Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mechanisms and potential of stem cell therapy for penile fibrosis

Abstract

Fibrosis is often caused by chronic tissue injury leading to a persisting inflammatory response with excessive accumulation of extracellular connective tissue proteins. Peyronie’s disease, urethral stricture and penile (corpora cavernosa) fibrosis are localized fibrotic disorders of the penile connective tissues that can substantially impair a patient’s quality of life. Research over the past few decades has revealed the ability of stem cells to secrete a wide range of paracrine factors, a characteristic that could be exploited therapeutically to prevent and treat several inflammatory and fibrotic diseases. In preclinical studies, mesenchymal stem cells (MSCs) have proven to be the most effective and readily available type of stem cells for therapeutic use. An important advantage of MSCs is their ability to circumvent the immune system and function as immunomodulatory ‘drug stores’ to influence multiple cell types simultaneously. Many studies using stem cells have been applied exclusively to corpora cavernosa fibrosis owing to its well-established disease models. A plethora of preclinical data suggest the benefit of stem cells for use in penile fibrosis. However, their exact mechanism of action and optimal timing and mode of administration must be determined before clinical translation.

Key points

  • Fibrosis is a state of excessive wound-healing leading to the replacement of the local parenchyma with stiff and afunctional extracellular matrix, resulting in loss of organ function in advanced stages.

  • Owing to the complex network of cell types and interactions involved in fibrosis, very few effective medical treatment options are currently available for patients with fibrotic diseases, including penile fibrosis.

  • Stem cells can interrupt several key processes in the fibrotic cascade simultaneously and, therefore, have great potential as novel antifibrotic therapies.

  • Penile fibrosis can occur in the corpora cavernosa, tunica albuginea or urethra.

  • A large number of preclinical studies have investigated the effect of stem cells for the treatment of penile fibrosis, and have reported encouraging results.

  • Certain limitations (such as isolation, timing, administration and dosage) need to be addressed before preclinical findings can be translated into the clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the wound-healing process and fibrosis.
Fig. 2: Penile fibrosis.
Fig. 3: Pro-inflammatory and anti-inflammatory MSC phenotypes.
Fig. 4: The origin of myofibroblasts.

Similar content being viewed by others

References

  1. Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn, T. A. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2013).

    Article  CAS  Google Scholar 

  3. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis — a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Cannito, S., Novo, E. & Parola, M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv. Drug Deliv. Rev. 121, 57–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez-Cadavid, N. F. & Rajfer, J. Treatment of Peyronie’s disease with PDE5 inhibitors: an antifibrotic strategy. Nat. Rev. Urol. 7, 215–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Cadavid, N. F. & Rajfer, J. Experimental models of peyronie’s disease. Implications for new therapies. J. Sex. Med. 6, 303–313 (2009).

    CAS  PubMed  Google Scholar 

  8. Gonzalez-Cadavid, N. F. Mechanisms of penile fibrosis. J. Sex. Med. 6, 353–362 (2009).

    Article  PubMed  Google Scholar 

  9. Mundy, A. R. & Andrich, D. E. Urethral strictures. BJU Int. 107, 6–26 (2011).

    Article  PubMed  Google Scholar 

  10. Kucukdurmaz, F. et al. Duration of priapism is associated with increased corporal oxidative stress and antioxidant enzymes in a rat model. Andrologia 48, 374–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Garaffa, G., Trost, L. W., Serefoglu, E. C., Ralph, D. & Hellstrom, W. J. G. Understanding the course of Peyronie’s disease. Int. J. Clin. Pract. 67, 781–788 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Caplan, A. I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caplan, A. I. MSCs: the sentinel and safe-guards of injury. J. Cell. Physiol. 231, 1413–1416 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Singer, N. G. & Caplan, A. I. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. Mech. Dis. 6, 457–478 (2011).

    Article  CAS  Google Scholar 

  15. da Silva Meirelles, L., Fontes, A. M., Covas, D. T. & Caplan, A. I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20, 419–427 (2009).

    Article  CAS  Google Scholar 

  16. Lim, R., Ricardo, S. D. & Sievert, W. Cell-based therapies for tissue fibrosis. Front. Pharmacol. 8, 633 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. El Agha, E. et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21, 166–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Ghieh, F. et al. The use of stem cells in burn wound healing: a review. Biomed. Res. Int. 2015, 1–9 (2015).

    Article  CAS  Google Scholar 

  19. Eom, Y. W., Shim, K. Y. & Baik, S. K. Mesenchymal stem cell therapy for liver fibrosis. Kor. J. Intern. Med. 30, 580–589 (2015).

    Article  CAS  Google Scholar 

  20. Usunier, B., Benderitter, M., Tamarat, R. & Chapel, A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int. 2014, 1–26 (2014).

    Article  Google Scholar 

  21. Geiger, S., Hirsch, D. & Hermann, F. G. Cell therapy for lung disease. Eur. Respir. Rev. 26, 170044 (2017).

    Article  PubMed  Google Scholar 

  22. Hostettler, K. E. et al. Multipotent mesenchymal stem cells in lung fibrosis. PLOS ONE 12, e0181946 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sitanggang, E. J., Antarianto, R. D., Jusman, S. W. A., Pawitan, J. A. & Jusuf, A. A. Bone marrow stem cells anti-liver fibrosis potency: inhibition of hepatic stellate cells activity and extracellular matrix deposition. Int. J. Stem Cells 10, 69–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Milosavljevic, N. et al. Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells — an experimental study. Transpl. Int. 31, 102–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Lou, G., Chen, Z., Zheng, M. & Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med. 49, e346 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Matsui, F. et al. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am. J. Physiol. Renal Physiol. 312, F25–F32 (2017).

    Article  CAS  Google Scholar 

  27. Kuppe, C. & Kramann, R. Role of mesenchymal stem cells in kidney injury and fibrosis. Curr. Opin. Nephrol. Hypertens. 25, 372–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Reinders, M. E. J., de Fijter, J. W. & Rabelink, T. J. Mesenchymal stromal cells to prevent fibrosis in kidney transplantation. Curr. Opin. Organ. Transplant. 19, 54–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, S.-Z. et al. Paracrine effect of CXCR4-overexpressing mesenchymal stem cells on ischemic heart injury. Cell Biochem. Funct. 35, 113–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michler, R. E. Stem cell therapy for heart failure. Methodist Debakey Cardiovasc. J. 9, 187–194 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castiglione, F. et al. Adipose-derived stem cells counteract urethral stricture formation in rats. Eur. Urol. 70, 1032–1041 (2016).

    Article  PubMed  Google Scholar 

  32. Soebadi, M. A., Milenkovic, U., Weyne, E. & Castiglione, F. Stem cells in male sexual dysfunction: are we getting somewhere? Sex. Med. Rev. 5, 222–235 (2016).

    Article  PubMed  Google Scholar 

  33. Soebadi, M. A., Moris, L., Castiglione, F., Weyne, E. & Albersen, M. Advances in stem cell research for the treatment of male sexual dysfunctions. Curr. Opin. Urol. 26, 129–139 (2016).

    Article  PubMed  Google Scholar 

  34. Dellis, A. & Papatsoris, A. Stem cell therapy for the treatment of Peyronie’s disease. Expert Opin. Biol. Ther. 17, 407–413 (2017).

    Article  PubMed  Google Scholar 

  35. Bernardo, M. E. & Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Vannella, K. M. & Wynn, T. A. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79, 593–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. Mech. Dis. 8, 241–276 (2013).

    Article  CAS  Google Scholar 

  39. Schneider, R. K. et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20, 785–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marshall, R. P., Simpson, J. K. & Lukey, P. T. Strategies for biomarker discovery in fibrotic disease. Biochim. Biophys. Acta 1832, 1079–1087 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Tzouvelekis, A. et al. Longitudinal “real-world” outcomes of pirfenidone in idiopathic pulmonary fibrosis in Greece. Front. Med. 4, 213 (2017).

    Article  Google Scholar 

  42. Tzouvelekis, A. et al. Safety and efficacy of nintedanib in idiopathic pulmonary fibrosis: a real-life observational study in Greece. Pulm. Pharmacol. Ther. 49, 61–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Voog, J. & Jones, D. L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6, 103–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, J. & Izpisua Belmonte, J. C. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Enver, T., Pera, M., Peterson, C. & Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4, 387–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bonfield, T. L. & Caplan, A. I. Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov. Med. 9, 337–345 (2010).

    PubMed  Google Scholar 

  47. DiMarino, A. M., Caplan, A. I. & Bonfield, T. L. Mesenchymal stem cells in tissue repair. Front. Immunol. 4, 201 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caplan, A. I. & Dennis, J. E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Thomas, H., Cowin, A. J. & Mills, S. J. The importance of pericytes in healing: wounds and other pathologies. Int. J. Mol. Sci. 18, E1129 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Różycka, J., Brzóska, E. & Skirecki, T. Aspects of pericytes and their potential therapeutic use. Postepy Hig. Med. Dosw. 71, 186–197 (2017).

    Article  Google Scholar 

  53. Ferland-McCollough, D., Slater, S., Richard, J., Reni, C. & Mangialardi, G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol. Ther. 171, 30–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ankrum, J. A., Ong, J. F. & Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32, 252–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y. et al. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33, 136–143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trounson, A. & McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17, 11–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Inaba, M. & Yamashita, Y. M. Asymmetric stem cell division: precision for robustness. Cell Stem Cell 11, 461–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Khavari, D. A., Sen, G. L. & Rinn, J. L. DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 9, 3880–3883 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Collas, P. Programming differentiation potential in mesenchymal stem cells. Epigenetics 5, 476–482 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Sorrell, J. M. & Caplan, A. I. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res. Ther. 1, 30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Maxson, S., Lopez, E. A., Yoo, D., Danilkovitch-Miagkova, A. & LeRoux, M. A. Concise Review: Role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 1, 142–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanson, S. E. Mesenchymal stem cells: a multimodality option for wound healing. Adv. Wound Care 1, 153–158 (2012).

    Article  Google Scholar 

  64. Mattoli, S., Bellini, A. & Schmidt, M. The role of a human hematopoietic mesenchymal progenitor in wound healing and fibrotic diseases and implications for therapy. Curr. Stem Cell Res. Ther. 4, 266–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126, 1172–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leavitt, T. et al. Scarless wound healing: finding the right cells and signals. Cell Tissue Res. 365, 483–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cerqueira, M. T., Pirraco, R. P. & Marques, A. P. Stem cells in skin wound healing: are we there yet? Adv. Wound Care 5, 164–175 (2016).

    Article  Google Scholar 

  68. Pinggera, G.-M., Rehder, P., Bartsch, G. & Gozzi, C. Harnröhrentraumen. Urologe 44, 883–897 (2005).

    Article  Google Scholar 

  69. Mooney, D. J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y. et al. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. J. Transl Med. 10, 133 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu, Y. et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int. Wound J. 11, 701–710 (2014).

    Article  PubMed  Google Scholar 

  73. Wu, Y. et al. Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation. Int. J. Low. Extrem. Wounds 14, 50–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Williams, A. R. et al. Durable scar size reduction due to allogeneic mesenchymal stem cell therapy regulates whole-chamber remodeling. J. Am. Heart Assoc. 2, e000140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. & Phan, S. H. Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–252 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jurado, M. et al. Adipose tissue-derived mesenchymal stromal cells as part of therapy for chronic graft-versus-host disease: a phase I/II study. Cytotherapy 19, 927–936 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Owen Pickrell, W. & Robertson, N. P. Stem cell treatment for multiple sclerosis. J. Neurol. 263, 2145–2147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lamo-Espinosa, J. M. et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J. Transl Med. 14, 246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lindsay, J. O. et al. Autologous stem-cell transplantation in treatment-refractory Crohn’s disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol. Hepatol. 2, 399–406 (2017).

    Article  PubMed  Google Scholar 

  80. Fandel, T. M. et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell 19, 544–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Ranganath, S. H., Levy, O., Inamdar, M. S. & Karp, J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gupta, M. K. & Ajay, A. K. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine. Stem Cell Res. Ther. 6, 233 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cheng, S.-L., Lin, C.-H. & Yao, C.-L. Mesenchymal stem cell administration in patients with chronic obstructive pulmonary disease: state of the science. Stem Cells Int. 2017, 1–14 (2017).

    Google Scholar 

  84. Jackson, W. M., Nesti, L. J. & Tuan, R. S. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res. Ther. 3, 20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aurora, A. B. & Olson, E. N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161–178 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Oshimori, N. & Fuchs, E. The harmonies played by TGF-β in stem cell biology. Cell Stem Cell 11, 751–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sreeramkumar, V., Fresno, M. & Cuesta, N. Prostaglandin E 2 and T cells: friends or foes? Immunol. Cell Biol. 90, 579–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Nakanishi, M. & Rosenberg, D. W. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 35, 123–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Braga, T. T., Agudelo, J. S. H. & Camara, N. O. S. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol. 6, 602 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sziksz, E. et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015, 764641 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dean, R. C. & Lue, T. F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. North Am. 32, 379–395 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lue, T. F., Brant, W. O., Shindel, A. & Bella, A. J. Sexual Dysfunction in Diabetes (eds De Groot, L. J., Chrousos, G., Dungan, K. et al) (MDText.com, Inc., 2000).

  96. Gonzalez-Cadavid, N. F. & Rajfer, J. Mechanisms of disease: new insights into the cellular and molecular pathology of Peyronie’s disease. Nat. Clin. Pract. Urol. 2, 291–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Haglind, E. et al. Urinary incontinence and erectile dysfunction after robotic versus open radical prostatectomy: a prospective, controlled, nonrandomised trial. Eur. Urol. 68, 216–225 (2015).

    Article  PubMed  Google Scholar 

  98. Yafi, F. A. et al. Erectile dysfunction. Nat. Rev. Dis. Primers 2, 16003 (2016).

    Article  PubMed  Google Scholar 

  99. Ferrini, M. G. et al. Fibrosis and loss of smooth muscle in the corpora cavernosa precede corporal veno-occlusive dysfunction (CVOD) induced by experimental cavernosal nerve damage in the rat. J. Sex. Med. 6, 415–428 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Fode, M., Ohl, D. A., Ralph, D. & Sønksen, J. Penile rehabilitation after radical prostatectomy: what the evidence really says. BJU Int. 112, 998–1008 (2013).

    PubMed  Google Scholar 

  101. Sopko, N. A. & Burnett, A. L. Erection rehabilitation following prostatectomy — current strategies and future directions. Nat. Rev. Urol. 13, 216–225 (2016).

    Article  PubMed  Google Scholar 

  102. Hannan, J. L. et al. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion. Sci. Rep. 6, 29416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Albersen, M. et al. Pentoxifylline promotes recovery of erectile function in a rat model of postprostatectomy erectile dysfunction. Eur. Urol. 59, 286–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Chitaley, K. et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat. Med. 7, 119–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Chitaley, K., Webb, R. C. & Mills, T. M. Rho-kinase as a potential target for the treatment of erectile dysfunction. Drug News Perspect. 14, 601–606 (2001).

    CAS  PubMed  Google Scholar 

  106. Chitaley, K., Webb, R. & Mills, T. RhoA/Rho-kinase: a novel player in the regulation of penile erection. Int. J. Impot. Res. 13, 67–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Martínez-Salamanca, J. I. et al. α1A-adrenergic receptor antagonism improves erectile and cavernosal responses in rats with cavernous nerve injury and enhances neurogenic responses in human corpus cavernosum from patients with erectile dysfunction secondary to radical prostatectomy. J. Sex. Med. 13, 1844–1857 (2016).

    Article  PubMed  Google Scholar 

  108. Martínez-Salamanca, J. I., Mueller, A., Moncada, I., Carballido, J. & Mulhall, J. P. Penile prosthesis surgery in patients with corporal fibrosis: a state of the art review. J. Sex. Med. 8, 1880–1889 (2011).

    Article  PubMed  Google Scholar 

  109. Wang, X. et al. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection. PLOS ONE 10, e0118951 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu, T. et al. Hepatocyte growth factor-modified adipose tissue-derived stem cells improve erectile function in streptozotocin-induced diabetic rats. Growth Factors 33, 282–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, Y.-C. et al. The effects of adipose-derived stem cells in a rat model of tobacco-associated erectile dysfunction. PLOS ONE 11, e0156725 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kovanecz, I. et al. Separate or combined treatments with daily sildenafil, molsidomine, or muscle-derived stem cells prevent erectile dysfunction in a rat model of cavernosal nerve damage. J. Sex. Med. 9, 2814–2826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ying, C. et al. Erectile function restoration after repair of resected cavernous nerves by adipose-derived stem cells combined with autologous vein graft in rats. Cell. Mol. Neurobiol. 34, 393–402 (2014).

    Article  PubMed  Google Scholar 

  114. Chen, X. et al. Neurotrophic effect of adipose tissue-derived stem cells on erectile function recovery by pigment epithelium-derived factor secretion in a rat model of cavernous nerve injury. Stem Cells Int. 2016, 1–12 (2016).

    Google Scholar 

  115. Albersen, M. et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010).

    Article  PubMed  Google Scholar 

  116. Kim, I. G. et al. Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury. Tissue Eng. Part A 19, 14–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. You, D. et al. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Stem Cells Transl Med. 4, 351–358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martínez-Salamanca, J. I. et al. Dual strategy with oral phosphodiesterase type 5 inhibition and intracavernosal implantation of mesenchymal stem cells is superior to individual approaches in the recovery of erectile and cavernosal functions after cavernous nerve injury in rats. J. Sex. Med. 13, 1–11 (2016).

    Article  PubMed  Google Scholar 

  119. Ryu, J.-K. et al. Intracavernous delivery of clonal mesenchymal stem cells rescues erectile function in the streptozotocin-induced diabetic mouse. Andrology 4, 172–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Qiu, X. et al. Both immediate and delayed intracavernous injection of autologous adipose-derived stromal vascular fraction enhances recovery of erectile function in a rat model of cavernous nerve injury. Eur. Urol. 62, 720–727 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ryu, J. et al. Intracavernous delivery of clonal mesenchymal stem cells restores erectile function in a mouse model of cavernous nerve injury. J. Sex. Med. 11, 411–423 (2014).

    Article  PubMed  Google Scholar 

  122. Jeong, H. H. et al. Combined therapeutic effect of udenafil and adipose-derived stem cell (ADSC)/brain-derived neurotrophic factor (BDNF)–membrane system in a rat model of cavernous nerve injury. Urology 81, 1108.e7–1108.e14 (2013).

    Article  Google Scholar 

  123. Fandel, T. M. et al. Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury. Eur. Urol. 61, 201–210 (2012).

    Article  PubMed  Google Scholar 

  124. Ying, C., Yang, M., Zheng, X., Hu, W. & Wang, X. Effects of intracavernous injection of adipose-derived stem cells on cavernous nerve regeneration in a rat model. Cell. Mol. Neurobiol. 33, 233–240 (2013).

    Article  PubMed  Google Scholar 

  125. You, D. et al. Periprostatic implantation of human bone marrow-derived mesenchymal stem cells potentiates recovery of erectile function by intracavernosal injection in a rat model of cavernous nerve injury. Urology 81, 104–110 (2013).

    Article  PubMed  Google Scholar 

  126. You, D. et al. Bone marrow–derived mesenchymal stromal cell therapy in a rat model of cavernous nerve injury: preclinical study for approval. Cytotherapy 18, 870–880 (2016).

    Article  PubMed  Google Scholar 

  127. Zhu, J.-Q. et al. Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury. Biotechnol. Lett. 37, 1515–1525 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Song, L. et al. BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells promote erectile function in a rat model of cavernous nerve electrocautery injury. Int. Urol. Nephrol. 48, 37–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Gokce, A. et al. Adipose tissue-derived stem cell therapy for prevention and treatment of erectile dysfunction in a rat model of Peyronie’s disease. Andrology 2, 244–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Gokce, A. et al. Intratunical injection of genetically modified adipose tissue-derived stem cells with human interferon α-2b for treatment of erectile dysfunction in a rat model of tunica albugineal fibrosis. J. Sex. Med. 12, 1533–1544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Castiglione, F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur. Urol. 63, 551–560 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Ouyang, B. et al. Human urine-derived stem cells alone or genetically-modified with FGF2 improve type 2 diabetic erectile dysfunction in a rat model. PLOS ONE 9, e92825 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sangkum, P. et al. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis. Can. Urol. Assoc. J. 10, E175–E180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Levy, J. A., Marchand, M., Iorio, L., Cassini, W. & Zahalsky, M. P. Determining the feasibility of managing erectile dysfunction in humans with placental-derived stem cells. J. Am. Osteopath. Assoc. 116, e1 (2016).

    Article  PubMed  Google Scholar 

  135. Yang, Q. et al. Transplantation of human urine-derived stem cells transfected with pigment epithelium-derived factor to protect erectile function in a rat model of cavernous nerve injury. Cell Transplant. 25, 1987–2001 (2016).

    Article  PubMed  Google Scholar 

  136. Cengiz, T. et al. Intracavernous injection of human umbilical cord blood mononuclear cells improves erectile dysfunction in streptozotocin-induced diabetic rats. J. Sex. Med. 14, 50–58 (2017).

    Article  PubMed  Google Scholar 

  137. Shan, H.-T. et al. Combination of low energy shock wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats. Asian J. Androl. 0, 0 (2016).

    Google Scholar 

  138. Wang, X. et al. Combination of mesenchymal stem cell injection with icariin for the treatment of diabetes-associated erectile dysfunction. PLOS ONE 12, e0174145 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Liu, G. et al. Correction of diabetic erectile dysfunction with adipose derived stem cells modified with the vascular endothelial growth factor gene in a rodent diabetic model. PLOS ONE 8, e72790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kovanecz, I. et al. Implanted muscle-derived stem cells ameliorate erectile dysfunction in a rat model of type 2 diabetes, but their repair capacity is impaired by their prior exposure to the diabetic milieu. J. Sex. Med. 13, 786–797 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Garcia, M. M. et al. Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. J. Sex. Med. 7, 89–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yun, Y.-R. et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 218142 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Matsuda, Y. et al. Intravenous infusion of bone marrow-derived mesenchymal stem cells reduces erectile dysfunction following cavernous nerve injury in rats. Sex. Med. 6, 49–57 (2018).

    Article  PubMed  Google Scholar 

  144. Yang, J. et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 6, 498–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Albersen, M., Weyne, E. & Bivalacqua, T. J. Stem cell therapy for erectile dysfunction: progress and future directions. Sex. Med. Rev. 1, 50–64 (2013).

    Article  PubMed  Google Scholar 

  146. Fang, J. et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells restores cavernous nerve injury-related erectile dysfunction. J. Sex. Med. 15, 284–295 (2018).

    Article  PubMed  Google Scholar 

  147. Graziottin, T. M. The pathophysiology of Peyronie’s disease: beyond the Smith’s space. Int. Braz. J. Urol. 41, 1040–1042 (2015).

    Article  PubMed  Google Scholar 

  148. Ralph, D., Cellek, S. & Stebbeds, W. Solving a bottleneck in animal models of Peyronie’s disease. Asian J. Androl. 16, 639 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cerruto, M. A. et al. Animal experimental model of Peyronie’s disease: a pilot study. Arch. Ital. Urol. Androl. 85, 28 (2013).

    Article  PubMed  Google Scholar 

  150. Chung, E., De Young, L. & Brock, G. B. Rat as an animal model for Peyronie’s disease research: a review of current methods and the peer-reviewed literature. Int. J. Impot. Res. 23, 235–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Zargooshi, J. Trauma as the cause of Peyronie’s disease: penile fracture as a model of trauma. J. Urol. 172, 186–188 (2004).

    Article  PubMed  Google Scholar 

  152. Acikgoz, A. et al. Relationship between penile fracture and Peyronie’s disease: a prospective study. Int. J. Impot. Res. 23, 165–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Mack, M. & Yanagita, M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 87, 297–307 (2015).

    Article  PubMed  Google Scholar 

  154. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vernet, D. et al. Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells: implications for Peyronie disease. Biol. Reprod. 73, 1199–1210 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell. Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Jiang, H., Gao, Q., Che, X. & Zhu, L. Inhibition of penile tunica albuginea myofibroblasts activity by adipose — derived stem cells. Exp. Ther. Med. 14, 5149–5156 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Latini, J. M., McAninch, J. W., Brandes, S. B., Chung, J. Y. & Rosenstein, D. SIU/ICUD Consultation on urethral strictures: epidemiology, etiology, anatomy, and nomenclature of urethral stenoses, strictures, and pelvic fracture urethral disruption injuries. Urology 83, S1–S7 (2014).

    Article  PubMed  Google Scholar 

  159. Xie, H., Feng, C., Fu, Q., Sa, Y.-L. & Xu, Y.-M. Crosstalk between TGF-β1 and CXCR3 signaling during urethral fibrosis. Mol. Cell. Biochem. 394, 283–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. de Kemp, V., de Graaf, P., Fledderus, J. O., Ruud Bosch, J. L. H. & de Kort, L. M. O. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLOS ONE 10, e0118653 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sangkum, P. et al. Transforming growth factor-β1 induced urethral fibrosis in a rat model. J. Urol. 194, 820–827 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Marcos, R., Bragança, B. & Fontes-Sousa, A. P. Image analysis or stereology. J. Histochem. Cytochem. 63, 734–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Farris, A. B. et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 22, 176–186 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Huang, Y. et al. Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int. 33, 1249–1256 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic-Canic, M. Perspective article: Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585–601 (2008).

    Article  PubMed  Google Scholar 

  166. Li, Y. et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J. Exp. Med. 208, 1459–1471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Novo, E. et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am. J. Pathol. 170, 1942–1953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Parola, M., Marra, F. & Pinzani, M. Myofibroblast-like cells and liver fibrogenesis: emerging concepts in a rapidly moving scenario. Mol. Aspects Med. 29, 58–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Fernández, M. et al. Angiogenesis in liver disease. J. Hepatol. 50, 604–620 (2009).

    Article  PubMed  CAS  Google Scholar 

  172. Novo, E. et al. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys. 548, 20–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Trautwein, C., Friedman, S. L., Schuppan, D. & Pinzani, M. Hepatic fibrosis: concept to treatment. J. Hepatol. 62, S15–S24 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Lee, Y. A., Wallace, M. C. & Friedman, S. L. Pathobiology of liver fibrosis: a translational success story. Gut 64, 830–841 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Nelson, C. J. et al. The chronology of depression and distress in men with peyronie’s disease. J. Sex. Med. 5, 1985–1990 (2008).

    Article  PubMed  Google Scholar 

  176. Anaissie, J. et al. Peyronie’s Disease. Urology 100, 125–130 (2016).

    Article  PubMed  Google Scholar 

  177. Russo, G. I. et al. Clinical efficacy of injection and mechanical therapy for Peyronie’s disease: a systematic review of the literature. Eur. Urol. https://doi.org/10.1016/j.eururo.2018.07.005 (2018).

  178. Hinz, B. et al. The myofibroblast. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hinz, B. et al. Recent developments in myofibroblast biology. Am. J. Pathol. 180, 1340–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. McAnulty, R. J. Fibroblasts and myofibroblasts: Their source, function and role in disease. Int. J. Biochem. Cell Biol. 39, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zavadil, J. & Böttinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Urology thanks I. Kovanecz and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to the discussion of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maarten Albersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tunica albuginea

The connective tissue sheath surrounding the erectile tissue (corpora cavernosa) of the penis.

Corpora cavernosa

Sponge-like regions of the erectile tissue that contain most of the blood during a penile erection. (Singular: corpus cavernosum).

Priapism

A condition whereby the penis remains in an erectile state without any stimulation, or after the stimulation has ended, for more than 4 hours.

Mesenchymal stem cells

(MSCs). Multipotent stromal cells with the ability to differentiate into several cell types within their germ layer (osteoblasts, chondrocytes, myocytes and adipocytes).

Corpus spongiosum

Spongy tissue surrounding the male urethra within the penis.

Totipotent stem cells

These stem cells have the capacity to divide and develop into cells from all three germ cell layers and into extra-embryonic tissues (for example, placenta). The zygote is an example of such a cell.

Pluripotent stem cells

These stem cells have the capacity to divide and develop into cells from all three germ cell layers, but not into extra-embryonic tissues (for example, placenta). Embryonic stem cells are examples of such cells.

Multipotent stem cells

These stem cells have the capacity to divide and develop into cells from a specific tissue or organ. Most adult stem cells are examples of such cells.

Neuropraxia

Temporary loss of motor and/or sensory function in a nerve from the peripheral nervous system as a result of impaired nerve conduction. Neuropraxia usually recovers fully after 6–8 weeks.

Wallerian degeneration

Active nerve degeneration resulting from a nerve being cut or crushed, whereby the axonal tail distal to the damage (furthest from the neuronal body) degenerates.

Space of Smith

A vascular, loose, areolar connective tissue sleeve that separates the corpus cavernosum from the tunica albuginea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milenkovic, U., Albersen, M. & Castiglione, F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 16, 79–97 (2019). https://doi.org/10.1038/s41585-018-0109-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0109-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing