Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic drugs and their molecular targets in testicular germ cell tumours

Abstract

Current treatment regimens for type II testicular germ cell tumours (TGCTs) achieve cure rates of ≥95%; however, 1–5% of TGCTs develop resistance to standard platinum-based chemotherapy. Patients with recurrent TGCT typically receive high-dose chemotherapy, but this treatment results in severe adverse effects and cytotoxicity. Thus, alternative treatment options should be considered to improve patient well-being and quality of life. Epigenetic drugs could be feasible options for TGCT treatment. Several compounds have already been tested in TGCT cell lines and xenograft models with promising results. These compounds include DNA demethylating agents (such as SGI-110), histone demethylase inhibitors (such as the lysine-specific histone demethylase 1A (LSD1) inhibitor CBB3001), histone deacetylase (HDAC) inhibitors (such as romidepsin) and bromodomain inhibitors (such as JQ1). Despite the diversity in their molecular effects, most epigenetic compounds show strong overlap in their genetic response. The use of epigenetic drugs in TGCTs triggers a cellular stress response, induction of differentiation and downregulation of genes associated with pluripotency, leading to growth arrest and apoptosis. Additive effects are seen using a combination of JQ1 and romidepsin. The availability of dual drugs (such as LSD1–HDAC1 hybrid inhibitors) could additionally take advantage of drug synergy effects. Thus, epigenetic drugs are novel tools that could be combined with standard therapy approaches to improve treatment of TGCTs.

Key points

  • Overall, 1–5% of testicular germ cell tumours (TGCTs) are resistant to standard therapy regimens. However, TGCTs harbour epigenetic alterations, which can be targeted by specific therapeutic approaches.

  • Re-expression of tumour suppressor genes by DNA demethylating agents might resensitize refractory embryonal carcinomas to chemotherapy.

  • Embryonal carcinomas are particularly sensitive to lysine-specific histone demethylase 1A (LSD1) inhibitor treatment, as they have higher LSD1 levels than somatic tumours.

  • Histone deacetylase 1 (HDAC1) was identified as a primary target for TGCT therapy among different HDAC proteins. The HDAC1 inhibitor romidepsin leads to apoptosis, cell cycle arrest and downregulation of pluripotency in TGCTs.

  • Owing to its high bioavailability in testes and brain, the small molecule JQ1 seems ideally suited for targeting germ cell tumours. Bromodomain and extraterminal domain (BET) protein inhibition potently induces apoptosis and cell cycle arrest, especially in non-seminomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The writers, readers and erasers of epigenetic modifications in TGCT development.
Fig. 2: DNA methylation in TGCTs.
Fig. 3: DNA demethylation in TGCTs.
Fig. 4: Histone demethylation in TGCTs.
Fig. 5: Histone deacetylation in TGCTs.
Fig. 6: Bromodomains in TGCTs.

Similar content being viewed by others

References

  1. Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  2. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, R. & Strathdee, G. Epigenomics and epigenetic therapy of cancer. Trends Mol. Med. 8, S43–S48 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann, M. J. & Schulz, W. A. Causes and consequences of DNA hypomethylation in human cancer. Biochem. Cell Biol. 83, 296–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S. & Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Esteller, M. & Herman, J. G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 196, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012). This is a review summarizing current knowledge on the importance of epigenetic modifications in cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  8. Oosterhuis, J. W. & Looijenga, L. H. J. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005). This is a good overview on GCT development in general.

    Article  CAS  PubMed  Google Scholar 

  9. Berney, D. M. et al. Germ cell neoplasia in situ (GCNIS): evolution of the current nomenclature for testicular pre-invasive germ cell malignancy. Histopathology 69, 7–10 (2016).

    Article  PubMed  Google Scholar 

  10. Spiller, C. M. & Bowles, J. Germ cell neoplasia in situ: the precursor cell for invasive germ cell tumors of the testis. Int. J. Biochem. Cell Biol. 86, 22–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell, R. T. et al. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Modern Pathol. 27, 1255–1266 (2014).

    Article  CAS  Google Scholar 

  12. Kristensen, D. M. et al. Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development. Mol. Cell. Endocrinol. 288, 111–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Almstrup, K. et al. Carcinoma in situ testis displays permissive chromatin modifications similar to immature foetal germ cells. Br. J. Cancer 103, 1269–1276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eckert, D. et al. TCam-2 but not JKT-1 cells resemble seminoma in cell culture. Cell Tissue Res. 331, 529–538 (2007).

    Article  PubMed  Google Scholar 

  15. Nettersheim, D. et al. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development. Epigenetics 6, 114–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kristensen, D. G. et al. Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br. J. Cancer 110, 668–678 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoei-Hansen, C. E. et al. Transcription factor AP-2γ is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin. Cancer Res. 10, 8521–8530 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Meyts, E. R.-D. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum. Reprod. 19, 1338–1344 (2004).

    Article  Google Scholar 

  20. Meyts, E. R.-D. & Skakkebaek, N. E. Expression of the c-kit protein product in carcinoma-in-situ and invasive testicular germ cell tumours. Int. J. Androl. 17, 85–92 (1994).

    Article  Google Scholar 

  21. Skakkebæk, N. Possible carcinoma-in-situ of the testis. Lancet 300, 516–517 (1972).

    Article  Google Scholar 

  22. Hoei-Hansen, C. E., Meyts, E. R.-D., Daugaard, G. & Skakkebaek, N. E. Carcinoma in situ testis, the progenitor of testicular germ cell tumours: a clinical review. Ann. Oncol. 16, 863–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Dieckmann, K. P. & Skakkebaek, N. E. Carcinoma in situ of the testis: review of biological and clinical features. Int. J. Cancer 83, 815 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hayes-Lattin, B. & Nichols, C. R. Testicular cancer: a prototypic tumor of young adults. Semin. Oncol. 36, 432–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maso, L. D. et al. Long-term survival, prevalence, and cure of cancer: a population-based estimation for 818 902 Italian patients and 26 cancer types. Ann. Oncol. 25, 2251–2260 (2014).

    Article  Google Scholar 

  26. Albers, P. et al. EAU guidelines on testicular cancer. EAU https://uroweb.org/wp-content/uploads/11-Testicular-Cancer_2017_web.pdf (2017). This is a clinical perspective on current treatment guidelines for testicular GCTs.

  27. Oldenburg, J. et al. Testicular seminoma and non-seminoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), 125–132 (2013).

    Article  Google Scholar 

  28. Chovanec, M., Hanna, N., Cary, K. C., Einhorn, L. & Albany, C. Management of stage I testicular germ cell tumours. Nat. Rev. Urol. 13, 663–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Stephenson, A., Khurana, K. & Gilligan, T. Management of poor-prognosis testicular germ cell tumors. Indian J. Urol. 26, 108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oing, C., Seidel, C. & Bokemeyer, C. Therapeutic approaches for refractory germ cell cancer. Expert Rev. Anticancer Ther. 18, 389–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Schmoll, H.-J. et al. Long-term results of first-line sequential high-dose etoposide, ifosfamide, and cisplatin chemotherapy plus autologous stem cell support for patients with advanced metastatic germ cell cancer: an extended phase I/II study of the German Testicular Cancer Study Group. J. Clin. Oncol. 21, 4083–4091 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Allen, J. C., Kirschner, A., Scarpato, K. R. & Morgans, A. K. Current management of refractory germ cell tumors and future directions. Curr. Oncol. Rep. 19, 8 (2017).

    Article  PubMed  Google Scholar 

  33. Mayer, F. et al. Molecular determinants of treatment response in human germ cell tumors. Clin. Cancer Res. 9, 767–773 (2003).

    CAS  PubMed  Google Scholar 

  34. Jacobsen, C. & Honecker, F. Cisplatin resistance in germ cell tumours: models and mechanisms. Andrology 3, 111–121 (2014). This is a summary of molecular mechanisms known to provide cisplatin resistance in GCTs.

    Article  PubMed  CAS  Google Scholar 

  35. Galluzzi, L. et al. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Honecker, F. et al. Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J. Clin. Oncol. 27, 2129–2136 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Koster, R. et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J. Clin. Invest. 120, 3594–3605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noel, E. E. et al. The association of CCND1 overexpression and cisplatin resistance in testicular germ cell tumors and other cancers. Am. J. Pathol. 176, 2607–2615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koster, R., Timmer-Bosscha, H., Bischoff, R., Gietema, J. A. & de Jong, S. Disruption of the MDM2–p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2, e148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bagrodia, A. et al. Genetic determinants of cisplatin resistance in patients with advanced germ cell tumors. J. Clin. Oncol. 34, 4000–4007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mueller, T. et al. Histological evidence for the existence of germ cell tumor cells showing embryonal carcinoma morphology but lacking OCT4 expression and cisplatin sensitivity. Histochem. Cell Biol. 134, 197–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Mueller, T. et al. Loss of Oct-3/4 expression in embryonal carcinoma cells is associated with induction of cisplatin resistance. Tumor Biol. 27, 71–83 (2006).

    Article  CAS  Google Scholar 

  43. Koul, S. et al. Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors. Mol. Cancer 3, 16 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Talevi, A. Multi-target pharmacology: possibilities and limitations of the ‘skeleton key approach’ from a medicinal chemist perspective. Front. Pharmacol. 6, 205 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bhadury, J. et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc. Natl Acad. Sci. USA 111, E2721–E2730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moore, P. S. et al. Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. Biochim. Biophys. Acta 1693, 167–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. da Motta, L. L. et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene 36, 122–132 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hoshino, I. et al. Histone demethylase LSD1 inhibitors prevent cell growth by regulating gene expression in esophageal squamous cell carcinoma cells. Ann. Surg. Oncol. 23, 312–320 (2015).

    Article  PubMed  Google Scholar 

  49. Komashko, V. M. & Farnham, P. J. 5-Azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 5, 229–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Längst, G. & Manelyte, L. Chromatin remodelers: from function to dysfunction. Genes 6, 299–324 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Smiraglia, D. J. et al. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene 21, 3909–3916 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Wermann, H. et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J. Pathol. 221, 433–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018). This paper provides a detailed molecular characterization of seminoma and non-seminomatous tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Albany, C. et al. Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine. Oncotarget 8, 2949–2959 (2016). This paper describes the second-generation DNA methylation inhibitor SGI-110 and its use for GCT therapy.

    Article  PubMed Central  Google Scholar 

  56. Beyrouthy, M. J. et al. High DNA methyltransferase 3B expression mediates 5-Aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res. 69, 9360–9366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biswal, B. K. et al. Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-Aza deoxycytidine is associated with global DNA damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLOS ONE 7, e53003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01201811 (2016).

  59. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01074047 (2017).

  60. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01599325 (2018).

  61. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT00652626 (2016).

  62. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01751867 (2016).

  63. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01378416 (2011).

  64. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT00744757 (2013).

  65. Derissen, E. J. B., Beijnen, J. H. & Schellens, J. H. M. Concise drug review: azacitidine and decitabine. Oncol. 18, 619–624 (2013).

    Article  CAS  Google Scholar 

  66. Karahoca, M. & Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenet. 5, 3 (2013).

    Article  CAS  Google Scholar 

  67. Griffiths, E. A. et al. SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future 38, 535–543 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Issa, J.-P. J. et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet. Oncol. 16, 1099–1110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kantarjian, H. M. et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet. Oncol. 18, 1317–1326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matei, D. et al. A phase I clinical trial of guadecitabine and carboplatin in platinum-resistant, recurrent ovarian cancer: clinical, pharmacokinetic, and pharmacodynamic analyses. Clin. Cancer Res. 24, 2285–2293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02429466 (2018).

  72. Kuang, Y., El-Khoueiry, A., Pietro Taverna, Ljungman, M. & Neamati, N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol. Oncol. 9, 1799–1814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fang, F. et al. The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer. Clin. Cancer Res. 20, 6504–6516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Y.-C. et al. Procaine is a specific DNA methylation inhibitor with anti-tumor effect for human gastric cancer. J. Cell. Biochem. 119, 2440–2449 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Kuck, D., Caulfield, T., Lyko, F. & Medina-Franco, J. L. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol. Cancer Ther. 9, 3015–3023 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, B. H., Yegnasubramanian, S., Lin, X. & Nelson, W. G. Procainamide is a specific inhibitor of DNA methyltransferase 1. J. Biol. Chem. 280, 40749–40756 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Valente, S. et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J. Med. Chem. 57, 701–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Richardson, B. DNA methylation and autoimmune disease. Clin. Immunol. 109, 72–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He, Y.-F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016). This is a paper on the function of TET enzymes in active DNA demethylation and their implications in cancer development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koh, K. P. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Etchegaray, J.-P. et al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat. Cell Biol. 17, 545–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nettersheim, D. et al. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLOS ONE 8, e82881 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Benešová, M. et al. Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation. Mol. Carcinog. 56, 1837–1850 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dang, L., Yen, K. & Attar, E. C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 27, 599–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Fu, X., Zhang, P. & Yu, B. Advances toward LSD1 inhibitors for cancer therapy. Future Med. Chem. 9, 1227–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Alsaqer, S. F. et al. Inhibition of LSD1 epigenetically attenuates oral cancer growth and metastasis. Oncotarget 8, 73372–73386 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liang, Y. et al. LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression. Cancer Res. 77, 5479–5490 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, J. et al. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells. Oncotarget 8, 19609–19630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Przespolewski, A. & Wang, E. S. Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia. Expert Opin. Investig. Drugs 25, 771–780 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Rudolph, T., Beuch, S. & Reuter, G. Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin. Biol. Chem. 394, 1019–1028 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Song, Y., Wu, F. & Wu, J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol. 9, 49 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zheng, Y. C. et al. Irreversible LSD1 inhibitors: application of tranylcypromine and its derivatives in cancer treatment. Curr. Top. Med. Chem. 16, 2179–2188 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Duan, Y.-C. et al. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur. J. Med. Chem. 140, 392–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Civenni, G. et al. INCB059872, a novel FAD-directed LSD1 inhibitor, is active in prostate cancer models and impacts prostate cancer stem-like cells. Cancer Res. 78, 1379–1379 (2018).

    Article  CAS  Google Scholar 

  98. Moreno, V. et al. A phase I, open-label, study of GSK2879552, a lysine-specific demethylase 1 (LSD1) inhibitor, in patients with relapsed/refractory small cell lung carcinoma (SCLC). Ann. Oncol. 27, 381P (2016).

    Article  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01430455 (2018).

  100. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT03136185 (2018).

  101. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT03514407 (2018).

  102. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02929498 (2017).

  103. Wang, J. et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71, 7238–7249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hoang, N. et al. New histone demethylase LSD1 inhibitor selectively targets teratocarcinoma and embryonic carcinoma cells. Bioorg. Med. Chem. 26, 1523–1537 (2018). This is an exemplary publication on the development and functional validation of LSD1 inhibitors for GCT therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin, F. et al. LSD1 regulates pluripotency of embryonic stem/carcinoma cells through histone deacetylase 1-mediated deacetylation of histone H4 at lysine 16. Mol. Cell. Biol. 34, 158–179 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Qureshi, I. A., Gokhan, S. & Mehler, M. F. REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 9, 4477–4486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalin, J. H. et al. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat. Commun. 9, 53 (2018). This publication describes the development of the hybrid inhibitor corin and its efficacy in a multitarget pharmacology approach.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Nettersheim, D., Gillis, A., Biermann, K., Looijenga, L. H. J. & Schorle, H. The seminoma cell line TCam-2 is sensitive to HDAC inhibitor depsipeptide but tolerates various other chemotherapeutic drugs and loss of NANOG expression. Genes Chromosomes Cancer 50, 1033–1042 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, T., Cooper, S. & Brockdorff, N. The interplay of histone modifications — writers that read. EMBO Rep. 16, 1467–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eberharter, A. & Becker, P. B. Histone acetylation: a switch between repressive and permissive chromatin: Second in review series on chromatin dynamics. EMBO Rep. 3, 224–229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nettersheim, D. et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget 7, 74931–74946 (2016). This paper provides a detailed description on the molecular pathways mediating the romidepsin response in GCT models.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Foss, F. et al. Romidepsin for the treatment of relapsed/refractory peripheral T cell lymphoma: prolonged stable disease provides clinical benefits for patients in the pivotal trial. J. Hematol. Oncol. 9, 22 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dong, M. et al. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother. Pharmacol. 69, 1413–1422 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Kirschbaum, M. H. et al. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk. Lymphoma 55, 2301–2304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yee, A. J. & Raje, N. S. Panobinostat and multiple myeloma in 2018. Oncologist 23, 516–517 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lech-Maranda, E., Robak, E., Korycka, A. & Robak, T. Depsipeptide (FK228) as a novel histone deacetylase inhibitor: mechanism of action and anticancer activity. Mini Rev. Med. Chem. 7, 1062–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Radzisheuskaya, A. et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat. Cell Biol. 15, 579–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. You, J. S. et al. Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression. Cancer Res. 69, 5716–5725 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Furumai, R. et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 69, 5716–5725 (2002).

    Google Scholar 

  123. Lauffer, B. E. L. et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem. 288, 26926–26943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Damjanov, I., Horvat, B. & Gibas, Z. Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT. Lab. Invest. 68, 220–232 (1993).

    CAS  PubMed  Google Scholar 

  125. Moasser, M. M. et al. All-trans retinoic acid for treating germ cell tumors. In vitro activity and results of a phase II trial. Cancer 76, 680–686 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Mei, D. et al. All-trans retinoic acid suppresses malignant characteristics of CD133-positive thyroid cancer stem cells and induces apoptosis. PLOS ONE 12, e0182835 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Nguyen, P. H. et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene 35, 5619–5628 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Yan, Y. et al. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement. Altern. Med. 16, 113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Minucci, S. et al. A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 94, 11295–11300 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang-Yen, H. F., Chiu, R. & Karin, M. Elevation of AP1 activity during F9 cell differentiation is due to increased c-jun transcription. New Biol. 2, 351–361 (1990).

    CAS  PubMed  Google Scholar 

  131. de Groot, R. P., Schoorlemmer, J., van Ganesen, S. T. & Kruijer, W. Differential expression of jun and fos genes during differentiation of mouse P19 embryonal carcinoma cells. Nucleic Acids Res. 18, 3195–3202 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jin, C. et al. JDP2, a repressor of AP-1, recruits a histone deacetylase 3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol. Cell. Biol. 22, 4815–4826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Curtin, J. C. & Spinella, M. J. p53 in human embryonal carcinoma: identification of a transferable, transcriptional repression domain in the N-terminal region of p53. Oncogene 24, 1481–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Curtin, J. C. et al. Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene 20, 2559–2569 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Voutsadakis, I. A. The chemosensitivity of testicular germ cell tumors. Cell. Oncol. 37, 79–94 (2014).

    Article  CAS  Google Scholar 

  136. Arts, J. et al. JNJ-26481585, a novel ‘second-generation’ oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res. 15, 6841–6851 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matzuk, M. M. et al. Small-molecule inhibition of BRDT for male contraception. Cell 150, 673–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, 265 (2011). This review highlights the importance of bromodomain readers as targets for cancer therapy.

    Article  CAS  Google Scholar 

  140. Taniguchi, Y. The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins. Int. J. Mol. Sci. 17, E1849 (2016).

    Article  PubMed  CAS  Google Scholar 

  141. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Beesley, A. H. et al. Comparative drug screening in NUT midline carcinoma. Br. J. Cancer 110, 1189–1198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 287–282 (2014).

    Article  CAS  Google Scholar 

  144. Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res. 19, 1748–1759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Feng, Q. et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 19, 1748–1759 (2014).

    Google Scholar 

  146. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Baker, E. K. et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci. Rep. 5, 10120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lockwood, W. W., Zejnullahu, K., Bradner, J. E. & Varmus, H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl Acad. Sci. USA 109, 19408–19413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Henssen, A. G. et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget 4, 2080–2095 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chung, C. & Mirguet, O. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J. Med. Chem. 56, 7501–7515 (2013).

    Article  PubMed  CAS  Google Scholar 

  151. Faivre, E. J. et al. Exploitation of castration-resistant prostate cancer transcription factor dependencies by the novel BET inhibitor ABBV-075. Mol. Cancer Res. 15, 35–44 (2016).

    Article  PubMed  CAS  Google Scholar 

  152. Bernasconi, E. et al. Preclinical evaluation of the BET bromodomain inhibitor BAY 1238097 for the treatment of lymphoma. Br. J. Haematol. 178, 936–948 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Gerlach, D. et al. The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 37, 2687–2701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02391480 (2018).

  155. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02516553 (2019).

  156. Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Jostes, S. et al. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J. Cell. Mol. Med. 21, 1300–1314 (2017). This paper describes the effects of BET inhibition in GCT models.

    Article  CAS  PubMed  Google Scholar 

  158. Nettersheim, D. et al. BMP inhibition in seminomas initiates acquisition of pluripotency via NODAL signaling resulting in reprogramming to an embryonal carcinoma. PLOS Genet. 11, e1005415 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Mazur, P. K. et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 21, 1163–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Borbely, G., Haldosen, L.-A., Dahlman-Wright, K. & Zhao, C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget 6, 33623–33635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Adeegbe, D. O. et al. Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non–small cell lung cancer. Cancer Discov. 7, 852–867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gendarme, M., Baumann, J., Ignashkova, T. I., Lindemann, R. K. & Reiling, J. H. Image-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1. Mol. Biol. Cell 28, 3756–3772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shang, E., Nickerson, H. D., Wen, D., Wang, X. & Wolgemuth, D. J. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 134, 3507–3515 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Pivot-Pajot, C. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell. Biol. 23, 5354–5365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01713582 (2018).

  166. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02698189 (2018).

  167. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02259114 (2018).

  168. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02698176 (2018).

  169. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02296476 (2018).

  170. Odore, E. et al. Phase I population pharmacokinetic assessment of the oral bromodomain inhibitor OTX015 in patients with haematologic malignancies. Clin. Pharmacokinet. 55, 397–405 (2015).

    Article  CAS  Google Scholar 

  171. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015). This paper presents an alternative strategy to BET inhibition using PROTACs in order to selectively ubiquitylate the BET target proteins, resulting in degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87 (2018).

    CAS  Google Scholar 

  173. Hasan, S. & Hottiger, M. O. Histone acetyl transferases: a role in DNA repair and DNA replication. J. Mol. Med. 80, 463–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Honorio, S. et al. Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene 22, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Cheung, H.-H., Yang, Y., Lee, T.-L., Rennert, O. & Chan, W.-Y. Hypermethylation of genes in testicular embryonal carcinomas. Br. J. Cancer 114, 230–236 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Christoph, F. et al. Frequent epigenetic inactivation of p53 target genes in seminomatous and nonseminomatous germ cell tumors. Cancer Lett. 247, 137–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Brait, M. et al. DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma. Br. J. Cancer 106, 414–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Ellinger, J. et al. CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J. Urol. 182, 324–329 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Cheung, H. H. et al. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br. J. Cancer 102, 419–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chaubert, P. et al. Frequent p161NK4 (MTS1) gene inactivation in testicular germ cell tumors. J. Urol. 159, 2240 (1998).

    Article  Google Scholar 

  182. Spiller, C. M. et al. Cripto: expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Mol. Oncol. 10, 526–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Sievers, S. et al. IGF2/H19 imprinting analysis of human germ cell tumors (GCTs) using the methylation-sensitive single-nucleotide primer extension method reflects the origin of GCTs in different stages of primordial germ cell development. Genes Chromosomes Cancer 44, 256–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, B.-F., Suen, Y.-K., Gu, S., Li, L. & Chan, W.-Y. A. miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci. Rep. 4, 6413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. De Jong, J., Weeda, S., Gillis, A. J. M., Oosterhuis, J. W. & Looijenga, L. H. J. Differential methylation of the OCT3/4 upstream region in primary human testicular germ cell tumors. Oncol. Rep. 18, 127–132 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the German Research Foundation (DFG) and the Sander-Stiftung.

Reviewer information

Nature Reviews Urology thanks A. Bagrodia and M. Murray for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.J. researched data and wrote the manuscript; all authors made substantial contributions to discussion of content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Hubert Schorle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Epigenetics

Changes in gene expression that are independent of the underlying DNA sequence.

Histone deacetylases

Enzymes involved in deacetylation of histones, thereby modulating chromatin structure.

Testicular germ cell tumours

(TGCTs). A heterogeneous group of testicular neoplasms originating from male germ cells.

Germ cell neoplasia in situ

(GCNIS). An asymptomatic precursor lesion of testicular germ cell tumours that is believed to be already present at birth.

Primordial germ cells

(PGCs). Primary undifferentiated germ cells that will differentiate into sperm or oocytes.

TNM(S) classification

A staging system of testicular germ cell tumours according to size of the tumour (T), the number of infiltrated lymph nodes (N), the number of metastases (M) and blood serum markers (S).

Cisplatin

A common type of platinum-based chemotherapy, which causes DNA damage and results in apoptosis of tumour cells.

Bromodomain and extraterminal domain

(BET). Epigenetic readers that regulate gene transcription by recruiting different molecular partner proteins to acetylated histones.

Nucleoside analogue

A drug type that can be used as an inhibitor of DNA methylation, such as the cytidine analogues 5-azacytidine (5-aza-C) and 5-azacytidine-2′deoxycytidine (5-aza-CdR), as it will incorporate into the DNA but cannot be methylated.

Ten-eleven translocation (TET) enzymes

Enzymes that oxidize 5-methylcytosine to 5-hydroxymethylcytosine and then 5-formylcytosine, thereby promoting reversal of DNA methylation.

CoREST complex

A protein complex comprising histone deacetylase 1 (HDAC1), REST co-repressor 1 (CoREST) and lysine-specific histone demethylase 1A (LSD1) that functions as a transcriptional repressor or activator.

Proteolysis targeted chimaera

(PROTAC). A drug composed of an E3 ubiquitin ligase fused to a second compound that binds the target protein. This results in recruitment of the E3 ligase to the target protein to mark it for proteasomal degradation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jostes, S., Nettersheim, D. & Schorle, H. Epigenetic drugs and their molecular targets in testicular germ cell tumours. Nat Rev Urol 16, 245–259 (2019). https://doi.org/10.1038/s41585-019-0154-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0154-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer