. Androgen-induced long noncoding RNA (lncRNA) SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. J. Biol. Chem. 291, 17861–17880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ren, S. et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J. Urol. 190, 2278–2287 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Xue, D., Lu, H., Xu, H.-Y., Zhou, C.-X. & He, X.-Z. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12. J. Cell. Mol. Med. 22, 3223–3237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fotouhi Ghiam, A. et al. Long non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer. Oncotarget 8, 4668–4689 (2017).

    Article  PubMed  Google Scholar 

  217. Wang, Y., van Boxel-Dezaire, A. H. H., Cheon, H., Yang, J. & Stark, G. R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl Acad. Sci. USA 110, 16975–16980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fan, Y. et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 281, 1750–1758 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Shang, C., Guo, Y., Zhang, H. & Xue, Y. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. Cancer Chemother. Pharmacol. 77, 507–513 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Zhang, H., Guo, Y., Song, Y. & Shang, C. Long noncoding RNA GAS5 inhibits malignant proliferation and chemotherapy resistance to doxorubicin in bladder transitional cell carcinoma. Cancer Chemother. Pharmacol. 79, 49–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  222. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012). This paper shows that targeting antisense transcripts, including lncRNAs, with single-stranded oligonucleotides can alter gene expression and can be used as a therapeutic tool in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Liang, X.-H., Sun, H., Nichols, J. G. & Crooke, S. T. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol. Ther. 25, 2075–2092 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Huang, L. & Liu, Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng. 13, 507–530 (2011).

    Article  CAS  PubMed  Google Scholar 

  226. Shim, M. S. & Kwon, Y. J. Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–4827 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Johnson, D. B., Puzanov, I. & Kelley, M. C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7, 611–619 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Senn, J. J., Burel, S. & Henry, S. P. Non-CpG-containing antisense 2΄-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J. Pharmacol. Exp. Ther. 314, 972–979 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Fu, X. et al. Synthetic artificial microRNAs targeting UCA1-MALAT1 or c-Myc inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Mol. Biosyst. 11, 1285–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Sidi, A. A. et al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J. Urol. 180, 2379–2383 (2008).

    Article  PubMed  Google Scholar 

  232. Gofrit, O. N. et al. DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J. Urol. 191, 1697–1702 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Halachmi, S. et al. Phase II trial of BC-819 intravesical gene therapy in combination with BCG in patients with non-muscle invasive bladder cancer (NMIBC). J. Clin. Oncol. 36, 499–499 (2018).

    Article  Google Scholar 

  234. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03719300 (2019).

  235. Chen, F. et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 14, 2476–2489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Urology thanks I. Seim, J. Schalken and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this manuscript.

Corresponding author

Correspondence to Gabriel G. Malouf.

Ethics declarations

Competing interests

G.G.M. has received consultancy fees from Bristol-Myers Squibb, Pfizer, Novartis and Ipsen. R.F. has received travel grants from Novartis and Pfizer. The other authors declare no competing interests related to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flippot, R., Beinse, G., Boilève, A. et al. Long non-coding RNAs in genitourinary malignancies: a whole new world. Nat Rev Urol 16, 484–504 (2019). https://doi.org/10.1038/s41585-019-0195-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0195-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing