Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonsurgical management of Peyronie’s disease

Abstract

Peyronie’s disease is not a rare disorder, and it can be devastating to the affected man. Although the gold-standard treatment of Peyronie’s disease is surgery in the stable phase, nonoperative management is preferred by some men and is the only treatment option in the acute phase of the disease, when surgery is contraindicated. No oral or topical therapy has been shown to be efficacious when administered alone, but some evidence supports their use as part of a combination therapy regimen. Intralesional therapies, particularly collagenase clostridium histolyticum (CCH), have shown promise. Mechanical therapies can provide benefit when applied for prolonged periods of time, improving penile curvature, indentation, and even restoring length. Regardless of the modality chosen, patient counselling is paramount, as recovery of the penis to its predisease state is highly unlikely. Thus, although many options exist for nonsurgical management of Peyronie’s disease, surgery remains the best option for men who desire the most reliable and rapid pathway to a functionally straight, erect penis. The goal of nonsurgical therapy should be a scientifically feasible, safe approach to prevent the progression of, or reduce, deformity and improve sexual function.

Key points

  • No currently available oral or topical therapy is effective as a monotherapy, but some have shown encouraging results as a part of combination therapy.

  • Intralesional verapamil, interferon-α2b, and collagenase clostridium histolyticum (CCH) have been shown to considerably reduce penile curvature, but they cannot achieve absolute straightness.

  • Mechanical therapy and, in particular, traction therapy, is dependent on duration of use and has consistently been shown to delay the progression of Peyronie’s disease and reduce penile deformity.

  • Surgical therapy remains the gold standard and the therapeutic option with the highest probability of achieving functional straightness.

  • Establishing reasonable patient expectations and joint decision-making between patient and clinician are key to achieving patient satisfaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cross section of the penis.
Fig. 2: Proposed pathogenesis of Peyronie’s disease.
Fig. 3: Mechanisms of action of oral therapies for Peyronie’s disease.
Fig. 4: Mechanisms of action for topical and intralesional therapies for Peyronie’s disease.
Fig. 5: Mechanisms of action for radiotherapies and mechanical therapies.

References

  1. 1.

    de la Peyronie, F. G. Sur quelques obstacles qui s’opposent a l’ejaculation naturelle de la semence [French]. Mém. Acad. R. Chir. 1, 425–434 (1743).

    Google Scholar 

  2. 2.

    Schwarzer, U. et al. The prevalence of Peyronie’s disease: results of a large survey. BJU Int. 88, 727–730 (2001).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Mulhall, J. P. et al. Subjective and objective analysis of the prevalence of Peyronie’s disease in a population of men presenting for prostate cancer screening. J. Urol. 171, 2350–2353 (2004).

    Article  PubMed  Google Scholar 

  4. 4.

    Dibenedetti, D. B., Nguyen, D., Zografos, L., Ziemiecki, R. & Zhou, X. A. Population-based study of Peyronie’s disease: prevalence and treatment patterns in the United States. Adv. Urol. 2011, 282503 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ralph, D. et al. The management of Peyronie’s disease: evidence-based 2010 guidelines. J. Sex. Med. 7, 2359–2374 (2010).

    Article  PubMed  Google Scholar 

  6. 6.

    Mulhall, J. P. Expanding the paradigm for plaque development in Peyronie’s disease. Int. J. Impot. Res. 15 (Suppl. 5), 93–102 (2003).

    Article  Google Scholar 

  7. 7.

    Pryor, J. P. & Ralph, D. J. Clinical presentations of Peyronie’s disease. Int. J. Impot. Res. 14, 414–417 (2002).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tefekli, A. et al. Peyronie’s disease in men under age 40: characteristics and outcome. Int. J. Impot. Res. 13, 18–23 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nugteren, H. M., Nijman, J. M., de Jong, I. J. & van Driel, M. F. The association between Peyronie’s and Dupuytren’s disease. Int. J. Impot. Res. 23, 142–145 (2011).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Dibenedetti, D. B., Nguyen, D., Zografos, L., Ziemiecki, R. & Zhou, X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: results from a population-based study. Hand 6, 149–158 (2011).

    Article  PubMed  Google Scholar 

  11. 11.

    Van de Water, L. Mechanisms by which fibrin and fibronectin appear in healing wounds: implications for Peyronie’s disease. J. Urol. 157, 306–310 (1997).

    Article  PubMed  Google Scholar 

  12. 12.

    Diegelmann, R. F. Cellular and biochemical aspects of normal and abnormal wound healing: an overview. J. Urol. 157, 298–302 (1997).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Davila, H. H., Ferrini, M. G., Rajfer, J. & Gonzalez-Cadavid, N. F. Fibrin as an inducer of fibrosis in the tunica albuginea of the rat: a new animal model of Peyronie’s disease. BJU Int. 91, 830–838 (2003).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    El-Sakka, A. I. et al. An animal model of Peyronie’s-like condition associated with an increase of transforming growth factor beta mRNA and protein expression. J. Urol. 158, 2284–2290 (1997).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sporn, M. B., Roberts, A. B., Wakefield, L. M. & de Crombrugghe, B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol. 105, 1039–1045 (1987).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Moreland, R. B. & Nehra, A. Pathophysiology of Peyronie’s disease. Int. J. Impot. Res. 14, 406–410 (2002).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    El-Sakka, A. I. et al. Histological and ultrastructural alterations in an animal model of Peyronie’s disease. Br. J. Urol. 81, 445–452 (1998).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Mulhall, J. P., Anderson, M. S., Lubrano, T. & Shankey, T. V. Peyronie’s disease cell culture models: phenotypic, genotypic and functional analyses. Int. J. Impot. Res. 14, 397–405 (2002).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Del Carlo, M., Cole, A. A. & Levine, L. A. Differential calcium independent regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by interleukin-1beta and transforming growth factor-beta in Peyronie’s plaque fibroblasts. J. Urol. 179, 2447–2455 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ferrini, M. G. et al. Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide 6, 283–294 (2002).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Vernet, D. et al. Effect of nitric oxide on the differentiation of fibroblasts into myofibroblasts in the Peyronie’s fibrotic plaque and in its rat model. Nitric Oxide 7, 262–276 (2002).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Coyne, K. S., Currie, B. M., Thompson, C. L. & Smith, T. M. Responsiveness of the Peyronie’s disease questionnaire (PDQ). J. Sex. Med. 12, 1072–1079 (2015).

    Article  PubMed  Google Scholar 

  23. 23.

    Hellstrom, W. J. et al. Bother and distress associated with Peyronie’s disease: validation of the Peyronie’s disease questionnaire. J. Urol. 190, 627–634 (2013).

    Article  PubMed  Google Scholar 

  24. 24.

    Mulhall, J. P., Schiff, J. & Guhring, P. An analysis of the natural history of Peyronie’s disease. J. Urol. 175, 2115–2118; discussion 2118 (2006).

    Article  PubMed  Google Scholar 

  25. 25.

    Chen, J. Y., Hockenberry, M. S. & Lipshultz, L. I. Objective assessments of Peyronie’s disease. Sex. Med. Rev. 6, 438–445 (2018).

    Article  PubMed  Google Scholar 

  26. 26.

    Chung, E., De Young, L. & Brock, G. B. Rat as an animal model for Peyronie’s disease research: a review of current methods and the peer-reviewed literature. Int. J. Impot. Res. 23, 235–241 (2011).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Levine, L. A. & Burnett, A. L. Standard operating procedures for Peyronie’s disease. J. Sex. Med. 10, 230–244 (2013).

    Article  PubMed  Google Scholar 

  28. 28.

    Sikka, S. C. & Hellstrom, W. J. Role of oxidative stress and antioxidants in Peyronie’s disease. Int. J. Impot. Res. 14, 353–360 (2002).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Paulis, G. et al. Efficacy of vitamin E in the conservative treatment of Peyronie’s disease: legend or reality? A controlled study of 70 cases. Andrology 1, 120–128 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hashimoto, K. et al. Outcome analysis for conservative management of Peyronie’s disease. Int. J. Urol. 13, 244–247 (2006).

    Article  PubMed  Google Scholar 

  31. 31.

    Pryor, J. P., & Farrell, C. F. Controlled clinic trial of vitamin E in Peyronie’s disease. Prog. Reprod. Biol. 9, 41–45 (1983).

    Google Scholar 

  32. 32.

    Safarinejad, M. R., Hosseini, S. Y. & Kolahi, A. A. Comparison of vitamin E and propionyl-L-carnitine, separately or in combination, in patients with early chronic Peyronie’s disease: a double-blind, placebo controlled, randomized study. J. Urol. 178, 1398–1403; discussion 1403 (2007).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Calo, L. A. et al. Antioxidant effect of L-carnitine and its short chain esters: relevance for the protection from oxidative stress related cardiovascular damage. Int. J. Cardiol. 107, 54–60 (2006).

    Article  PubMed  Google Scholar 

  34. 34.

    Biagiotti, G. & Cavallini, G. Acetyl-L-carnitine versus tamoxifen in the oral therapy of Peyronie’s disease: a preliminary report. BJU Int. 88, 63–67 (2001).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Valente, E. G. et al. L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie’s fibrotic plaque and related fibroblast cultures. Nitric Oxide 9, 229–244 (2003).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ciociola, F. & Colpi, G. M. Peyronie’s disease: a “triple oxygenant therapy”. Arch. Ital. Urol. Androl. 85, 36–40 (2013).

    Article  PubMed  Google Scholar 

  37. 37.

    Abern, M. R., Larsen, S. & Levine, L. A. Combination of penile traction, intralesional verapamil, and oral therapies for Peyronie’s disease. J. Sex. Med. 9, 288–295 (2012).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Shindel, A. W. et al. Pentoxifylline attenuates transforming growth factor-beta1-stimulated collagen deposition and elastogenesis in human tunica albuginea-derived fibroblasts part 1: impact on extracellular matrix. J. Sex. Med. 7, 2077–2085 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schandene, L. et al. Differential effects of pentoxifylline on the production of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) by monocytes and T cells. Immunology 76, 30–34 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Raetsch, C. et al. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut 50, 241–247 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Smith, J. F. et al. Pentoxifylline treatment and penile calcifications in men with Peyronie’s disease. Asian J. Androl. 13, 322–325 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Safarinejad, M. R., Asgari, M. A., Hosseini, S. Y. & Dadkhah, F. A double-blind placebo-controlled study of the efficacy and safety of pentoxifylline in early chronic Peyronie’s disease. BJU Int. 106, 240–248 (2010).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Bella, A. J. et al. Peyronie’s disease (CME). J. Sex. Med. 4, 1527–1538 (2007).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Zarafonetis, C. J. & Horrax, T. M. Treatment of Peyronie’s disease with potassium para-aminobenzoate (potaba). J. Urol. 81, 770–772 (1959).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Weidner, W., Hauck, E. W. & Schnitker, J. Potassium paraaminobenzoate (POTABA) in the treatment of Peyronie’s disease: a prospective, placebo-controlled, randomized study. Eur. Urol. 47, 530–535; discussion 535–536 (2005).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    El-Sakka, A. I. et al. The effects of colchicine on a Peyronie’s-like condition in an animal model. J. Urol. 161, 1980–1983 (1999).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Anderson, M. S., Shankey, T. V., Lubrano, T. & Mulhall, J. P. Inhibition of Peyronie’s plaque fibroblast proliferation by biologic agents. Int. J. Impot. Res. 12 (Suppl. 3), 25–31 (2000).

    Article  Google Scholar 

  48. 48.

    Akkus, E. et al. Is colchicine effective in Peyronie’s disease? A pilot study. Urology 44, 291–295 (1994).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kadioglu, A., Tefekli, A., Koksal, T., Usta, M. & Erol, H. Treatment of Peyronie’s disease with oral colchicine: long-term results and predictive parameters of successful outcome. Int. J. Impot. Res. 12, 169–175 (2000).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Prieto Castro, R. M. et al. Combined treatment with vitamin E and colchicine in the early stages of Peyronie’s disease. BJU Int. 91, 522–524 (2003).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Safarinejad, M. R. Therapeutic effects of colchicine in the management of Peyronie’s disease: a randomized double-blind, placebo-controlled study. Int. J. Impot. Res. 16, 238–243 (2004).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Paulis, G. & Brancato, T. Inflammatory mechanisms and oxidative stress in Peyronie’s disease: therapeutic “rationale” and related emerging treatment strategies. Inflamm. Allergy Drug Targets 11, 48–57 (2012).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Carthy, J. M. et al. Tamoxifen inhibits TGF-β-mediated activation of myofibroblasts by blocking non-Smad signaling through ERK1/2. J. Cell. Physiol. 230, 3084–3092 (2015).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Brandt, A. S., Kamper, L., Kukuk, S., Haage, P. & Roth, S. Tamoxifen monotherapy in the treatment of retroperitoneal fibrosis. Urol. Int. 93, 320–325 (2014).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ralph, D. J., Brooks, M. D., Bottazzo, G. F. & Pryor, J. P. The treatment of Peyronie’s disease with tamoxifen. Br. J. Urol. 70, 648–651 (1992).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Teloken, C. et al. Tamoxifen versus placebo in the treatment of Peyronie’s disease. J. Urol. 162, 2003–2005 (1999).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Yang, G., Nowsheen, S., Aziz, K. & Georgakilas, A. G. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol. Ther. 139, 392–404 (2013).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Bjekic, M. D., Vlajinac, H. D., Sipetic, S. B. & Marinkovic, J. M. Risk factors for Peyronie’s disease: a case-control study. BJU Int. 97, 570–574 (2006).

    Article  PubMed  Google Scholar 

  59. 59.

    Jalkut, M., Gonzalez-Cadavid, N. & Rajfer, J. Peyronie’s fisease: a review. Rev. Urol. 5, 142–148 (2003).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Levine, L. A. & Latchamsetty, K. C. Treatment of erectile dysfunction in patients with Peyronie’s disease using sildenafil citrate. Int. J. Impot. Res. 14, 478–482 (2002).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Gonzalez-Cadavid, N. F. & Rajfer, J. Treatment of Peyronie’s disease with PDE5 inhibitors: an antifibrotic strategy. Nat. Rev. Urol. 7, 215–221 (2010).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Ferrini, M. G., Kovanecz, I., Nolazco, G., Rajfer, J. & Gonzalez-Cadavid, N. F. Effects of long-term vardenafil treatment on the development of fibrotic plaques in a rat model of Peyronie’s disease. BJU Int. 97, 625–633 (2006).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Vignozzi, L. et al. Effect of sildenafil administration on penile hypoxia induced by cavernous neurotomy in the rat. Int. J. Impot. Res. 20, 60–67 (2008).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Iacono, F. et al. Histopathologically proven prevention of post-prostatectomy cavernosal fibrosis with sildenafil. Urol. Int. 80, 249–252 (2008).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Chung, E., Deyoung, L. & Brock, G. B. The role of PDE5 inhibitors in penile septal scar remodeling: assessment of clinical and radiological outcomes. J. Sex. Med. 8, 1472–1477 (2011).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Ozturk, U. et al. Effects of sildenafil treatment on patients with Peyronie’s disease and erectile dysfunction. Ir. J. Med. Sci. 183, 449–453 (2014).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Palmieri, A. et al. Tadalafil once daily and extracorporeal shock wave therapy in the management of patients with Peyronie’s disease and erectile dysfunction: results from a prospective randomized trial. Int. J. Androl. 35, 190–195 (2012).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Martin, D. J., Badwan, K., Parker, M. & Mulhall, J. P. Transdermal application of verapamil gel to the penile shaft fails to infiltrate the tunica albuginea. J. Urol. 168, 2483–2485 (2002).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Lee, R. C. & Ping, J. A. Calcium antagonists retard extracellular matrix production in connective tissue equivalent. J. Surg. Res. 49, 463–466 (1990).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Aggeler, J., Frisch, S. M. & Werb, Z. Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J. Cell Biol. 98, 1662–1671 (1984).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Fitch, W. P. 3rd, Easterling, W. J., Talbert, R. L., Bordovsky, M. J. & Mosier, M. Topical verapamil HCl, topical trifluoperazine, and topical magnesium sulfate for the treatment of Peyronie’s disease — a placebo-controlled pilot study. J. Sex. Med. 4, 477–484 (2007).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Di Stasi, S. M. et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 12, 871–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Levine, L. A., Estrada, C. R., Shou, W. & Cole, A. Tunica albuginea tissue analysis after electromotive drug administration. J. Urol. 169, 1775–1778 (2003).

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Di Stasi, S. M. et al. Transdermal electromotive administration of verapamil and dexamethasone for Peyronie’s disease. BJU Int. 91, 825–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Greenfield, J. M., Shah, S. J. & Levine, L. A. Verapamil versus saline in electromotive drug administration for Peyronie’s disease: a double-blind, placebo controlled trial. J. Urol. 177, 972–975 (2007).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Mehrsai, A. R. et al. Comparison of transdermal electromotive administration of verapamil and dexamethasone versus intra-lesional injection for Peyronie’s disease. Andrology 1, 129–132 (2013).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Hellstrom, W. J. et al. Single-blind, multicenter, placebo controlled, parallel study to assess the safety and efficacy of intralesional interferon alpha-2B for minimally invasive treatment for Peyronie’s disease. J. Urol. 176, 394–398 (2006).

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Teasley, G. H. Peyronie’s disease: a new approach. J. Urol. 71, 611–614 (1954).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Lamprakopoulos, A., Zorzos, I. & Lykourinas, M. The use of betamethasone and hyaluronidase injections in the treatment of Peyronie’s disease. Scand. J. Urol. Nephrol. 34, 355–360 (2000).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Demey, A., Chevallier, D., Bondil, P., Toubol, J. & Amiel, J. Is intracavernosal corticosteroid infiltration really useless in Peyronie’s disease? [French]. Prog. Urol. 16, 52–57 (2006).

    PubMed  Google Scholar 

  81. 81.

    Cipollone, G. et al. Betamethasone versus placebo in Peyronie’s disease [Italian]. Arch. Ital. Urol. Androl. 70, 165–168 (1998).

    CAS  PubMed  Google Scholar 

  82. 82.

    Nehra, A. et al. Peyronie’s disease: AUA guideline. J. Urol. 194, 745–753 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hatzimouratidis, K. et al. EAU guidelines on penile curvature. Eur. Urol. 62, 543–552 (2012).

    Article  PubMed  Google Scholar 

  84. 84.

    Chung, E., Garcia, F., Young, L. D., Solomon, M. & Brock, G. B. A comparative study of the efficacy of intralesional verapamil versus normal saline injection in a novel Peyronie disease animal model: assessment of immunohistopathological changes and erectile function outcome. J. Urol. 189, 380–384 (2013).

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Levine, L. A., Merrick, P. F. & Lee, R. C. Intralesional verapamil injection for the treatment of Peyronie’s disease. J. Urol. 151, 1522–1524 (1994).

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Levine, L. A. Treatment of Peyronie’s disease with intralesional verapamil injection. J. Urol. 158, 1395–1399 (1997).

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Levine, L. A., Goldman, K. E. & Greenfield, J. M. Experience with intraplaque injection of verapamil for Peyronie’s disease. J. Urol. 168, 621–625; discussion 625–626 (2002).

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Rehman, J., Benet, A. & Melman, A. Use of intralesional verapamil to dissolve Peyronie’s disease plaque: a long-term single-blind study. Urology 51, 620–626 (1998).

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Bennett, N. E., Guhring, P. & Mulhall, J. P. Intralesional verapamil prevents the progression of Peyronie’s disease. Urology 69, 1181–1184 (2007).

    Article  PubMed  Google Scholar 

  90. 90.

    Shirazi, M., Haghpanah, A. R., Badiee, M., Afrasiabi, M. A. & Haghpanah, S. Effect of intralesional verapamil for treatment of Peyronie’s disease: a randomized single-blind, placebo-controlled study. Int. Urol. Nephrol. 41, 467–471 (2009).

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Shindel, A. W., Bullock, T. L. & Brandes, S. Urologist practice patterns in the management of Peyronie’s disease: a nationwide survey. J. Sex. Med. 5, 954–964 (2008).

    Article  PubMed  Google Scholar 

  92. 92.

    Cavallini, G., Modenini, F. & Vitali, G. Open preliminary randomized prospective clinical trial of efficacy and safety of three different verapamil dilutions for intraplaque therapy of Peyronie’s disease. Urology 69, 950–954 (2007).

    Article  PubMed  Google Scholar 

  93. 93.

    Duncan, M. R., Berman, B. & Nseyo, U. O. Regulation of the proliferation and biosynthetic activities of cultured human Peyronie’s disease fibroblasts by interferons-alpha, -beta and -gamma. Scand. J. Urol. Nephrol. 25, 89–94 (1991).

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Al-Attar, A. et al. Keloid pathogenesis and treatment. Plast. Reconstr. Surg. 117, 286–300 (2006).

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Trost, L. W., Ates, E., Powers, M., Sikka, S. & Hellstrom, W. J. Outcomes of intralesional interferon-alpha2B for the treatment of Peyronie disease. J. Urol. 190, 2194–2199 (2013).

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Stewart, C. A. et al. Intralesional injection of interferon-alpha2b improves penile curvature in men with Peyronie’s disease independent of plaque location. J. Urol. 194, 1704–1707 (2015).

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Brazzelli, M. et al. Collagenase clostridium histolyticum for the treatment of Dupuytren’s contracture: systematic review and economic evaluation. Health Technol. Assess. 19, 1–202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Jordan, G. H. The use of intralesional clostridial collagenase injection therapy for Peyronie’s disease: a prospective, single-center, non-placebo-controlled study. J. Sex. Med. 5, 180–187 (2008).

    Article  PubMed  Google Scholar 

  99. 99.

    Gelbard, M. et al. Clinical efficacy, safety and tolerability of collagenase clostridium histolyticum for the treatment of Peyronie disease in 2 large double-blind, randomized, placebo controlled phase 3 studies. J. Urol. 190, 199–207 (2013).

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    US Food and Drug Administration. Drug safety information for Xiaflex. FDA https://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/UCM208737.pdf (2013).

  101. 101.

    Gelbard, M. K., James, K., Riach, P. & Dorey, F. Collagenase versus placebo in the treatment of Peyronie’s disease: a double-blind study. J. Urol. 149, 56–58 (1993).

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Levine, L. A. et al. Clinical safety and effectiveness of collagenase clostridium histolyticum injection in patients with Peyronie’s disease: a phase 3 open-label study. J. Sex. Med. 12, 248–258 (2015).

    Article  PubMed  Google Scholar 

  103. 103.

    Lipshultz, L. I. et al. Clinical efficacy of collagenase Clostridium histolyticum in the treatment of Peyronie’s disease by subgroup: results from two large, double-blind, randomized, placebo-controlled, phase III studies. BJU Int. 116, 650–656 (2015).

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Ziegelmann, M. J. et al. Restoration of penile function and patient satisfaction with intralesional collagenase Clostridium histolyticum injection for Peyronie’s disease. J. Urol. 195, 1051–1056 (2016).

    Article  PubMed  Google Scholar 

  105. 105.

    Abdel Raheem, A., Capece, M. & Kalejaiye, O. Safety and effectiveness of collagenase clostridium histolyticum in the treatment of Peyronie’s disease using a new modified shortened protocol. BJU Int. 120, 717–723 (2017).

  106. 106.

    Levine, L. A. & Lenting, E. L. A surgical algorithm for the treatment of Peyronie’s disease. J. Urol. 158, 2149–2152 (1997).

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Papagiannopoulos, D., Yura, E. & Levine, L. Examining postoperative outcomes after employing a surgical algorithm for management of Peyronie’s disease: a single-institution retrospective review. J. Sex. Med. 12, 1474–1480 (2015).

    Article  PubMed  Google Scholar 

  108. 108.

    Cordon, B. H. et al. Superior cost effectiveness of penile plication versus intralesional collagenase injection for treatment of Peyronie’s disease deformities. Urol. Pract. 4, 118–125 (2017).

    Article  Google Scholar 

  109. 109.

    Yafi, F. A., Anaissie, J., Zurawin, J., Sikka, S. C. & Hellstrom, W. J. Results of SMSNA survey regarding complications following intralesional injection therapy with collagenase Clostridium histolyticum for Peyronie’s disease. J. Sex. Med. 13, 684–689 (2016).

    Article  PubMed  Google Scholar 

  110. 110.

    Trott, K. R. & Kamprad, F. Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother. Oncol. 51, 197–203 (1999).

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Nolan, M. W. et al. Pudendal nerve and internal pudendal artery damage may contribute to radiation-induced erectile dysfunction. Int. J. Radiat. Oncol. Biol. Phys. 91, 796–806 (2015).

    Article  PubMed  Google Scholar 

  112. 112.

    Mulhall, J. P., Hall, M., Broderick, G. A. & Incrocci, L. Radiation therapy in Peyronie’s disease. J. Sex. Med. 9, 1435–1441 (2012).

    Article  PubMed  Google Scholar 

  113. 113.

    Palmieri, A. et al. A first prospective, randomized, double-blind, placebo-controlled clinical trial evaluating extracorporeal shock wave therapy for the treatment of Peyronie’s disease. Eur. Urol. 56, 363–369 (2009).

    Article  PubMed  Google Scholar 

  114. 114.

    Hauck, E. W. et al. Extracorporeal shock wave therapy for Peyronie’s disease: exploratory meta-analysis of clinical trials. J. Urol. 171, 740–745 (2004).

    Article  PubMed  Google Scholar 

  115. 115.

    Hatzichristodoulou, G. et al. Extracorporeal shock wave therapy in Peyronie’s disease: results of a placebo-controlled, prospective, randomized, single-blind study. J. Sex. Med. 10, 2815–2821 (2013).

    Article  PubMed  Google Scholar 

  116. 116.

    Chung, E., De Young, L., Solomon, M. & Brock, G. B. Peyronie’s disease and mechanotransduction: an in vitro analysis of the cellular changes to Peyronie’s disease in a cell-culture strain system. J. Sex. Med. 10, 1259–1267 (2013).

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Raheem, A. A. et al. The role of vacuum pump therapy to mechanically straighten the penis in Peyronie’s disease. BJU Int. 106, 1178–1180 (2010).

    Article  PubMed  Google Scholar 

  118. 118.

    Agee, J. M. & Goss, B. C. The use of skeletal extension torque in reversing Dupuytren contractures of the proximal interphalangeal joint. J. Hand Surg. Am. 37, 1467–1474 (2012).

    Article  PubMed  Google Scholar 

  119. 119.

    Bailey, A. J., Tarlton, J. F., Van der Stappen, J., Sims, T. J. & Messina, A. The continuous elongation technique for severe Dupuytren’s disease. A biochemical mechanism. J. Hand Surg. Br. 19, 522–527 (1994).

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Levine, L. A., Newell, M. & Taylor, F. L. Penile traction therapy for treatment of Peyronie’s disease: a single-center pilot study. J. Sex. Med. 5, 1468–1473 (2008).

    Article  PubMed  Google Scholar 

  121. 121.

    Gontero, P. et al. Use of penile extender device in the treatment of penile curvature as a result of Peyronie’s disease. Results of a phase II prospective study. J. Sex. Med. 6, 558–566 (2009).

    Article  PubMed  Google Scholar 

  122. 122.

    Martinez-Salamanca, J. I. et al. Acute phase Peyronie’s disease management with traction device: a nonrandomized prospective controlled trial with ultrasound correlation. J. Sex. Med. 11, 506–515 (2014).

    Article  PubMed  Google Scholar 

  123. 123.

    Ralph, D. J., Abdel Raheem, A. & Liu, G. Treatment of Peyronie’s disease with collagenase Clostridium histolyticum and vacuum therapy: a randomized, open-label pilot study. J. Sex. Med. 14, 1430–1437 (2017).

    Article  PubMed  Google Scholar 

  124. 124.

    Chamberlain, G., Fox, J., Ashton, B. & Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007).

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Milenkovic, U., Albersen, M. A. & Castiglione, F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat. Rev. Urol. https://doi.org/10.1038/s41585-018-0109-7 (2018).

  126. 126.

    Castiglione, F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur. Urol. 63, 551–560 (2013).

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02395209 (2015).

  128. 128.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02414308 (2015).

  129. 129.

    Twidwell, J. & Levine, L. Topical treatment for acute phase Peyronie’s disease utilizing a new gel, H-100: a randomized, prospective, placebo-controlled pilot study. Int. J. Impot. Res. 28, 41–45 (2016).

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Chung, E. et al. Evidence-based management guidelines on Peyronie’s disease. J. Sex. Med. 13, 905–923 (2016).

    Article  PubMed  Google Scholar 

  131. 131.

    Dalbeth, N., Lauterio, T. J. & Wolfe, H. R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 36, 1465–1479 (2014).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Urology thanks T. Bivalacqua and other anonymous reviewer(s) for their help with the peer review of this manuscript.

Author information

Affiliations

Authors

Contributions

Both authors researched data for article, made substantial contributions to discussion of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laurence A. Levine.

Ethics declarations

Competing interests

L.A.L. declares that he has acted as a consultant for Coloplast Corporation, Boston Scientific, and Hybrid Medical and as a lecturer for Abbvie. P.T. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsambarlis, P., Levine, L.A. Nonsurgical management of Peyronie’s disease. Nat Rev Urol 16, 172–186 (2019). https://doi.org/10.1038/s41585-018-0117-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing