Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies

Abstract

Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells.

Key points

  • Liquid biopsies, particularly from bone marrow, might enable the detection of recurrent disease before overt lethal metastasis develops.

  • Prostate cancer cells in liquid biopsies, particularly bone marrow, are rare and extremely difficult to identify accurately.

  • Prostate-specific markers analysed using rare cell immunofluorescence assays might help identify rare prostate cancer cells from liquid biopsies.

  • Expression of putative prostate-specific markers is not always constrained to prostate cells. The sensitivity and specificity of assays of expression of candidate markers for rare cells must be ascertained on an individual basis.

  • Immune cells in the blood and bone marrow are a considerable source of nonspecific staining, so measures must be taken to reduce this background staining.

  • Combinatorial staining of multiple prostate-specific markers will increase accuracy for identifying rare prostate cancer cells in liquid biopsies, and improve understanding of the role of important cells in prostate cancer metastasis and aid clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timing of tumour dissemination during prostate cancer progression.
Fig. 2: Liquid biopsies in cancer.
Fig. 3: Expression patterns of prostate-specific markers for identification of rare cancer cells.
Fig. 4: Anatomical differences between the human prostate and the mouse prostate.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  2. Han, M. et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol. 169, 517–523 (2003).

    PubMed  Google Scholar 

  3. Mehra, R. et al. Characterization of bone metastases from rapid autopsies of prostate cancer patients. Clin. Cancer Res. 17, 3924–3932 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruppender, N. S., Morrissey, C., Lange, P. H. & Vessella, R. L. Dormancy in solid tumors: implications for prostate cancer. Cancer Metastasis Rev. 32, 501–509 (2013).

    PubMed  Google Scholar 

  5. Lam, H. M., Vessella, R. L. & Morrissey, C. The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow. Drug Discov. Today Technol. 11, 41–47 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Mishra, A., Shiozawa, Y., Pienta, K. J. & Taichman, R. S. Homing of cancer cells to the bone. Cancer Microenviron. 4, 221–235 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    CAS  PubMed  Google Scholar 

  8. Rowe, S. P. et al. PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol. Imaging Biol. 18, 411–419 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohler, J. L. et al. Prostate cancer, version 1.2016. J. Natl Compr. Canc. Netw. 14, 19–30 (2016).

    PubMed  Google Scholar 

  10. Li, F. et al. Cell surface Thomsen-Friedenreich proteome profiling of metastatic prostate cancer cells reveals potential link with cancer stem cell-like phenotype. Oncotarget 8, 98598–98608 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pantel, K. & Alix-Panabieres, C. Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res. 73, 6384–6388 (2013).

    CAS  PubMed  Google Scholar 

  13. Alix-Panabieres, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    CAS  PubMed  Google Scholar 

  14. Friedlander, T. W. et al. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int. J. Cancer 134, 2284–2293 (2014).

    CAS  PubMed  Google Scholar 

  15. Gold, B., Cankovic, M., Furtado, L. V., Meier, F. & Gocke, C. D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J. Mol. Diagn. 17, 209–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Perakis, S. & Speicher, M. R. Emerging concepts in liquid biopsies. BMC Med. 15, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Zhang, W. et al. Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell Physiol. Biochem. 41, 755–768 (2017).

    CAS  PubMed  Google Scholar 

  18. Di Meo, A., Bartlett, J., Cheng, Y., Pasic, M. D. & Yousef, G. M. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol. Cancer 16, 80 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    PubMed  Google Scholar 

  20. Scher, H. I. et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 77, 5687–5698 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Scher, H. I. et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur. Urol. 71, 874–882 (2017).

    CAS  PubMed  Google Scholar 

  22. Scher, H. I. et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 33, 1348–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Kuske, A. et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 6, 39736 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, L. et al. The novel association of circulating tumor cells and circulating megakaryocytes with prostate cancer prognosis. Clin. Cancer Res. 23, 5112–5122 (2017).

    CAS  PubMed  Google Scholar 

  26. Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339–348 (2008).

    CAS  PubMed  Google Scholar 

  27. Yap, T. A., Lorente, D., Omlin, A., Olmos, D. & de Bono, J. S. Circulating tumor cells: a multifunctional biomarker. Clin. Cancer Res. 20, 2553–2568 (2014).

    CAS  PubMed  Google Scholar 

  28. Campton, D. E. et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer 15, 360 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Werner, S. L. et al. Analytical validation and capabilities of the epic CTC platform: enrichment-free circulating tumour cell detection and characterization. J. Circ. Biomark. 4, 3 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Valkenburg, K. C. et al. A simple selection-free method for detecting disseminated tumor cells (DTCs) in murine bone marrow. Oncotarget 7, 69794–69803 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Helo, P. et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with CellSearch assay and association with bone metastases and with survival. Clin. Chem. 55, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Hara, S. M. et al. Multigene reverse transcription-PCR profiling of circulating tumor cells in hormone-refractory prostate cancer. Clin. Chem. 50, 826–835 (2004).

    PubMed  Google Scholar 

  34. Patel, K. et al. The use of real-time reverse transcription-PCR for prostate-specific antigen mRNA to discriminate between blood samples from healthy volunteers and from patients with metastatic prostate cancer. Clin. Cancer Res. 10, 7511–7519 (2004).

    CAS  PubMed  Google Scholar 

  35. Cho, W. J. et al. Gene expression analysis of bone metastasis and circulating tumor cells from metastatic castrate-resistant prostate cancer patients. J. Transl Med. 14, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Danila, D. C. et al. Clinical validity of detecting circulating tumor cells by AdnaTest assay compared with direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J. 22, 315–320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, Y. et al. Droplet digital PCR based androgen receptor variant 7 (AR-V7) detection from prostate cancer patient blood biopsies. Int. J. Mol. Sci. 17, 1264 (2016).

    PubMed Central  Google Scholar 

  38. Pixberg, C. F. et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene 36, 3223–3231 (2017).

    CAS  PubMed  Google Scholar 

  39. Yates, D. R. et al. Quantitative RT-PCR analysis of PSA and prostate-specific membrane antigen mRNA to detect circulating tumor cells improves recurrence-free survival nomogram prediction after radical prostatectomy. Prostate 72, 1382–1388 (2012).

    CAS  PubMed  Google Scholar 

  40. van der Toom, E. E., Verdone, J. E., Gorin, M. A. & Pienta, K. J. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 7, 62754–62766 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Adams, D. L. et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc. Natl Acad. Sci. USA 111, 3514–3519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Eisenwort, G. et al. Identification of TROP2 (TACSTD2), an EpCAM-like molecule, as a specific marker for TGF-beta1-dependent human epidermal Langerhans cells. J. Invest. Dermatol. 131, 2049–2057 (2011).

    CAS  PubMed  Google Scholar 

  43. Shetye, J. D. et al. Spectrum of cytokeratin-positive cells in the bone marrows of colorectal carcinoma patients. Anticancer Res. 24, 2375–2383 (2004).

    PubMed  Google Scholar 

  44. Lammers, R. et al. Monoclonal antibody 9C4 recognizes epithelial cellular adhesion molecule, a cell surface antigen expressed in early steps of erythropoiesis. Exp. Hematol. 30, 537–545 (2002).

    CAS  PubMed  Google Scholar 

  45. Daskalaki, A. et al. Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br. J. Cancer 101, 589–597 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dimmler, A. et al. Transcription of cytokeratins 8, 18, and 19 in bone marrow and limited expression of cytokeratins 7 and 20 by carcinoma cells: inherent limitations for RT-PCR in the detection of isolated tumor cells. Lab. Invest. 81, 1351–1361 (2001).

    CAS  PubMed  Google Scholar 

  47. Han, Y. et al. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway. Oncol. Lett. 11, 753–759 (2016).

    CAS  PubMed  Google Scholar 

  48. McDaniel, A. S. et al. Phenotypic diversity of circulating tumour cells in patients with metastatic castration-resistant prostate cancer. BJU Int. 120, E30–E44 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Miyamoto, D. T. et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2, 995–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mulholland, D. J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Palapattu, G. S. et al. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69, 787–798 (2009).

    CAS  PubMed  Google Scholar 

  52. Smith, B. N. & Bhowmick, N. A. Role of EMT in metastasis and therapy resistance. J. Clin. Med. 5, E17 (2016).

    PubMed  Google Scholar 

  53. Ramirez, J. M. et al. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin. Chem. 60, 214–221 (2014).

    CAS  PubMed  Google Scholar 

  54. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    CAS  PubMed  Google Scholar 

  55. Lallo, A., Schenk, M. W., Frese, K. K., Blackhall, F. & Dive, C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res. 6, 397–408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rao, C. G. et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int. J. Oncol. 27, 49–57 (2005).

    CAS  PubMed  Google Scholar 

  57. Srinivasan, M. & Parwani, A. V. Diagnostic utility of p63/P501S double sequential immunohistochemical staining in differentiating urothelial carcinoma from prostate carcinoma. Diagn. Pathol. 6, 67 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. Salman, J. W., Schoots, I. G., Carlsson, S. V., Jenster, G. & Roobol, M. J. Prostate specific antigen as a tumor marker in prostate cancer: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 93–114 (2015).

    CAS  PubMed  Google Scholar 

  59. Bostwick, D. G. Prostate-specific antigen. Current role in diagnostic pathology of prostate cancer. Am. J. Clin. Pathol. 102, S31–S37 (1994).

    CAS  PubMed  Google Scholar 

  60. Epstein, J. I. PSA and PAP as immunohistochemical markers in prostate cancer. Urol. Clin. North Am. 20, 757–770 (1993).

    CAS  PubMed  Google Scholar 

  61. Alanen, K. A. et al. Immunohistochemical labelling for prostate-specific antigen in breast carcinomas. Breast Cancer Res. Treat. 56, 169–176 (1999).

    CAS  PubMed  Google Scholar 

  62. Goldstein, N. S. Immunophenotypic characterization of 225 prostate adenocarcinomas with intermediate or high Gleason scores. Am. J. Clin. Pathol. 117, 471–477 (2002).

    PubMed  Google Scholar 

  63. Queisser, A. et al. Comparison of different prostatic markers in lymph node and distant metastases of prostate cancer. Mod. Pathol. 28, 138–145 (2015).

    CAS  PubMed  Google Scholar 

  64. Kristiansen, G. & Epstein, J. I. Immunohistochemisty in prostate pathology. Patologi https://www.patologi.com/DAKO%20immun%20-prostate-pathology.pdf (2014).

  65. Grignon, D. J., Ro, J. Y., Ayala, A. G., Johnson, D. E. & Ordonez, N. G. Primary adenocarcinoma of the urinary bladder. A clinicopathologic analysis of 72 cases. Cancer 67, 2165–2172 (1991).

    CAS  PubMed  Google Scholar 

  66. Kraus, T. S., Cohen, C. & Siddiqui, M. T. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma. Diagn. Pathol. 5, 63 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Levesque, M., Hu, H., D’Costa, M. & Diamandis, E. P. Prostate-specific antigen expression by various tumors. J. Clin. Lab. Anal. 9, 123–128 (1995).

    CAS  PubMed  Google Scholar 

  68. Shidham, V. B. et al. Prostate-specific antigen expression and lipochrome pigment granules in the differential diagnosis of prostatic adenocarcinoma versus seminal vesicle-ejaculatory duct epithelium. Arch. Pathol. Lab. Med. 123, 1093–1097 (1999).

    CAS  PubMed  Google Scholar 

  69. Tazawa, K., Kurihara, Y., Kamoshida, S., Tsukada, K. & Tsutsumi, Y. Localization of prostate-specific antigen-like immunoreactivity in human salivary gland and salivary gland tumors. Pathol. Int. 49, 500–505 (1999).

    CAS  PubMed  Google Scholar 

  70. Varma, M., Morgan, M., Jasani, B., Tamboli, P. & Amin, M. B. Polyclonal anti-PSA is more sensitive but less specific than monoclonal anti-PSA: implications for diagnostic prostatic pathology. Am. J. Clin. Pathol. 118, 202–207 (2002).

    CAS  PubMed  Google Scholar 

  71. Llanes, L. et al. Quantitative real-time reverse transcription: polymerase chain reaction of prostate-specific antigen (PSA) for detection of circulating prostatic cells in patients with clinically localized prostate cancer. Prostate Cancer Prostatic Dis. 8, 248–252 (2005).

    CAS  PubMed  Google Scholar 

  72. Fujii, Y., Kawakami, S., Okada, Y., Kageyama, Y. & Kihara, K. Regulation of prostate-specific antigen by activin A in prostate cancer LNCaP cells. Am. J. Physiol. Endocrinol. Metab. 286, E927–E931 (2004).

    CAS  PubMed  Google Scholar 

  73. Artibani, W., Porcaro, A. B., De Marco, V., Cerruto, M. A. & Siracusano, S. Management of biochemical recurrence after primary curative treatment for prostate cancer: a review. Urol. Int. 100, 251–262 (2018).

    CAS  PubMed  Google Scholar 

  74. Yousef, G. M., Obiezu, C. V., Luo, L. Y., Black, M. H. & Diamandis, E. P. Prostase/KLK-L1 is a new member of the human kallikrein gene family, is expressed in prostate and breast tissues, and is hormonally regulated. Cancer Res. 59, 4252–4256 (1999).

    CAS  PubMed  Google Scholar 

  75. Takayama, T. K., McMullen, B. A., Nelson, P. S., Matsumura, M. & Fujikawa, K. Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 40, 15341–15348 (2001).

    CAS  PubMed  Google Scholar 

  76. Todenhofer, T. et al. AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J. Urol. 197, 135–142 (2017).

    CAS  PubMed  Google Scholar 

  77. Braun, K., Sjoberg, D. D., Vickers, A. J., Lilja, H. & Bjartell, A. S. A. Four-kallikrein panel predicts high-grade cancer on biopsy: independent validation in a community cohort. Eur. Urol. 69, 505–511 (2016).

    PubMed  Google Scholar 

  78. Satkunasivam, R. et al. Human kallikrein-2 gene and protein expression predicts prostate cancer at repeat biopsy. SpringerPlus 3, 295 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Day, C. H. et al. Characterization of KLK4 expression and detection of KLK4-specific antibody in prostate cancer patient sera. Oncogene 21, 7114–7120 (2002).

    CAS  PubMed  Google Scholar 

  80. Finlay, J. A. et al. Development of monoclonal antibodies specific for human glandular kallikrein (hK2): development of a dual antibody immunoassay for hK2 with negligible prostate-specific antigen cross-reactivity. Urology 51, 804–809 (1998).

    CAS  PubMed  Google Scholar 

  81. Rittenhouse, H. G., Finlay, J. A., Mikolajczyk, S. D. & Partin, A. W. Human Kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit. Rev. Clin. Lab. Sci. 35, 275–368 (1998).

    CAS  PubMed  Google Scholar 

  82. Cooke, P. S., Young, P. & Cunha, G. R. Androgen receptor expression in developing male reproductive organs. Endocrinology 128, 2867–2873 (1991).

    CAS  PubMed  Google Scholar 

  83. Chang, C., Chodak, G., Sarac, E., Takeda, H. & Liao, S. Prostate androgen receptor: immunohistological localization and mRNA characterization. J. Steroid Biochem. 34, 311–313 (1989).

    CAS  PubMed  Google Scholar 

  84. Sar, M., Lubahn, D. B., French, F. S. & Wilson, E. M. Immunohistochemical localization of the androgen receptor in rat and human tissues. Endocrinology 127, 3180–3186 (1990).

    CAS  PubMed  Google Scholar 

  85. Cunha, G. R. The role of androgens in the epithelio-mesenchymal interactions involved in prostatic morphogenesis in embryonic mice. Anat. Rec. 175, 87–96 (1973).

    CAS  PubMed  Google Scholar 

  86. Takeda, H., Lasnitzki, I. & Mizuno, T. Analysis of prostatic bud induction by brief androgen treatment in the fetal rat urogenital sinus. J. Endocrinol. 110, 467–470 (1986).

    CAS  PubMed  Google Scholar 

  87. Donjacour, A. A. & Cunha, G. R. The effect of androgen deprivation on branching morphogenesis in the mouse prostate. Dev. Biol. 128, 1–14 (1988).

    CAS  PubMed  Google Scholar 

  88. Zhou, Q. et al. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J. Androl. 23, 870–881 (2002).

    CAS  PubMed  Google Scholar 

  89. Georget, V. et al. Trafficking of the androgen receptor in living cells with fused green fluorescent protein-androgen receptor. Mol. Cell Endocrinol. 129, 17–26 (1997).

    CAS  PubMed  Google Scholar 

  90. Jenster, G., Trapman, J. & Brinkmann, A. O. Nuclear import of the human androgen receptor. Biochem. J. 293, 761–768 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nightingale, J. et al. Ligand activation of the androgen receptor downregulates E-cadherin-mediated cell adhesion and promotes apoptosis of prostatic cancer cells. Neoplasia 5, 347–361 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cai, C. et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20, 457–471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zarif, J. C., Lamb, L. E., Schulz, V. V., Nollet, E. A. & Miranti, C. K. Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase. Oncotarget 6, 6862–6876 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Stanbrough, M., Leav, I., Kwan, P. W., Bubley, G. J. & Balk, S. P. Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc. Natl Acad. Sci. USA 98, 10823–10828 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu, C. et al. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. J. Biol. Chem. 286, 33478–33488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, C. T. et al. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc. Natl Acad. Sci. USA 104, 12679–12684 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cunha, G. R. et al. The endocrinology and developmental biology of the prostate. Endocr. Rev. 8, 338–362 (1987).

    CAS  PubMed  Google Scholar 

  98. Chodak, G. W. et al. Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate. J. Urol. 147, 798–803 (1992).

    CAS  PubMed  Google Scholar 

  99. Sadi, M. V. & Walsh, P. C. & Barrack, E. R. Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer 67, 3057–3064 (1991).

    CAS  PubMed  Google Scholar 

  100. Ruizeveld de Winter, J. A. et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am. J. Pathol. 144, 735–746 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bubendorf, L. et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 59, 803–806 (1999).

    CAS  PubMed  Google Scholar 

  102. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  104. Huggins, C. Endocrine-induced regression of cancers. Cancer Res. 27, 1925–1930 (1967).

    CAS  PubMed  Google Scholar 

  105. Valkenburg, K. C., De Marzo, A. M. & Williams, B. O. Deletion of tumor suppressors adenomatous polyposis coli and Smad4 in murine luminal epithelial cells causes invasive prostate cancer and loss of androgen receptor expression. Oncotarget 8, 80265–80277 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Aggarwal, R., Zhang, T., Small, E. J. & Armstrong, A. J. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J. Natl Compr. Canc. Netw. 12, 719–726 (2014).

    PubMed  Google Scholar 

  107. Wang, W. & Epstein, J. I. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 32, 65–71 (2008).

    PubMed  Google Scholar 

  108. Wright, M. E., Tsai, M. J. & Aebersold, R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol. Endocrinol. 17, 1726–1737 (2003).

    CAS  PubMed  Google Scholar 

  109. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Onstenk, W. et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur. Urol. 68, 939–945 (2015).

    CAS  PubMed  Google Scholar 

  112. Abu, E. O., Horner, A., Kusec, V., Triffitt, J. T. & Compston, J. E. The localization of androgen receptors in human bone. J. Clin. Endocrinol. Metab. 82, 3493–3497 (1997).

    CAS  PubMed  Google Scholar 

  113. Khetawat, G. et al. Human megakaryocytes and platelets contain the estrogen receptor beta and androgen receptor (AR): testosterone regulates AR expression. Blood 95, 2289–2296 (2000).

    CAS  PubMed  Google Scholar 

  114. Mantalaris, A. et al. Localization of androgen receptor expression in human bone marrow. J. Pathol. 193, 361–366 (2001).

    CAS  PubMed  Google Scholar 

  115. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  116. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hofman, M. S. et al. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int. https://doi.org/10.1111/bju.14374 (2018).

    Article  PubMed  Google Scholar 

  118. Rowe, S. P. et al. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis. 19, 223–230 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rowe, S. P. et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naive and castration-resistant metastatic prostate cancer. J. Nucl. Med. 57, 46–53 (2016).

    CAS  PubMed  Google Scholar 

  120. Wright, G. L. Jr, Haley, C., Beckett, M. L. & Schellhammer, P. F. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1, 18–28 (1995).

    PubMed  Google Scholar 

  121. Chang, S. S. et al. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 5, 2674–2681 (1999).

    CAS  PubMed  Google Scholar 

  122. Haffner, M. C. et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 40, 1754–1761 (2009).

    CAS  PubMed  Google Scholar 

  123. Kinoshita, Y. et al. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 30, 628–636 (2006).

    PubMed  Google Scholar 

  124. Mhawech-Fauceglia, P. et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology 50, 472–483 (2007).

    CAS  PubMed  Google Scholar 

  125. Samplaski, M. K., Heston, W., Elson, P., Magi-Galluzzi, C. & Hansel, D. E. Folate hydrolase (prostate-specific membrane [corrected] antigen) 1 expression in bladder cancer subtypes and associated tumor neovasculature. Mod. Pathol. 24, 1521–1529 (2011).

    CAS  PubMed  Google Scholar 

  126. Troyer, J. K., Beckett, M. L. & Wright, G. L. Jr. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int. J. Cancer 62, 552–558 (1995).

    CAS  PubMed  Google Scholar 

  127. Artigas, C. et al. Paget bone disease demonstrated on (68)Ga-PSMA ligand PET/CT. Eur. J. Nucl. Med. Mol. Imaging 43, 195–196 (2016).

    CAS  PubMed  Google Scholar 

  128. Chan, M. & Hsiao, E. Subacute cortical infarct showing uptake on 68Ga-PSMA PET/CT. Clin. Nucl. Med. 42, 110–111 (2017).

    PubMed  Google Scholar 

  129. Dias, A. H., Holm Vendelbo, M. & Bouchelouche, K. Prostate-specific membrane antigen PET/CT: uptake in lymph nodes with active sarcoidosis. Clin. Nucl. Med. 42, e175–e176 (2017).

    PubMed  Google Scholar 

  130. Pyka, T. et al. 68Ga-PSMA-HBED-CC PET for differential diagnosis of suggestive lung lesions in patients with prostate cancer. J. Nucl. Med. 57, 367–371 (2016).

    CAS  PubMed  Google Scholar 

  131. Vamadevan, S., Le, K., Bui, C. & Mansberg, R. Incidental PSMA uptake in an undisplaced fracture of a vertebral body. Clin. Nucl. Med. 42, 465–466 (2017).

    PubMed  Google Scholar 

  132. Chu, D. C. et al. The use of real-time quantitative PCR to detect circulating prostate-specific membrane antigen mRNA in patients with prostate carcinoma. Ann. NY Acad. Sci. 1022, 157–162 (2004).

    CAS  PubMed  Google Scholar 

  133. Reiter, R. E. et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl Acad. Sci. USA 95, 1735–1740 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tang, S. et al. Positive and negative regulation of prostate stem cell antigen expression by Yin Yang 1 in prostate epithelial cell lines. PLOS ONE 7, e35570 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gu, Z. et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19, 1288–1296 (2000).

    CAS  PubMed  Google Scholar 

  136. Lam, J. S. et al. Prostate stem cell antigen is overexpressed in prostate cancer metastases. Clin. Cancer Res. 11, 2591–2596 (2005).

    CAS  PubMed  Google Scholar 

  137. Hara, N. et al. Reverse transcription-polymerase chain reaction detection of prostate-specific antigen, prostate-specific membrane antigen, and prostate stem cell antigen in one milliliter of peripheral blood: value for the staging of prostate cancer. Clin. Cancer Res. 8, 1794–1799 (2002).

    CAS  PubMed  Google Scholar 

  138. Zhigang, Z. & Wenlu, S. The association of prostate stem cell antigen (PSCA) mRNA expression and subsequent prostate cancer risk in men with benign prostatic hyperplasia following transurethral resection of the prostate. Prostate 68, 190–199 (2008).

    PubMed  Google Scholar 

  139. Fawzy, M. S., Mohamed, R. H. & Elfayoumi, A. R. Prostate stem cell antigen (PSCA) mRNA expression in peripheral blood in patients with benign prostatic hyperplasia and/or prostate cancer. Med. Oncol. 32, 74 (2015).

    PubMed  Google Scholar 

  140. Lukyanchuk, V. V. et al. Detection of circulating tumor cells by cytokeratin 20 and prostate stem cell antigen RT-PCR in blood of patients with gastrointestinal cancers. Anticancer Res. 23, 2711–2716 (2003).

    PubMed  Google Scholar 

  141. Bahrenberg, G., Brauers, A., Joost, H. G. & Jakse, G. Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem. Biophys. Res. Commun. 275, 783–788 (2000).

    CAS  PubMed  Google Scholar 

  142. Elsamman, E. et al. Prostate stem cell antigen predicts tumour recurrence in superficial transitional cell carcinoma of the urinary bladder. BJU Int. 97, 1202–1207 (2006).

    CAS  PubMed  Google Scholar 

  143. Ono, H. et al. Prostate stem cell antigen, a presumable organ-dependent tumor suppressor gene, is down-regulated in gallbladder carcinogenesis. Genes Chromosomes Cancer 51, 30–41 (2012).

    CAS  PubMed  Google Scholar 

  144. Amara, N. et al. Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res. 61, 4660–4665 (2001).

    CAS  PubMed  Google Scholar 

  145. Elsamman, E. M. et al. The expression of prostate stem cell antigen in human clear cell renal cell carcinoma: a quantitative reverse transcriptase-polymerase chain reaction analysis. BJU Int. 98, 668–673 (2006).

    CAS  PubMed  Google Scholar 

  146. Kawaguchi, T. et al. Clinical significance of prostate stem cell antigen expression in non-small cell lung cancer. Jpn J. Clin. Oncol. 40, 319–326 (2010).

    PubMed  Google Scholar 

  147. Cao, D., Ji, H. & Ronnett, B. M. Expression of mesothelin, fascin, and prostate stem cell antigen in primary ovarian mucinous tumors and their utility in differentiating primary ovarian mucinous tumors from metastatic pancreatic mucinous carcinomas in the ovary. Int. J. Gynecol. Pathol. 24, 67–72 (2005).

    PubMed  Google Scholar 

  148. Argani, P. et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324 (2001).

    CAS  PubMed  Google Scholar 

  149. Zhang, L. Y. et al. PSCA acts as a tumor suppressor by facilitating the nuclear translocation of RB1CC1 in esophageal squamous cell carcinoma. Carcinogenesis 37, 320–332 (2016).

    CAS  PubMed  Google Scholar 

  150. Study Group of Millennium Genome Project for, C. et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet. 40, 730–740 (2008).

    Google Scholar 

  151. Saeki, N., Gu, J., Yoshida, T. & Wu, X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin. Cancer Res. 16, 3533–3538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Luo, J. et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 62, 2220–2226 (2002).

    CAS  PubMed  Google Scholar 

  153. Zha, S. et al. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res. 63, 7365–7376 (2003).

    CAS  PubMed  Google Scholar 

  154. Went, P. T., Sauter, G., Oberholzer, M. & Bubendorf, L. Abundant expression of AMACR in many distinct tumour types. Pathology 38, 426–432 (2006).

    CAS  PubMed  Google Scholar 

  155. Zhou, M., Chinnaiyan, A. M., Kleer, C. G., Lucas, P. C. & Rubin, M. A. Alpha-methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am. J. Surg. Pathol. 26, 926–931 (2002).

    PubMed  Google Scholar 

  156. Evans, A. J. Alpha-methylacyl CoA racemase (P504S): overview and potential uses in diagnostic pathology as applied to prostate needle biopsies. J. Clin. Pathol. 56, 892–897 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Farinola, M. A. & Epstein, J. I. Utility of immunohistochemistry for alpha-methylacyl-CoA racemase in distinguishing atrophic prostate cancer from benign atrophy. Hum. Pathol. 35, 1272–1278 (2004).

    CAS  PubMed  Google Scholar 

  158. Zhou, M., Jiang, Z. & Epstein, J. I. Expression and diagnostic utility of alpha-methylacyl-CoA-racemase (P504S) in foamy gland and pseudohyperplastic prostate cancer. Am. J. Surg. Pathol. 27, 772–778 (2003).

    PubMed  Google Scholar 

  159. Cardillo, M. R. et al. Can p503s, p504s and p510s gene expression in peripheral-blood be useful as a marker of prostatic cancer? BMC Cancer 5, 111 (2005).

    PubMed  PubMed Central  Google Scholar 

  160. Beach, R. et al. P504S immunohistochemical detection in 405 prostatic specimens including 376 18-gauge needle biopsies. Am. J. Surg. Pathol. 26, 1588–1596 (2002).

    CAS  PubMed  Google Scholar 

  161. Herawi, M., Parwani, A. V., Irie, J. & Epstein, J. I. Small glandular proliferations on needle biopsies: most common benign mimickers of prostatic adenocarcinoma sent in for expert second opinion. Am. J. Surg. Pathol. 29, 874–880 (2005).

    PubMed  Google Scholar 

  162. Goldfarb, D. A., Stein, B. S., Shamszadeh, M. & Petersen, R. O. Age-related changes in tissue levels of prostatic acid phosphatase and prostate specific antigen. J. Urol. 136, 1266–1269 (1986).

    CAS  PubMed  Google Scholar 

  163. Yam, L. T. Clinical significance of the human acid phosphatases: a review. Am. J. Med. 56, 604–616 (1974).

    CAS  PubMed  Google Scholar 

  164. Gutman, E. B., Sproul, E. E. & Gutman, A. B. Significance of increased phosphatase activity at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am. J. Cancer 28, 485–495 (1936).

    CAS  Google Scholar 

  165. Burnett, A. L., Chan, D. W., Brendler, C. B. & Walsh, P. C. The value of serum enzymatic acid phosphatase in the staging of localized prostate cancer. J. Urol. 148, 1832–1834 (1992).

    CAS  PubMed  Google Scholar 

  166. Graddis, T. J., McMahan, C. J., Tamman, J., Page, K. J. & Trager, J. B. Prostatic acid phosphatase expression in human tissues. Int. J. Clin. Exp. Pathol. 4, 295–306 (2011).

    PubMed  PubMed Central  Google Scholar 

  167. Jobsis, A. C., De Vries, G. P., Meijer, A. E. & Ploem, J. S. The immunohistochemical detection of prostatic acid phosphatase: its possibilities and limitations in tumour histochemistry. Histochem. J. 13, 961–973 (1981).

    CAS  PubMed  Google Scholar 

  168. Li, C. Y., Lam, W. K. & Yam, L. T. Immunohistochemical diagnosis of prostatic cancer with metastasis. Cancer 46, 706–712 (1980).

    CAS  PubMed  Google Scholar 

  169. Elgamal, A. A. et al. Detection of prostate specific antigen in pancreas and salivary glands: a potential impact on prostate cancer overestimation. J. Urol. 156, 464–468 (1996).

    CAS  PubMed  Google Scholar 

  170. Haines, A. M., Larkin, S. E., Richardson, A. P., Stirling, R. W. & Heyderman, E. A novel hybridoma antibody (PASE/4LJ) to human prostatic acid phosphatase suitable for immunohistochemistry. Br. J. Cancer 60, 887–892 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kamoshida, S. & Tsutsumi, Y. Extraprostatic localization of prostatic acid phosphatase and prostate-specific antigen: distribution in cloacogenic glandular epithelium and sex-dependent expression in human anal gland. Hum. Pathol. 21, 1108–1111 (1990).

    CAS  PubMed  Google Scholar 

  172. Tepper, S. L., Jagirdar, J., Heath, D. & Geller, S. A. Homology between the female paraurethral (Skene’s) glands and the prostate. Immunohistochemical demonstration. Arch. Pathol. Lab. Med. 108, 423–425 (1984).

    CAS  PubMed  Google Scholar 

  173. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  174. Shah, R. B. Clinical applications of novel ERG immunohistochemistry in prostate cancer diagnosis and management. Adv. Anatom. Pathol. 20, 117–124 (2013).

    CAS  Google Scholar 

  175. Hagglof, C. et al. TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLOS ONE 9, e86824 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Petrovics, G. et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24, 3847–3852 (2005).

    CAS  PubMed  Google Scholar 

  177. Hessels, D. et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 13, 5103–5108 (2007).

    CAS  PubMed  Google Scholar 

  178. Hernandez-Llodra, S. et al. ERG overexpression plus SLC45A3 (prostein) and PTEN expression loss: strong association of the triple hit phenotype with an aggressive pathway of prostate cancer progression. Oncotarget 8, 74106–74118 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Tomlins, S. A. et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66, 3396–3400 (2006).

    CAS  PubMed  Google Scholar 

  180. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  182. Gezer, U., Tiryakioglu, D., Bilgin, E., Dalay, N. & Holdenrieder, S. Androgen stimulation of PCA3 and miR-141 and their release from prostate cancer cells. Cell J. 16, 488–493 (2015).

    PubMed  PubMed Central  Google Scholar 

  183. Salagierski, M. et al. Differential expression of PCA3 and its overlapping PRUNE2 transcript in prostate cancer. Prostate 70, 70–78 (2010).

    CAS  PubMed  Google Scholar 

  184. Salameh, A. et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl Acad. Sci. USA 112, 8403–8408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. de Kok, J. B. et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 62, 2695–2698 (2002).

    PubMed  Google Scholar 

  186. Loeb, S. & Partin, A. W. Review of the literature: PCA3 for prostate cancer risk assessment and prognostication. Rev. Urol. 13, e191–e195 (2011).

    PubMed  PubMed Central  Google Scholar 

  187. Tomlins, S. A. et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45–53 (2016).

    CAS  PubMed  Google Scholar 

  188. Gurel, B. et al. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am. J. Surg. Pathol. 34, 1097–1105 (2010).

    PubMed  PubMed Central  Google Scholar 

  189. Xu, L. L. et al. Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J. Urol. 163, 972–979 (2000).

    CAS  PubMed  Google Scholar 

  190. He, W. W. et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–775 (1997).

    CAS  PubMed  Google Scholar 

  191. Bethel, C. R. et al. Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Cancer Res. 66, 10683–10690 (2006).

    CAS  PubMed  Google Scholar 

  192. Bowen, C. et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60, 6111–6115 (2000).

    CAS  PubMed  Google Scholar 

  193. Gelmann, E. P., Bowen, C. & Bubendorf, L. Expression of NKX3.1 in normal and malignant tissues. Prostate 55, 111–117 (2003).

    CAS  PubMed  Google Scholar 

  194. Voeller, H. J. et al. Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res. 57, 4455–4459 (1997).

    CAS  PubMed  Google Scholar 

  195. Kim, Y. R. et al. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol. Cancer 9, 124 (2010).

    PubMed  PubMed Central  Google Scholar 

  196. Norris, J. D. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol. Cell 36, 405–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kim, S. D. et al. HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression. Anat. Cell Biol. 43, 284–293 (2010).

    PubMed  PubMed Central  Google Scholar 

  198. Zabalza, C. V. et al. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget 6, 12822–12834 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. Varinot, J. et al. HOXB13 is a sensitive and specific marker of prostate cells, useful in distinguishing between carcinomas of prostatic and urothelial origin. Virchows Arch. 463, 803–809 (2013).

    CAS  PubMed  Google Scholar 

  200. Alshenawy, H. A. & Saied, E. Do HOXB13 and P63 have a role in differentiating poorly differentiated prostatic carcinoma from urothelial high-grade carcinoma? APMIS 123, 772–778 (2015).

    PubMed  Google Scholar 

  201. Varinot, J. et al. HOXB13 protein expression in metastatic lesions is a promising marker for prostate origin. Virchows Arch. 468, 619–622 (2016).

    CAS  PubMed  Google Scholar 

  202. Ewing, C. M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Barresi, V. et al. HOXB13 as an immunohistochemical marker of prostatic origin in metastatic tumors. APMIS 124, 188–193 (2016).

    CAS  PubMed  Google Scholar 

  204. Lilja, H. & Abrahamsson, P. A. Three predominant proteins secreted by the human prostate gland. Prostate 12, 29–38 (1988).

    CAS  PubMed  Google Scholar 

  205. Akiyama, K. et al. The amino acid sequence of human beta-microseminoprotein. Biochim. Biophys. Acta 829, 288–294 (1985).

    CAS  PubMed  Google Scholar 

  206. Seidah, N. G., Arbatti, N. J., Rochemont, J., Sheth, A. R. & Chretien, M. Complete amino acid sequence of human seminal plasma beta-inhibin. Prediction of post Gln-Arg cleavage as a maturation site. FEBS Lett. 175, 349–355 (1984).

    CAS  PubMed  Google Scholar 

  207. Dube, J. Y. et al. Isolation from human seminal plasma of an abundant 16-kDa protein originating from the prostate, its identification with a 94-residue peptide originally described as beta-inhibin. J. Androl. 8, 182–189 (1987).

    CAS  PubMed  Google Scholar 

  208. Dube, J. Y., Pelletier, G., Gagnon, P. & Tremblay, R. R. Immunohistochemical localization of a prostatic secretory protein of 94 amino acids in normal prostatic tissue, in primary prostatic tumors and in their metastases. J. Urol. 138, 883–887 (1987).

    CAS  PubMed  Google Scholar 

  209. Hara, M. & Kimura, H. Two prostate-specific antigens, gamma-seminoprotein and beta-microseminoprotein. J. Lab. Clin. Med. 113, 541–548 (1989).

    CAS  PubMed  Google Scholar 

  210. Kwong, J., Xuan, J. W., Chan, P. S., Ho, S. M. & Chan, F. L. A comparative study of hormonal regulation of three secretory proteins (prostatic secretory protein-PSP94, probasin, and seminal vesicle secretion II) in rat lateral prostate. Endocrinology 141, 4543–4551 (2000).

    CAS  PubMed  Google Scholar 

  211. Anahi Franchi, N. et al. β-Microseminoprotein in human spermatozoa and its potential role in male fertility. Reproduction 136, 157–166 (2008).

    CAS  PubMed  Google Scholar 

  212. Edstrom Hagerwall, A. M. et al. β-Microseminoprotein endows post coital seminal plasma with potent candidacidal activity by a calcium- and pH-dependent mechanism. PLOS Pathog. 8, e1002625 (2012).

    PubMed  PubMed Central  Google Scholar 

  213. Weiber, H. et al. Beta microseminoprotein is not a prostate-specific protein. Its identification in mucous glands and secretions. Am. J. Pathol. 137, 593–603 (1990).

    CAS  PubMed  Google Scholar 

  214. Ma, J. X. et al. PSP94, an upstream signaling mediator of prostasin found highly elevated in ovarian cancer. Cell Death Dis. 5, e1407 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Liu, A. Y., Bradner, R. C. & Vessella, R. L. Decreased expression of prostatic secretory protein PSP94 in prostate cancer. Cancer Lett. 74, 91–99 (1993).

    CAS  PubMed  Google Scholar 

  216. Garde, S., Sheth, A., Porter, A. T. & Pienta, K. J. Effect of prostatic inhibin peptide (PIP) on prostate cancer cell growth in vitro and in vivo. Prostate 22, 225–233 (1993).

    CAS  PubMed  Google Scholar 

  217. Garde, S. V. et al. Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. Prostate 38, 118–125 (1999).

    CAS  PubMed  Google Scholar 

  218. Shukeir, N., Arakelian, A., Kadhim, S., Garde, S. & Rabbani, S. A. Prostate secretory protein PSP-94 decreases tumor growth and hypercalcemia of malignancy in a syngenic in vivo model of prostate cancer. Cancer Res. 63, 2072–2078 (2003).

    CAS  PubMed  Google Scholar 

  219. Shukeir, N., Garde, S., Wu, J. J., Panchal, C. & Rabbani, S. A. Prostate secretory protein of 94 amino acids (PSP-94) and its peptide (PCK3145) as potential therapeutic modalities for prostate cancer. Anticancer Drugs 16, 1045–1051 (2005).

    CAS  PubMed  Google Scholar 

  220. Imasato, Y. et al. PSP94 expression after androgen deprivation therapy: a comparative study with prostate specific antigen in benign prostate and prostate cancer. J. Urol. 164, 1819–1824 (2000).

    CAS  PubMed  Google Scholar 

  221. Chang, B. L. et al. Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum. Mol. Genet. 18, 1368–1375 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Sutcliffe, S., De Marzo, A. M., Sfanos, K. S. & Laurence, M. MSMB variation and prostate cancer risk: clues towards a possible fungal etiology. Prostate 74, 569–578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Beke, L., Nuytten, M., Van Eynde, A., Beullens, M. & Bollen, M. The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26, 4590–4595 (2007).

    CAS  PubMed  Google Scholar 

  224. Lamy, S. et al. A prostate secretory protein94-derived synthetic peptide PCK3145 inhibits VEGF signalling in endothelial cells: implication in tumor angiogenesis. Int. J. Cancer 118, 2350–2358 (2006).

    CAS  PubMed  Google Scholar 

  225. Xu, J. et al. Identification and characterization of prostein, a novel prostate-specific protein. Cancer Res. 61, 1563–1568 (2001).

    CAS  PubMed  Google Scholar 

  226. Sheridan, T., Herawi, M., Epstein, J. I. & Illei, P. B. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am. J. Surg. Pathol. 31, 1351–1355 (2007).

    PubMed  Google Scholar 

  227. Kalos, M. et al. Prostein expression is highly restricted to normal and malignant prostate tissues. Prostate 60, 246–256 (2004).

    CAS  PubMed  Google Scholar 

  228. Yin, M., Dhir, R. & Parwani, A. V. Diagnostic utility of p501s (prostein) in comparison to prostate specific antigen (PSA) for the detection of metastatic prostatic adenocarcinoma. Diagn. Pathol. 2, 41 (2007).

    PubMed  PubMed Central  Google Scholar 

  229. Lane, Z., Hansel, D. E. & Epstein, J. I. Immunohistochemical expression of prostatic antigens in adenocarcinoma and villous adenoma of the urinary bladder. Am. J. Surg. Pathol. 32, 1322–1326 (2008).

    PubMed  Google Scholar 

  230. Valkenburg, K. C. & Pienta, K. J. Drug discovery in prostate cancer mouse models. Expert Opin. Drug Discov. 10, 1011–1024 (2015).

    PubMed  PubMed Central  Google Scholar 

  231. Valkenburg, K. C. & Williams, B. O. Mouse models of prostate cancer. Prostate Cancer 2011, 895238 (2011).

    PubMed  PubMed Central  Google Scholar 

  232. El-Alfy, M., Pelletier, G., Hermo, L. S. & Labrie, F. Unique features of the basal cells of human prostate epithelium. Microsc. Res. Tech. 51, 436–446 (2000).

    CAS  PubMed  Google Scholar 

  233. Diamandis, E. P., Yousef, G. M. & Olsson, A. Y. An update on human and mouse glandular kallikreins. Clin. Biochem. 37, 258–260 (2004).

    CAS  PubMed  Google Scholar 

  234. Thota, A. et al. Mouse PSP94 expression is prostate tissue-specific as demonstrated by a comparison of multiple antibodies against recombinant proteins. J. Cell. Biochem. 88, 999–1011 (2003).

    CAS  PubMed  Google Scholar 

  235. Kozak, C. A., Adamson, M. C. & Horowitz, M. Genetic mapping of the mouse prosaposin gene (Psap) to mouse chromosome 10. Genomics 23, 508–510 (1994).

    CAS  PubMed  Google Scholar 

  236. Schmittgen, T. D. et al. Expression pattern of mouse homolog of prostate-specific membrane antigen (FOLH1) in the transgenic adenocarcinoma of the mouse prostate model. Prostate 55, 308–316 (2003).

    CAS  PubMed  Google Scholar 

  237. Sreenath, T., Orosz, A., Fujita, K. & Bieberich, C. J. Androgen-independent expression of hoxb-13 in the mouse prostate. Prostate 41, 203–207 (1999).

    CAS  PubMed  Google Scholar 

  238. Hubbard, G. K. et al. Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res. 76, 283–292 (2016).

    CAS  PubMed  Google Scholar 

  239. Sciavolino, P. J. et al. Tissue-specific expression of murine Nkx3.1 in the male urogenital system. Dev. Dyn. 209, 127–138 (1997).

    CAS  PubMed  Google Scholar 

  240. Abdulkadir, S. A. et al. Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol. Cell. Biol. 22, 1495–1503 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Bhatia-Gaur, R. et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Autio, K. J. et al. Role of AMACR (alpha-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochem. J. 461, 125–135 (2014).

    CAS  PubMed  Google Scholar 

  243. Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLOS Biol. 9, e1000582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004).

    CAS  PubMed  Google Scholar 

  245. Michiel Sedelaar, J. P., Dalrymple, S. S. & Isaacs, J. T. Of mice and men—warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate 73, 1316–1325 (2013).

    CAS  PubMed  Google Scholar 

  246. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Amling, C. L. et al. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

    CAS  PubMed  Google Scholar 

  248. Chery, L. et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5, 9939–9951 (2014).

    PubMed  PubMed Central  Google Scholar 

  249. Guzvic, M. et al. Combined genome and transcriptome analysis of single disseminated cancer cells from bone marrow of prostate cancer patients reveals unexpected transcriptomes. Cancer Res. 74, 7383–7394 (2014).

    CAS  PubMed  Google Scholar 

  250. Krivacic, R. T. et al. A rare cell detector for cancer. Proc. Natl Acad. Sci. USA 101, 10501–10504 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Ramos-Vara, J. A. Technical aspects of immunohistochemistry. Vet. Pathol. 42, 405–426 (2005).

    CAS  PubMed  Google Scholar 

  252. Burry, R. W. Controls for immunocytochemistry: an update. J. Histochem. Cytochem. 59, 6–12 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Nair, N. et al. High-dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells by mass cytometry. Mucosal Immunol. 9, 68–82 (2016).

    CAS  PubMed  Google Scholar 

  256. Matos, L. L., Trufelli, D. C., de Matos, M. G. & da Silva Pinhal, M. A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark. Insights 5, 9–20 (2010).

    PubMed  PubMed Central  Google Scholar 

  257. Lipman, N. S., Jackson, L. R., Trudel, L. J. & Weis-Garcia, F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J. 46, 258–268 (2005).

    CAS  PubMed  Google Scholar 

  258. Hsi, E. D. A practical approach for evaluating new antibodies in the clinical immunohistochemistry laboratory. Arch. Pathol. Lab. Med. 125, 289–294 (2001).

    CAS  PubMed  Google Scholar 

  259. Leong, A. S. Quantitation in immunohistology: fact or fiction? A discussion of variables that influence results. Appl. Immunohistochem. Mol. Morphol. 12, 1–7 (2004).

    PubMed  Google Scholar 

  260. Shi, S. R., Liu, C. & Taylor, C. R. Standardization of immunohistochemistry for formalin-fixed, paraffin-embedded tissue sections based on the antigen-retrieval technique: from experiments to hypothesis. J. Histochem. Cytochem. 55, 105–109 (2007).

    CAS  PubMed  Google Scholar 

  261. Billinton, N. & Knight, A. W. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291, 175–197 (2001).

    CAS  PubMed  Google Scholar 

  262. Dall, P. et al. Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int. J. Cancer 60, 471–477 (1995).

    CAS  PubMed  Google Scholar 

  263. Parra, E. R. et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci. Rep. 7, 13380 (2017).

    PubMed  PubMed Central  Google Scholar 

  264. Leite, K. R. et al. The use of immunohistochemistry for diagnosis of prostate cancer. Int. Braz. J. Urol. 36, 583–590 (2010).

    PubMed  Google Scholar 

  265. Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    CAS  PubMed  Google Scholar 

  266. Dago, A. E. et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLOS ONE 9, e101777 (2014).

    PubMed  PubMed Central  Google Scholar 

  267. Miyamoto, D. T., Ting, D. T., Toner, M., Maheswaran, S. & Haber, D. A. Single-cell analysis of circulating tumor cells as a window into tumor heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 81, 269–274 (2016).

    PubMed  Google Scholar 

  268. Yeo, T. et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6, 22076 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Bostrom, P. J. & Soloway, M. S. Secondary cancer after radiotherapy for prostate cancer: should we be more aware of the risk? Eur. Urol. 52, 973–982 (2007).

    PubMed  Google Scholar 

  270. Brennen, W. N. & Isaacs, J. T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat. Rev. Urol. https://doi.org/10.1038/s41585-018-0087-9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Di Cristofano, A. et al. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat. Genet. 27, 222–224 (2001).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NCI grants U54CA143803, CA163124, CA093900, and CA143055 as well as the Prostate Cancer Foundation, the Patrick C. Walsh Fund and a gift from the Stutt family. E.E.v.d.T. is supported by the Cure for Cancer Foundation. K.C.V. is supported by NCI grant F32CA206394.

Reviewer information

Nature Reviews Urology thanks Y.-J. Lu, A. Strati, and T. Todenhöfer, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.E.v.d.T., H.D.A., and K.C.V. researched data for the article, E.E.v.d.T., J.J.d.l.R., T.M.d.R., K.J.P., and K.C.V. made substantial contributions to discussions of content. E.E.v.d.T., H.D.A., and K.C.V. wrote the article and all authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kenneth C. Valkenburg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Toom, E.E., Axelrod, H.D., de la Rosette, J.J. et al. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol 16, 7–22 (2019). https://doi.org/10.1038/s41585-018-0119-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0119-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer